交通流変分理論の活用を通じた全体最適な 速度制御による渋滞発生抑制施策の検討

眞貝 憲史¹・鈴木 英之²・兒玉 崇²・石井 亜也加²・ 田名部 淳³・塩見 康博⁴

¹正会員 株式会社地域未来研究所(〒531-0003大阪府大阪市北区堂島1丁目5番17号堂島グランドビル) E-mail: shinkai@refrec.jp

²正会員 阪神高速道路株式会社 計画部 (〒541-0056 大阪府大阪市中央区久太郎町4丁目1番地3号) ³正会員 株式会社地域未来研究所 (〒531-0003 大阪府大阪市北区堂島1丁目5番17号堂島グランドビル) ⁴正会員 立命館大学准教授理工学部環境都市工学科 (〒527-8277 滋賀県草津市野路東1丁目1番地1号)

近未来における自動運転車両の普及を踏まえ,新たな時代の交通流マネジメントの検討を行なう必要が ある.現在の自動運転車両は自車でセンシングした情報を元に走行することを基本としており,道路交通 全体の効率性に対する役割は主眼ではないと考えられる.そこで,本研究では道路交通全体を把握する道 路管理者側から制御情報の提供を行い,渋滞発生を抑制する制御手法の検討を行った.

本研究では、まず交通流変分理論(Variational Theory: VT)を用いて対象区間の全車両の走行軌跡を推 定し、交通状況の再現を試みる.次に、渋滞発生直前に多数発生するショックウェーブを車両制御によっ て解消する手法を考え、その効果を検証する.

Key Words: Variational theory, Traffic congestion, Autonomus vehicles, Traffic control, Jamabsorption

1. はじめに

(1) 本研究の背景

近未来において自動運転技術の普及が予想される中で, それを踏まえた交通流マネジメントの在り方を検討する 段階にある.しかしながら,自動車メーカーの考える自 動運転技術は,安全装置の延長線上にある役割が強く, 道路交通全体の効率性へどのように貢献するかという観 点は大きく考えられていない可能性がある.

現在実用化されている自動運転技術の一例として, ACC (Adaptive Cruise Control)がある. ACC は走行速度に応 じて車間距離を自動的に調整するため,適切に使用する ことでドライバーの運転に対する負担を軽減すると同時 に,追従挙動の安定やそれに伴う捌け容量の向上等と いった効果が期待されている¹⁾.一方で,現行性能の ACC を用いた場合に加速が緩慢になることで車間間隔 が大きくなり,逆に捌け容量が低下する可能性も指摘さ れている².

車両制御による交通状況の改善では, He et al.³によっ て,単発的に発生した急減速(ショックウェーブ)に対 して,後続の車両をショックウェーブを回避する形で走 行させることで、それを緩和すると同時に総遅れ時間を 短縮できることをシミュレーションで示した.また、塩 見ら⁴は渋滞発生に伴う容量低下を考慮したボトルネッ クを含む単路部において、自動運転車両に対する介入制 御による到着時刻調整を実行することで、総旅行時間の 短縮に繋がる可能性を明らかにした.

現在の車両のセンシング技術では,200m 程度前方の 情報は計測可能であるが,自力での計測には限界があり, はるか前方で発生した急減速や渋滞末尾の情報提供は車 両側にも有用であると考えられる.

このような背景の中で,自動運転車両を適切な形で制 御することにより,道路交通全体では渋滞発生抑制や事 故リスクの低減等の効果に繋がり,車両単位ではスムー ズな交通による乗り心地改善や事故回避等の恩恵を得ら れる路車連携手法を検討する意義はあると考えられる.

(2) 本研究の目的

本研究では、渋滞発生直前の交通状況に対して、道路 側から自動運転車両に情報提供を行うことで到着時刻を 調整し、渋滞発生抑制を目的とした全体最適な車両制御 による効果の把握を目的とする.本研究で考える全体最

図-2車両制御のイメージ

適とは、制御による上流側への影響を小さくすることである.車両制御にあたって、交通状況の推定や制御効果の試算には Daganzo⁵⁰により提案された交通流変分理論

(Variational theory:以下, VTとする)を用いる.

