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This paper focuses on solving the Pickup and Delivery Problem with Time Windows, in which number 

of pickup and delivery requests that have to be served by a fleet of vehicles. The problem also associates 

with a number of tight constraints regarding time windows and vehicle capacity must be satisfied. We 

introduces an extension of Large Neighborhood Search (LNS) by hybridizing with Path Relinking in order 

to enhance heuristic intensification. In addition, we also introduced an efficient and straightforward feasi-

bility checking procedure. The performance of proposed heuristic is test on set of 100-location problems. 

Computational results show a very good performance of the hybridization. 
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1. INTRODUCTION 
 

Transportation and logistics operation has been 

considered as a competitive differentiator in business 

due to not only vast cost it incur, but also its im-

portant to service satisfaction goal. Especially in the 

context of highly sophisticated transport system, 

there are always needs for transportation optimiza-

tion to provide efficient strategies relating to the de-

sign and management of distribution systems that in-

cur least cost while still maintain a desired service 

level. These facts have been inspiring and motivating 

the strong emerge of routing problem. Not only its 

practical applications, but also its beautifully chal-

lenging complexity that draw attention and effort of 

researchers. 

Traveling salesman problem (TSP) is the most fa-

mous classic NP-hard problem and is one of the most 

intensively studied problem in computational mathe-

matics. Three other most well known and extensively 

studied routing problems are the extension of TSP. In 

the Pickup and Delivery Problem (PDP) each trans-

portation request specifies a single origin and a single 

destination and all vehicles depart from and return to 

a central depot. The Dial a Ride Problem (DARP) is 

a PDP in which the loads to be transported represent 

people and all customer requests have load sizes 

equal to one. The Vehicle Routing Problem (VRP) is 

a PDP in which either all the origins or all the desti-

nations are located at the depot. Inspired by the wide 

range of practical application and its generalization, 

we further consider the pickup and delivery problem 

with time windows (PDPTW). 

 As a generalization of the Traveling Salesman 

Problem (TSP), PDP is inherently known to be NP-

hard, and the presence of many related constraints 

makes the problem even more complicated. 

Significant progress has occurred in the past five 

years, with the development of new exact and ap-

proximate algorithms for several types of PDPs. 

These exact algorithms employ decomposition tech-

niques such as branch-and-cut and branch-and-cut-

and-price, while the new heuristics are based on tabu 

search, simulated annealing and variable neighbor-

hood search. 

Regardless of the superior quality of solution, there 

are only few papers on exact approaches for the PDP. 

Branch-and-cut in the work of 2, 9), as well as branch-
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and-price-and-cut algorithm in 8) have been used in 

the attempt to generate optimal solution. However, as 

their high complexity nature, the largest instances 

that have been solved to optimality so far have no 

more than 96 requests and 8 vehicles, and have tight 

time windows and ride time constraints, along with a 

vast amount of computational time required.  

When it comes to approximation methods, it usu-

ally refer to metaheuristics for their success and im-

portant contribution in solving NP-hard combinato-

rial problems. They have the capability to provide 

enough satisfactory results for large-scale instances 

in different types of optimization problems within 

reasonable time limits. As for solving PDPTW, there 

are several successful works using various kind me-

taheuristics. 

One of the first attempt to solve PDPTW using me-

taheuristic belongs to 7) work. Their approach based 

on reactive tabu search that combines several stand-

ard neighborhoods. Soon later, 6) developed a hybrid 

metaheuristic which combines simulated annealing 

and tabu search. Based on Solomon’s VRPTW 

benchmark 13), they also modified and proposed 56 

new benchmark instances for PDPTW, which would 

be used to test our algorithm in the later section. Af-

terward, the success of metaheuristics by 1) based on 

large neighborhood search has proven to be efficient 

for classes of the PDP compare to the previous. In the 

same year, an important extension for LNS, adaptive 

large neighborhood search (ALNS) was developed in 

the work of 10) in which an adaptive weight adjust-

ment was introduced to choose the most suitable pair 

of removal and insertion heuristics each iteration 

based on its historical performance, instead of choos-

ing randomly like in previous studies. That adaptive 

feature significantly influence quality of solutions 

and has made it become probably the most effective 

metaheuristic for PDPTW so far, with results re-

ported for up to 1000 locations. Since then, there are 

several more related works and most of them sole fo-

cus on modifying and improve this adaptive mecha-

nism and there are no significant improvement intro-

duced to the LNS. What’s more, to the best of our 

knowledge, there are no LNS which takes advantages 

of the pool of historical good solutions. 