本研究で検討対象とする区間は、図-1 に示す阪神高速道路 11 号池田線上り塚本入口付近 4.1kp~5.1kp の第2 車線である.この区間では、塚本入口合流付近で黄線(車線変更不可)区間となっていることから、第1 車線と第2 車線の間で車両の出入りはなく、車線ごとに交通状況が独立している可能性が高い.したがって、車線別に FD

(Fundamental Diagram) を推定し、VT を適用することで、
 VT の前提条件である FIFO (First-in-First-out)が満たされやす
 くなると考えられることから、本研究では対象区間の第2
 車線に対して交通状況の推定と車両制御効果の試算を行う。

本稿の構成を述べる.まず,想定する制御アルゴリズ ムについて2節で示す.次に,VTの概要とそれを用い た交通状況の推定が可能であるかを3節で示す.4節で は制御に必要なショックウェーブの検知について確認す る.そして,5節で車両制御の効果について試算する. 最後に,5節で本研究の成果をまとめる.

2. 想定する制御手法

本研究で想定する制御のイメージを図-2 に、図-3 に 制御の流れを示す.下流側の検知器でショックウェーブ (SW, shock wave)を検知し、その時刻までの情報で VT を 用いて延伸状況を予測する.延伸が予測される場合には 制御の実行を判定する.

車両制御は、制御対象車両の速度を制御し、VT を用 いて下流端で検知されたショックウェーブを回避可能な 速度を算出し、対象車両に伝達することで実行すること を想定する.VT の計算には、ショックウェーブが検知 された段階で、それに含まれる車両の検知開始時刻から 検知終了時刻にかけて停止するような境界条件として入

力し, VT 上で外生的にショックウェーブを発生させる ことで反映する.

図-4制御速度の考え方

SWの動跡

制御速度は、ショックウェーブが検知された時点で算 出される自由流走行時間からの遅れ時間に基づいて設定 する.その考え方を図4に示す.対象区間の下流端で ショックウェーブを検知した段階でVT上で自由流走行 速度からの遅れ時間(図4中*T*)を算出することができ

図-5渋滞直前のショックウェーブ発生状況

る.制御速度は、ショックウェーブ検知後に制御区間に 流入する最初の車両が自由流で走行するとショック ウェーブに巻き込まれる地点(図4中点 P)で、この*T* 以上の遅れ時間で点Pに到着するように設定する.制御 はこの点Pを通過した時点で解除し、制御対象車両は再 び自由流速度で走行できるようになる.

制御なしの状況で VT による交通状況の予測を行った 後,再度制御車両を導入した状態で VT を用いて制御に よる交通状況への影響を算出し,制御なしの状態と比較 して交通状況の改善が見込まれる場合には制御を実行す る.

2016 年 12 月 14 日 15 時頃に発生した渋滞の発生直前 の交通状況を図-5 に示す. この図より,渋滞発生直前 にはショックウェーブが,対象区間下流にある塚本合流 前後の複数の地点から発生している状況がみられる. こ れらのショックウェーブに対して,流入する車両の到着 時刻を調整することでその緩和を試みる.

3. VTを用いた交通状況の推定

(1) VTの概要

VTは Kinematic wave 理論に基づいて車両の移動を推定 する手法であり、高速道路や一般道でも適用の実績があ る[¬]. VT による交通状況の推定の概略を示す. VT は FIFOを仮定した区間において、u (forward wave speed)とw(backward wave speed)が与えられた場合に、区分線型 FD を考え、図-6 へ示すような対象区間の時空間に FD を敷 き詰め、Forward wave と Backward wave によって構成され る VT ネットワークを定義する.

FD の最大フローレートを q_{max} ,最大密度を k_{jan} とする. FD の自由流領域のリンク(fw リンク)はコスト0とし, 渋滞流領域のリンク(bw リンク)のコストを $k_{jan}dx = q_{max} dt$

図-6FDネットワーク

とする.ここで、dx, dtは図-6中の FD ネットワーク中の 微小区間である.この時空間上で累積交通量が既知の ノードを境界ノードとする.時空間上で累積交通量が不 明なノード j に到達可能な境界ノード i のインデックス 集合を Ω_j , ノード i とjの累積交通量をそれぞれ N_i, N_j と する.ノード i, ノード jの累積交通量の差分を Z_j とす と、 N_i は以下のように示される.

 $N_{i} = \inf_{i} \{N_{i} + Z_{ii}\}, i \in \Omega_{i}$ (1)

式(1)において、Z_iは FD ネットワーク上のノード*i*か らノード*j*間の最短経路コストで与えられる.全てのZ_i を計算したとき、N_jはN_iとZ_iの和の最小値となる.し たがって、式(1)を FD ネットワーク上の全てのノード*j* に対して繰り返すことで、全てのN_jを計算することが できる.実際に VT を適用する場合は、上流端・下流端 の累積交通量を検知器パルスデータ等で得られる個別車 両の到着時刻から与えればよい.各車両の走行軌跡は、 全ての累積交通量が算出された FD ネットワーク上で累 積交通量が等しいノードを繋ぐことで求められる.また、 VT は流入・流出の条件以外にも、プローブデータのよ うな車両の軌跡データを用いて対象区間内の車両挙動を 反映させることで推定精度を向上させることが可能であ る[®].