For the sake of improving the LNS while still keep-

ing it straightforward and easy to be implemented, we 

are not going to integrate the an adaptive weight ad-

justment component originally proposed in 10); rather, 

we improve the heuristic in a different way by mak-

ing use of path relinking inside LNS to improve its 

intensification. Similar to LNS, path relinking is a 

fairly new approach conceptually introduced in 4) and 

has been applied to VRP with great success in 5). 

Our main contributions in this study are as follows: 

 We introduce a new adaptive layer using path re-

linking for improving classical LNS 

 We consider a number of realistic constraints and 

provide an efficient feasibility checking proce-

dure with waiting strategy. 

 We consider the trade-off between the cost for hir-

ing vehicles and cost for total distance. 

 

2. PROBLEM DESCRIPTION  
 

In PDPTW, there are n shipments that need to be 

served and m vehicles available. The problem is de-

fined on a complete graph, P = {1,…, n} is the set of 

pickup nodes, D = {n+1,…, 2n} is the set of delivery 

nodes. Then the pair of nodes {i, i+n} represents for 

pickup and delivery nodes of shipment i. K represents 

for the set of vehicles, |K| = m. The graph G = (V, A) 

consists of V nodes and A = V×V arcs. Vertex V0 rep-

resents depot at which is based fleet of vehicles. Each 

edge (i, j) ∈ A is assigned a distance dij ≥ 0 and travel 

time tij ≥ 0. 

Each node i ∈ V has its amount of goods li that 

need to be picked up/delivered. li ≥ 0 for i ∈ P, and li 

= -li-n for i ∈ D. We denote CapV as the capacity of 

vehicles. 

The PDPTW in this study considers these follow-

ing practical constraints: 

- Every route starts and ends at the same depot; 

- Pairing and precedence: for every shipment i, the 

pickup and delivery points belong to the same route 

and the pickup point is visited earlier than its corre-

spond delivery; 

- The load of vehicle k does not exceed capacity C 

at any time along the route; 

- The total duration of route k does not exceed the 

maximum route duration; 

- The total distance of route k does not exceed the 

maximum route distance; 

- The service time at every node in route is fall 

within the time windows interval. 

We denote Ai as the arrival time of a vehicle at 

node i, then Bi ≥ max(ei, Ai) as the beginning of the 

service at node i, and Di = Bi + si as the departure 

time from i to the next visit. Each node i ∈ V has a 

service duration si and a time window [ei, li]. si repre-

sents the time needed for serving point i. A service 

must be started within its time window, from ei to li. 

Vehicles are allowed to arrive at node i before its ear-

liest time ei; however, it have to wait until ei to start 

it service with waiting time Wi = Bi - Ai. And clearly, 

time window constraint at node i is violated if Bi > li 

and any late service after latest time li is not allowed. 

The total driving time of a vehicle thus corresponds 

to the amount of time between the last node (at depot) 
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arrival and the departure from the first node (at de-

pot). It can be computed as Lk = A0’ – D0, where A0’ 

is the time when vehicle k come back at depot. 

The objective is to minimize the weighted sum 

consisting of: (i) the sum of cost for the distance trav-

eled by vehicles, and (ii) the total of fixed cost hiring 

vehicles with weighted coefficients α, and β, respec-

tively. In real-life applications, these coefficient is 

usually assigned with real cost unit so that to mini-

mize the correspond total operating cost. In bench-

mark, these coefficients are adjusted accordingly de-

pending on instances and objectives. 

 

3. SOLUTION METHODOLOGY  

 
This section describes components of ALNS heu-

ristic solving the PDPTW. Some components are 

mainly based on the works of 10). However, compare 

to 10), the heuristic in this paper is extended in several 

ways: 

- We integrate path relinking as an important in-

tensification component inside LNS. 