VT はリアルタイムに観測可能な個別車両の到着時刻 を境界条件として, Kinematic wave 理論に従った理論的 な交通状況の推定を行なうことが可能な手法である. さ らに,本研究で目的とする渋滞発生直前の交通状況に対 する車両制御を行なうにあたっては,計算負荷が小さい 手法を適用することが求められる.以上の理由から,本 研究では VT を利用して交通状況の推定,制御車両導入 の効果を試算する.

(2) VTの設定

VT の各種設定は表-1 に示すとおりである. VT の設定で 必要な対象区間の FD は, 4.1kp に設置された第2 車線車両 検知器の 2016 年 12 月 1ヶ月分のデータを集計し, 作成し た.

対象区間では、照明柱に設置されたカメラを用いて撮影

表-1 VT の設定		
項目	設定値	
Forward wave speed	72 km/h	
Backward wave speed	19 km/h	
交通容量	2,200台/時間	
dt	1.0秒	
計算範囲	阪神高速 11 号池田線上り 5.1kp~4.1kp	
計算時刻	15:00~15:15 (2016/12/14)	
上 流 ・ 下 流 端 流入条件	検知器パルスデータ	
走行軌跡データ	各ケース8台	

図-7 画像処理による車両軌跡と境界条件

された映像から画像処理によって各車両の走行軌跡が観測 されている.交通状況の推定においては、この車両軌跡を 交通状況の真値として考え、推定精度を検証する. VT に 用いる走行軌跡の境界条件(プローブデータ)として、図 -7 に示す画像処理による走行軌跡からランダムに8台抽出 し、適用した.

また,推定精度の評価指標として,VTの推定軌跡と同時刻に 5.0kp を通過した画像処理による軌跡を同じ車両と 考え,到着時刻 RMSE (Root Mean Squared Error) を算出した.

(3) 交通状況の推定結果

VT による交通状況の推定結果を図-8 に示す. 下流端の 境界条件から速度低下が発生しているのと同時に, 走行軌 跡の境界条件として適用した軌跡の後続車両に速度低下が 発生する状態が見て取れる.

図-7 と比較して、概ねショックウェーブ(SW)の延伸、伝播状況が再現できていることを確認できる. VT は境界条件の車両以外は追従する形で車両が移動するモ デルであることから、境界条件となる車両や流出時の条 件によって速度低下が発生し、その状況の伝播を表現す ることができる.

また、画像処理による車両軌跡との RMSE は 12.3 秒

図-8VTによる推定軌跡図

となったことから, VT を用いて概ね対象区間の交通状 況が推定可能であることが示された.

4. パルスデータによるショックウェーブの検知

本研究で想定する制御を実行するにあたり、ショック ウェーブを検知する必要がある. 阪神高速道路の検知器 パルスデータでは個別車両の速度を観測することができ ないため、存在時間をもとにショックウェーブの検知を 試みた.

4.1kp のパルスデータより,小型車(低車)の存在時間を示す.低車は比較的車体長のばらつきが小さいため,車体長が原因となる速度推定の誤差は比較的小さくなると考えられる.図-9に示すように画像解析による軌跡からショックウェーブが発生する状況で存在時間が大きくなり,その後再び小さくなる状態が観測された.

渋滞発生直前の交通状況では、完全に渋滞に陥って速 度低下した状況と区別するために、一度存在時間が大き くなった(速度が低下した)状態から、再び小さくなる (速度が回復する)状態をショックウェーブ検知の判断基 準とする.

5. 車両制御効果の試算

(1) 評価指標の設定

前節で考えた車両制御手法の効果を試算する.本研究 では、下流端でショックウェーブを検知した時刻以降に 図-2 で示す制御区間へ流入した最初の車両を制御対象 車両であると仮定し、制御効果の算出を行なう.

制御効果の評価指標は表-2 に示す「基準速度以下の 総走行時間」,「渋滞量」,「急減速発生回数」の3点 である.基準速度以下の総走行時間と渋滞量は社会的な 効果の指標として考えられ,交通全体に対する制御の効 果を測定する.