- We propose an efficient and straightforward fea-

sibility checking routine for realistic constraints in 

terms of spatial and temporal aspects along with wait-

ing strategy at depot to minimize tour duration. 

- We consider the trade off between the vehicle 

cost and travel cost, rather than utilize two-stage 

method in 10) to separately minimize number of vehi-

cles and distance, respectively. 

The overall pseudocode LNS is presented in the 

algorithm below. 

 

Algorithm 1: LNS heuristic 

1 Function LNS (s ∈ {solution}, q ∈ ℕ) 

2      Solution sbest = s 

      E = ϕ 

3      repeat 
4           s’ = s 

5           Remove q shipment from s’ 

6           Reinsert removed shipments into 

                                       partial solution s’ 

7           if (f(s’)) < f(sbest)) then 

8                sbest = s’ 

9           if accept(s’, s) then 

10                s = s’ 

11           if |E| > 0 then 

12                Randomly select an elite solution 

                                                    s* from E 

13                s = PathRelinking(s, s*) 

14           Update elite set (s, E) 

15      until stop-criterion are met 

16 return sbest 

 

 

(1) Destroy Procedures 

This section present four removal heuristics. All 

of them take a solution and the amount of shipments 

to be removed q as input. The output of these heuris-

tics is a solution which has q shipments removed and 

unassigned. What’s more, Shaw removal and Worst 

removal are acquired randomized feature character-

ized the level of randomization by parameter p. 

a) Random Removal 

Random Removal is the simplest heuristic among 

all. It simply randomly picks shipments and removes 

origin and destination out from the route. The heuris-

tic repeatedly run until a certain degree of destruction 

is reached. Due to the natural simplicity, it can be im-

plemented significantly fast. It is also a very im-

portant heuristic for the LNS algorithm because of 

being able to maintain diversification for exploring a 

large search space, avoiding stuck in local optimum. 

b) Worst Removal 

Given a shipment i served in solution s, we define 

the cost for serving shipment i as the difference be-

tween cost of s and cost of the solution without ship-

ment i, f-i(s). The heuristic tries to remove the ship-

ment that cost most with the hope that the shipment 

would be reinserted in another position with better 

cost incurred. 

argmax[cost(i, s) = f(s) – f-i(s)] 

A shipment includes pickup and delivery points. 

Therefore, two node in route are removed in each re-

moval. That leads to two possible scenarios when it 

comes to cost computing. If pickup and delivery 

points of a shipment next to each other in route order, 

j = i+1, 
1 1 1 1, , , ,i i i j j j i jR R R R R R R Rcost d d d d
   

    . Oth-

erwise, if j >i+1, 
1 1 1 1, , ,i i i i i iR R R R R Rcost d d d
   

    

1 1 1 1, , ,j j j j j jR R R R R Rd d d
   

   . 

The procedure is repeated until enough shipments 

are removed. It is worth to notice that the cost differ-

ences change after every removal done. However, not 

all cost differences have to be recalculated after every 

iteration due to the fact that the change only occur on 

the route at which the shipment was removed. With 

that in mind, only the cost of those shipments in pre-

viously destroyed route would be recalculated after 

each removal. 

Besides, in order to make sure the heuristic keep 

repeatedly removing the same options and create di-

versification, instead of always removing the first 

ranked request, the process can be randomized with 

parameter p ≥ 1. A random number x in interval [0,1) 

would be determined in each selection, the candidate 

at xp|L| th place in descending list L is selected. The 

higher p is set, the wider range selection would be 

due to the highly sensitive of x p with p. 
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Algorithm 2: Worst Removal 

1 Function WorstRemoval (s ∈ {solution}, 

       q ∈ ℕ, p ∈ ℝ+) 

2      while q > 0 do 

3           List L = list of shipments sorted by  

                        cost(i, s) in descending order 

4           Pick a random value of x 

                        in the interval [0,1) 

5           r_shipment = L[xp|L|] 

6           Remove r_shipment from s 

7           q = q – 1 

8      end while 

 

c) Shaw Removal 

This heuristic was originally proposed by 12) and 

slightly modified by 10) to suit the PDPTW. The heu-

ristic is a combination of service time-oriented and 

distance-oriented approach. The basic idea is to at-

tempt to remove shipments to some extend similar to 

each other in terms of distance and time. And expect 

the later insertion procedure would likely shuffle 

these shipments around with a probability of generat-

ing a new and might be better solution.  