図-9ショックウェーブの検知

SEQ	指標	設定
1	基準速度以下の 総走行時間	評価区間内で各車両の走 行速度が基準速度(60km/h, 50km/h, 40km/h)以下となっ た走行時間の累計値
2	基準速度以下の 渋滞量	10m×10 秒の空間平均速 度を算出し、基準速度 (60km/h, 50km/h, 40km/h)以 下となる状態を渋滞状況 とみなした場合の渋滞量
3	急減速の発生 回数	3 秒間で 40km/h 以上の減 速が発生した回数

表-2制御効果の評価指標

総走行時間と渋滞量に関する基準速度は 60km/h, 50km/h, 40km/h の3 段階を設定した. 4.1kp 地点の第2車線の検知器から作成した Q-V 図を図-10 に示す. この区間において, 交通量が最大となっているのは 50km/h~40km/h 付近と考えられ, 走行速度がこれ以下になった場合には渋滞発生リスクがある状態と考えられる. したがって, 基準速度が 50km/h, 40km/h 以下となるケースについては特に注目して評価を行う.

また,急減速発生回数は個別車両に対する制御の効果 として考えられる.本研究では3秒以内に40km/h以上 速度低下が発生した場合に急減速として,その発生回数 を評価する.

(2) 試算の流れ

制御効果の試算の流れを示す. 試算は Step1 と Step2 の2段階で行なう.

図-104.1kp第2車線のQ-V図

Stepl では、ショックウェーブが検知された時点まで の情報を用いて、制御実行の判定を行なう.上流端の入 力条件をショックウェーブが検知された時刻まで入力し、 VT 上でその延伸状況を予測する.併せて、制御に必要 な制御速度の算出と各評価指標を算出し、制御効果が得 られるか判定する.

Step2 では、制御を行った後の交通状況が実際に改善 するかを確認する.ここでは、流入する交通量が容量と 同等となる最大の流入状況を仮定して制御効果を評価し た.実際に制御を行う場合、ショックウェーブを検知し た後の未来の情報を得ることはできない.したがって、 制御の影響が上流端へ減衰することなく伝わる最大の流 入量を仮定し、この状況においても制御の効果が得られ るかを確認した.

VT に用いる FD の情報は,表-1 に示す設定で試算する.境界条件は,流入・流出条件はショックウェーブ検知時刻まではパルスデータより実績値を与える.検知時刻以降は,制御によって交通状況が変化するため,下流端では自由に流出できる状態とした.

(3) 試算結果

a) Step1:ショックウェーブ検知時点の評価

4.1kp でショックウェーブが検知された時点までの境 界条件をもとに制御実行の判定を行う.表-3にこの時点 で算出可能な制御パラメータを示す.

この場合の基準速度以下の総走行時間と渋滞量をそれ ぞれ表4 と表-5 に示す.制御速度が 50km/h となるため, 基準速度 60km/h のケースでは総走行時間,渋滞量が共 に増加する.しかし,渋滞リスクがあると考えられる 50km/h,40km/h 以下ではともに指標値が改善しており, 基準速度 50km/h では 15%程度,40km/h では 25%程度の 改善となる.

ショックウェーブによる極端な速度低下が解消される ことから、基準速度以下の総走行時間、渋滞量は共に減 少し、制御の効果を確認することができた.

表-3ショックウェーブ検知時点で算出される制御パラ メータ

項目	値
自由流速度からの 遅れ時間	7.8 秒
制御速度	50 km/h

表-4 基準速度以下の総走行時間の変化(Step1)

			単位:秒
	60km/h以下	50km/h以下	40km/h以下
制御なし	309	148	78
制御あり	413	125	57
差分	104	-23	-21
差分(%)	34%	-16%	-27%

表-5 基準速度以下の渋滞量の変化(Step1)

単位:秒×m

	60km/h以下	50km/h以下	40km/h以下
制御なし	23,100	10,900	7,800
制御あり	31,600	9,300	6,000
差分	8,500	-1,600	-1,800
差分(%)	37%	-15%	-23%

表-6急減速回数の変化(Step1)

	急減速回数
制御なし	323
制御あり	40
差分	-283
差分(%)	-88%

急減速回数は表-6に示すように大きく改善し、制御な しケースと比較して8割以上減少する.急減速が発生す るショックウェーブを回避するため、急減速回数の減少 には大きな効果がある.

b) Step2: 容量と同等で流入があった場合の評価

ショックウェーブ検知後の流入交通状況を交通容量と 同等で与えた場合の制御効果を確認する.表-7,表-8に 基準速度以下の総走行時間と渋滞量を,表-9に急減速回 数を示す.