The relatedness of two shipments i and j uses the 

measure R(i, j). The lower R(i, j), the more related the 

two shipments. R(i, j) consists of two measured 

terms: distance and time window. They are weighted 

with theirs corresponding weights ρ, η, respectively. 

The formulation is given by: 

, , , ,

( ) ( ) ( ) ( )

( , ) ( )

          (| | | |)

i j i j n i n j i n j n

P i P j D i D j

R i j d d d d

T T T T





      

   
 

P(i) and D(i) represent the pickup and delivery 

point of shipment i. Ti represents the average of ear-

liest and latest time of location i. 

 

Algorithm 3: Shaw Removal 

1 Function ShawRemoval (s ∈ {solution}, 

     q ∈ N, p ∈ R+) 

2      Randomly pick a rshipment 

3      Set list D = {rshipment} 

4      while |D| < q do 

5           r = a randomly selected shipment in D 

6           List L = list of shipments i not in D 

                 sorted by R(r, i) in ascending order 

7           Pick a random value of x 

                 in the interval [0,1) 

8           Append shipment L[xp|L|] to list D 

9      end while 

10      Remove all shipments in D from s 

 

Similar to Worst removal, randomization is also 

introduced to generate a certain degree of diversifica-

tion for the heuristic through a determined parameter 

p ≥ 1. 

 

(2) Repair Procedures 

Heuristics in this section are going to repair given 

partial routes destroyed in the previous step by re-

moval heuristics. It is worth to note that these heuris-

tics operate in parallel way in which they construct 

routes in the same time. They not only rebuild the 

partial route, but also can be used to build entire so-

lution from scratch as a construction heuristic. 

 

Algorithm 4: Repair Heuristic 

1 Function RepairHeuristic (partial solution s, 

set of unassigned shipments D) 

2      while |D| > 0 do 

3           Ascending order insertion cost list L 

4           Determine top-ranked request-vehicle  

                                            pair (r, i) from L 

5           Insert shipment i to its best position in 

                                            route r 

6           Remove i from set D 

7           Update insertion cost 

8      end while 

 

a) Greedy Insertion 

The heuristic bases on the simple idea of inserting 

shipments into their best position that have cheapest 

cost at the moment. Denote fr,s,i,j as the change in ob-

jective function value shipment s would incur when 

being inserted in route r at i, j. We calculate all pos-

sible f. 

In general sense, we would pick the insertion that 

cost c least overall. Define c = min(f). This operator 

continues until all shipments assigned. 

During the operator, if no feasible route found, a 

new route is created in order to satisfy all remaining 

requests. 

Similar to Worst removal, it is important to note 

that each insertion only affect one route in which a 

new shipment has just been inserted. Therefore, there 

is no need to recalculate insertion cost in all the other 

untouched routes. 

One of obviously natural drawback this heuristic 

carrying from the Greedy algorithms family is its my-

opic. In fact, it often postpones the placement of the 

customers with higher cost increments to the last it-

erations where no many available spots left for insert-

ing. Therefore, there are high risks of showing up 

more unexpected costs at last which likely to quickly 

escalate the overall cost. 

The following heuristic will try to address this 

drawback. 

b) Regret-2 Insertion 
The Regret insertion is an improvement of the 

Greedy insertion. To overcome inherent disad-

vantage of the latter, instead of inserting the shipment 

that has the cheapest cost, the Regret insertion looks 
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further information through the so-called regret val-

ues, then give decisions accordingly based on this 

measure. 

Regret heuristic uses a variable xik ∈ {1,…,m}, in-

dicates the route for which the customer i has the kth 

lowest insertion cost. In the regret-2 heuristic, a re-

gret value is defined as 
2 1, ,i ii i x i xc f f   , where 

,i xmf is the change in objective function value in-

curred by inserting customer i into the mth best posi-

tion. In order words, the regret value defines the dif-

ference in the cost of inserting the customer in its best 

position and its second-best position. 

In each iteration, the heuristic chooses the ship-

ment i that maximizes: 

max ci 

In normal sense, we pick the insertion that we 

would regret most if we would have not done it. 

The regret heuristic can be extended to k to help it 

increase its sight pool, thereby improve solution qual-

ity. However, we are not going to focus on such thing 

in this paper, these heuristics, even are imprecise, are 

enough to compose precise local search heuristics ac-

cording to 10). 

 

(3) Choosing removal and insertion heuristics 

In the previous section, we defined three removal 

heuristics and two insertion heuristics. Technically, 

one just need one removal and one insertion heuristic 

for the search. However, an obvious fact and big is-

sue one usually face when works with optimization 

problem is that one heuristic could be very efficient 

in one kind of instance but very bad in others. By al-

ternating between the different heuristics, we could 

make up a more robust heuristic. That is the reason 

why we are going to use all mentioned heuristics. On 

the other hand, how to choose heuristics is also a very 

important aspect that profoundly influence the qual-

ity of solutions. The work of 10) has been proved its 

success with the adaptive weight adjustment which 

operates and tunes weight based on the previous per-

formance of heuristics. However, that is not what we 

want to focus on in this paper. 

Rather, to select the heuristic to use in each itera-

tion, we use roulette wheel selection principle and the 

selection of insertion heuristic and removal heuristic 

are independent to each other. Instead, we want to ap-

proach the adaptive aspect under a different method 

that we will detail in the next section. 

 

(4) Acceptance and Stopping Criteria 
Purpose of acceptance is to decide whether to ac-

cept the newly created solution or to keep the current 

solution to continue manipulating. It provides the 

search opportunities to escape local optimum and to 

further explore other search spaces that might have 

promising solutions. Therefore, the acceptance 

method is one important part that decides the success 

of every state-of-the-art metaheuristic. 

There are several types of acceptance method, for 

instance, Greedy acceptance, Threshold acceptance, 

Simulated Annealing, e.g. to name a few. They all 

share a same common that is acceptance of any im-

proving solutions. The rule of acceptance of non-im-

proving solutions is the only difference. 

Among all, we are inspired by Simulated Anneal-

ing acceptance method, which has been playing the 

key role in the success of this metaheuristic. Obvi-

ously by that, it will accept any improved solution. 

Besides, we will also accept a non-improvement so-

lution s’ given current solution s with probability 
    ’  –f s

T

f s

e


 where T is temperature. 

At the beginning, the initial temperature Tstart is set 

so that a solution w % worse than the current one 

would be accepted with probability 0.5. Therefore, 

Tstart is dependent on and is calculated according to 

the value of initial solution. To do so, we can deduce 

from: 
initial(s ).

0.5start

f w

T
e



 , hence, 
( ).

log 2

initial
start

f s w
T  . 

The temperature decreases after every iteration T = 

T.c with a cooling rate c (0 < c < 1).  

The algorithm stops when certain amount of iter-

ations have been done. 

 

(5) Path Relinking 
Metaheuristic algorithms could also have some 

limitations as the premature convergence, which may 

cause the algorithm to trap in local optima or to stag-

nate and therefore it is a challenging problem for the 

metaheuristics approaches. 

The aim of the path relinking phase is to introduce 

progressively attributes of the guiding solution into 

solutions obtained by moving away from the initial 

solution. In order to generate desired path, an initial 

solution and a guiding solution, representing for start 

point and end point, respectively, will be needed and 

be picked from a so-called reference list which con-

tains all elite solutions. Attributes of guiding solution 

are gradually introduced and replace those from ini-

tial one in intermediate solutions along the path. As a 

consequence, a solution contains more and more at-

tributes of the destination as one moves to the end. 

In this section, we manage to hybridized path re-

linking with LNS. A path relinking is rarely used 

alone, it is either used as an external component for 

post-optimization or as an internal procedure within 

metaheuristic. In this study, we integrate path relink-

ing inside LNS as an intensification method by ex-

ploring the path which links elite solutions randomly 
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chosen together in the reference set built during iter-

ation. 