交通容量と同等の流入があるケースでは, 図-11 に見 られるショックウェーブと図-12 に見られる制御による 速度低下の影響が推定区間の上流端まで到達するため, 最も影響の大きな交通状況となる. このような交通状況 下でも本研究の制御手法は効果を得られる可能性がある と考えられる. 表-7 基準速度以下の総走行時間の変化(Step2)

単位:秒

			- 単位: 秒
	60km/h以下	50km/h以下	40km/h以下
制御なし	565	362	237
制御あり	1,247	190	121
差分	682	-172	-116
差分(%)	121%	-48%	-49%

表-8	基準速度以	下の渋滞量の	の変化(Step2)

単位:秒×m

	60km/h以下	50km/h以下	40km/h以下
制御なし	45,500	30,200	22,400
制御あり	93,200	14,100	10,800
差分	47,700	-16,100	-11,600
差分(%)	105%	-53%	-52%

表-9 急減速回数の変化(Step2	p2)
--------------------	-----

	急減速回数
制御なし	569
制御あり	45
差分	-524
差分(%)	-92%

図-11 Step2(制御なし)における VT 推定結果

図-12 Step2(制御あり)における VT 推定結果

6. まとめと今後の課題

(1) 本研究の成果

本研究の成果は以下のとおりである.

- 渋滞発生直前の交通状況に対して、ショック ウェーブを回避する形で到着時刻制御を行なう 制御手法を提案し、VTを用いてその効果を算出 した。
- ショックウェーブの検知にパルスデータの存在
 時間を用いることで、その検知が可能であることを示した。
- 車両制御により、渋滞発生のリスクがあると考えられる基準速度 50km/h,40km/h以下の総走行時間と渋滞量、急減速の発生回数が減少することを確認し、車両制御が交通状況の改善に繋がることを確認した。

(2) 今後の課題

今後の課題は次のとおりである.

- 本研究で想定した制御手法は、渋滞直前に発生 するショックウェーブを検知することが最初の ステップとなる.その検知を確実に行うために、 パルスデータの存在時間に関する閾値について さらなる検討が必要と考えられる.
- 本研究ではVTによる単純な車両挙動を仮定して 制御効果を検討した.今後は加減速に伴う車両 挙動や追い越しなど,現実的な車両挙動を考慮 した上で制御効果が得られるのかについて、ミ クロシミュレーション等を用いて詳細に検討す る必要があると考えられる.
- 本研究では2車線区間の第2車線(追越車線)
 を対象にVTを適用し、制御を行なうことを想定

したが、対象区間には黄線(車線変更不可)区間を含んでいた. 同様のVTを用いた枠組みが車線変更可の区間にも適用可能か今後検証が必要であると考えられる.

参考文献

- 鈴木一史,山田康右,堀口良太,岩武宏一:高速道路サ グ部渋滞対策に資する ACC の将来性能と渋滞緩和 効果,交通工学論文集, Vol.1, No.2, pp.B_60-B_67, 2015.
- 金澤文彦,坂井康一,鈴木一史,岩崎健:高速道路サグ 部における ACC 車両との路車間連携による交通円 滑化,第32回交通工学研究発表会論文集,pp.31-34, 2012.
- He, Z., Zheng, L., Song, L., and Zhu, N.: A jamabsorption driving strategy for mitigating traffic oscillations, *IEEE Transactions on Intelligent Transportation Systems*, Vol.18, No.4, pp.802–813, 2017.
- 4) 塩見康博, 兒玉崇, 北澤俊彦, 飛ヶ谷明人, 増本裕幸, 眞貝憲史, 田名部淳: 単路部ボトルネックにおける自 動走行車両への介入制御による遅れ時間最小化の可 能性, 第 37 回交通工学研究発表会論文集, pp. 487-494, 2017.
- Daganzo, C. F.: A variational formulation of kinematicwaves: basic theory and complex boundary conditions, *Transportation Research Part B: Methodological*, Vol.39, No.2, pp.187–196, 2005.
- Daganzo, C. F.: A variational formulation of kinematicwaves: Solution methods, *Transportation Re*search Part B:Methodological, Vol.39, No.10, pp.934– 950, 2005.
- 川崎洋輔,原祐輔,桑原雅夫:状態空間モデルとプ ローブ軌跡データを用いた区間途中の流出入台数の 推定手法の構築,土木学会論文集D3(土木計画学), Vol.72, No.5, pp.I_1123-I_1132, 2016.
- Mehran, B. and Kuwahara, M.: Fusion of probe and fixedsensor data for short-term traffic prediction in urban signalizedarterials, *International Journal of Urban Sciences*, Vol.17, No.2, pp.163–183, 2013.

Investigation of Measures to Congestion Occurrence by Speed Control with Variational Theory

Norihito SHINKAI, Hideyuki SUZUKI, Takashi KODAMA, Ayaka ISHI, Jun TANABE, Yasuhiro SHIOMI