At first, we start with an empty elite set and limit 

it to contain a most nE solutions inside. It is formed 

by a set of diverse high-quality solutions found dur-

ing the search. However, it should represent different 

potentially good regions and therefore should not in-

clude solution that are too similar, even if they are 

high quality. Every intermediate solution from path 

relinking is considered to be inserted in elite set. So-

lutions resulting from path relinking would be con-

sidered as a candidate to be inserted in the elite set. 

The procedure is described in algorithm below. 

 

Algorithm 5: Path Relinking 

1 Function PathRelinking (initial solution Si, 

guiding solution Sg) 

2      S = Si 

3      S* = S 

4      f* = f(S) 

5      while |N(S:Sg)| ≥ 1 do 

6           S = argmin{f(S’):S’∈N(S:Sg)} 

7           if f(s) < f* then 

8                S* = S 

9                f* = f(S) 

10      end-while 

11 return S*, f(S*) 

 

The algorithm relinks the locally optimal solution 

produced in each LNS iteration with a single solution 

which is randomly chosen from the elite set. It fol-

lows the backward path relinking strategy in which 

the initial solution is better the guiding solution, con-

trast to the forward strategy. The reason is that PR 

explore more thoroughly the neighborhood of the in-

itial solution than that of guiding one as it moves 

along the path, the size of the neighborhood progres-

sively decreases. Since it is more likely to find an im-

proving solution in the restricted neighborhood of the 

better solution than in that of the worse, backward 

path relinking usually tends to perform better than 

forward path relinking. 

 

(6) Feasibility Evaluation and Waiting Strategy 
The repair steps need to evaluate the insertion of 

single request into given feasible routes. Guarantee-

ing pairing and precedence is straightforward and is 

certainly for granted thanks to the consideration of 

insertion procedures, while verification capacity con-

straint and temporal constraints is quite tricky and 

time consuming. Especially during the LNS, millions 

of insertions must be checked for its feasibility, so 

that the check should be as efficient as possible. 

We apply the concept of Forward Time Slack 

(FTS) originally proposed by 11) in the context of 

TSPTW. We assume that the service times are sched-

uled as early as possible. Denote 
( , )u v i

u i v

TWT w
 

   is 

the total waiting time on path from point u to point v. 

Then we get: 

, 1 ( , )( )v u i i i u v

u i v

B B s TWT 

 

     

Given a feasible schedule T for route R, the FTS 

Fi at a node vi gives the maximum amount of time by 

which the service time at vi can be delayed so that the 

resulting schedule is not violated time windows. 

  ( , )minu u i i i
u i q

F TWT l B
 

    

The algorithm 6 interprets the basic course of a 

feasibility test for the PDPTW. 

 

Algorithm 6: Feasibility Check 

1 Function FeasibilityCheck (given shipment 

s, route r, position i and j) 

2      c = items carrying at location [i-1] 

3      if c + item of s at pickup point  

                                               > capacity then 

4           return False 

5      else: 

6           if j > i + 1 then 

7                cmax = max amount of item carrying 

                                  from position [i] to [j-1] 

8                if item of s at pickup point + cmax  

                                               > capacity then 

9                     return False 

10      if j > i + 1 then 

11           Bp = Service time at position [i-1]  

12           tsi = CheckInsertion(P(s), i, Bp) 

13           if tsi = False then 

14                return False 

15           else: 

16                Bd = new service time  

                                       at position [j-2]  

17                tsj = CheckInsertion(D(s), j-1, Bd) 

18                if tsj = False then 

19                     return False 

20      else: 

21           Bp = Service time at position [i-1] 

22           tsj = CheckInsertion(s, i, Bp) 

23           if tsj = False then 

24                return False 

25      new_end = new arrival time at depot  

                                                 after insertion 

26      if new_end – D0 > maxduration then 

27           return False 

28      return True 

 

Algorithm 7: Check Insertion 

1 Function CheckInsertion (given pickup/de-

livery point v, inserted position i, service time 

at precedence position B) 
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2      p = precedence point, location at [i-1] 

3      Bv = max(ev, B + sp + tp,v) 

4      if Bv > lv then 

5           return False 

6      else: 

7           s = successor point, location at [i] 

8           Bs’ = Bv + sv + tv,s 

9           timeshift = max(Bs’ – Bs, 0) 

10           if timeshift > Fs then 

11                return False 

12           else: 

13                return timeshift 

 

It is clear that let the vehicle leave depot as soon 

as possible and service every vertex as fast as possi-

ble as long as vehicle arrive is the safe way to satis-

fied time windows. In other words, D0 = e0 and si = 

max(ai, ei). However, according to 3), in fact, setting 

D0 = e0 + F0 instead of D0 = e0 will thus yield a mod-

ified route of minimal total duration with equal vio-

lations of time window constraints and equal or 

smaller violations of total duration constraints. 

 

4. COMPUTATIONAL EXPERIMENTS 
 

This section describes computational results to as-

sess the performance of the proposed algorithm. We 

use the 100-location instances constructed by 6). The 

instances are single depot pickup and delivery prob-

lem with time windows with primary objective to 

minimize number of homogeneous vehicle used and 

the secondary objective is to minimize the total dis-

tance travel. 

There are 2 main objectives for this section: 

- To determine whether any problem properties 

can influence the LNS heuristics ability to obtain 

good solutions. 

- To check the performance of LNS as applying in 

large instances.  

The algorithm is coded in Python 3.6 and run on 

computers with a Core i3-6100 3.7 GHz CPU and 16 

GB of RAM. 

 

(1) Data Sets and Parameter Setting 
All problem have 100 customers, a central depot, 

vehicle capacity constraint, precedence constraints 

together with coupling constraints. The benchmark 

was created to simulated different scenarios in real 

life practice. Instances are categorized based on spa-

tial distribution of customers and schedule horizon 

characteristics. Each group carries certain difficul-

ties, in order to test the all-rounded of search algo-

rithm. In terms of spatial distribution, the customers 

are clustered in LC problems, while those in LR prob-

lems, in contrast, are randomly distributed; what’s 

more, customers are also partially clustered and par-

tially randomly distributed in LRC problems. Fur-

thermore, in terms of schedule horizon characteris-

tics, LC1, LR1 and LRC1 problems have tight and 

short scheduling horizon; while LC2, LR2 and LRC2 

have longer scheduling horizon. Hence, there are 6 

types of instances being solved here.  

In each case, the problem is solved 5 times to com-

pute average number of vehicle used and average to-

tal distance obtained. Since the primary objective of 

the instances is to minimize number of vehicle used, 

the fix cost of a vehicle is set to H = 1,000, we set α 

= 1, while β = H. Besides, due to the fact that in-

stances in the benchmark do not concern about max-

imum route duration and total route distance, we as-

sign very big values to parameters maxduration and 

maxdistance so that the algorithm can fit benchmark 

criteria. 

Since LNS algorithm is composed by several pro-

cedures and each procedure has it own parameters, 

parameters setting should be determined in prelimi-

nary experiments. Most of parameters we select from 
10) works, while several are modified several to con-

sider trade-off between solution quality and CPU 

time. Besides, the parameter q that defines the num-

ber of vertices removed from solution at each itera-

tion is randomly determined in fixed interval [0.05n, 

0.4n]. Parameters are gathered in table 1. 

Table 1 Parameter configuration 

 

Parameter Role Value 

N Total iteration per run 5000 

α Distance weight 1 

β Fixed-cost vehicle 

weight 

1000 

c SA cooling factor 0.9996 

p Randomized parameter 6 

w Tolerance threshold 0.015 

q Degree of destruction random 

 

(2) Results 
The results on 100-location problems of 6) bench-

mark are shown in table 2. The name of problems and 

the best solutions so far are placed in first three col-

umns. Columns two and three give the total number 

of vehicles and the total traveled distance of the best 

known solutions. Likewise, the next two columns 

show the same information of the best solutions ob-

tained in 5 runs of LNS. The last two columns display 

average values of 5 runs. 

As can be seen, the proposed hybrid heuristic 

shows promising results. The objective function 

value out of 51 over 56 instances was found equal the 

best known solution collected so far from previous 

studies. 
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Table 2 Result on 100-location problems benchmark 6)

Instance 
Best known solutions Best of 5 runs Average of 5 runs 

Vehicles Distance Vehicles Distance Vehicles Distance 

LC101 10 828.94 10 828.94 10 828.94 
LC102 10 828.94 10 828.94 10 828.94 
LC103 9 1035.35 9 1035.35 9.4 959.25 

LC104 9 860.01 9 861.65 9 868.394 

LC105 10 828.94 10 828.94 10 828.94 
LC106 10 828.94 10 828.94 10 828.94 

LC107 10 828.94 10 828.94 10 828.94 
LC108 10 826.44 10 826.44 10 826.44 

LC109 9 1000.6 10 827.82 10 827.82 

LC201 3 591.56 3 591.56 3 591.56 
LC202 3 591.56 3 591.56 3 591.56 

LC203 3 591.17 3 591.17 3 591.17 
LC204 3 590.6 3 590.6 3 590.942 

LC205 3 588.88 3 588.88 3 588.88 
LC206 3 588.49 3 588.49 3 588.49 

LC207 3 588.29 3 588.29 3 588.29 

LC208 3 588.32 3 588.32 3 588.32 
LR101 19 1650.8 19 1650.8 19 1650.8 

LR102 17 1487.57 17 1487.57 17 1487.57 
LR103 13 1292.68 13 1292.68 13 1292.68 

LR104 9 1013.39 9 1016.93 9.8 1040.628 

LR105 14 1377.11 14 1377.11 14 1377.11 
LR106 12 1252.62 12 1252.62 12 1252.62 

LR107 10 1111.31 10 1111.31 10 1111.31 
LR108 9 968.97 9 968.97 9 968.97 

LR109 11 1208.96 11 1208.96 11 1208.96 

LR110 10 1159.35 11 1193.18 11 1183.412 

LR111 10 1108.9 10 1108.9 10 1108.9 

LR112 9 1003.77 9 1003.77 9.6 1020.172 
LR201 4 1253.23 4 1253.23 4 1253.23 

LR202 3 1197.67 3 1197.67 3 1197.67 
LR203 3 949.4 3 949.4 3 949.4 

LR204 2 849.05 2 849.05 2 849.05 

LR205 3 1054.02 3 1054.02 3 1054.02 
LR206 3 931.63 3 931.63 3 931.63 

LR207 2 903.06 2 903.06 2 903.06 
LR208 2 734.85 2 734.85 2 736.46  

LR209 3 930.59 3 930.59  3  930.59 
LR210 3 964.22 3 964.22  3  964.22 

LR211 2 911.52 3 884.29 3 902.82  

LRC101 14 1708.8 14 1708.8 14 1708.8 
LRC102 12 1558.07 12 1558.07 12 1558.07 

LRC103 11 1258.74 11 1258.74 11 1258.74 
LRC104 10 1128.4 10 1128.4 10 1128.4 

LRC105 13 1637.62 13 1637.62 13 1637.62 

LRC106 11 1424.73 11 1424.73 11 1424.73 
LRC107 11 1230.14 11 1230.14 11 1230.14 

LRC108 10 1147.43 10 1147.43 10 1147.43 
LRC201 4 1406.94 4 1406.94 4 1406.94 

LRC202 3 1374.27 3 1374.27 3 1374.27 

LRC203 3 1089.07 3 1089.07 3 1089.07 
LRC204 3 818.66 3 818.66 3 818.66 

LRC205 4 1302.2 4 1302.2 4 1302.2 
LRC206 3 1159.03 3 1159.03 3 1159.03 

LRC207 3 1062.05 3 1062.05 3 1062.05 
LRC208 3 852.76 3 852.76 3 852.76 
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5. CONCLUSION 

 
In this study, the authors proposed an extension for 

the large neighborhood search to solve the pickup and 

delivery problem with time windows by hybridizing 

with an intensification method, path relinking. The 

heuristic was tested on 100-location benchmark and 

could obtain good results, in which almost problems 

were solved optimally. It shows the success of this 

hybridization. 

In addition, an efficient and straightforward feasi-

bility checking procedure was also presented in the 

study. It not only facilitates the identification of fea-

sible insertions but also helps improve the quality of 

solutions by allowing delaying the departure time at 

depot before vehicles leaving for servicing. This 

strategy eventually helps minimize the total driving 

time of each tour. 
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