

 1

A Hybrid Large Neighborhood Search for

Pickup and Delivery Problem with Time Windows

Anh M. NGUYEN1, Kazushi SANO2, Kiichiro HATOYAMA3 and Vu Tu TRAN4

1 Master Student, Urban Transport Engineering and Planning Lab, Nagaoka University of Technology

 (1603-1 Kamitomiokamachi, Nagaoka, Niigata Prefecture, 940-2188, Japan)

E-mail: s165081@stn.nagaokaut.ac.jp
2 Member of JSCE, Professor, Urban Transport Engineering and Planning Lab, Nagaoka University of Technology

(1603-1 Kamitomiokamachi, Nagaoka, Niigata Prefecture, 940-2188, Japan)

E-mail: sano@nagaokaut.ac.jp
3 Member of JSCE, Project Associate Professor, Urban Transport Engineering and Planning Lab, Nagaoka University of Technology

 (1603-1 Kamitomiokamachi, Nagaoka, Niigata Prefecture, 940-2188, Japan)

E-mail: kii@vos.nagaokaut.ac.jp
4 PhD, Department of Transportation Engineering, Ho Chi Minh City University of Technology and Education

 (1 Vo Van Ngan, Thu Duc, Ho Chi Minh City, 708000, Vietnam)

E-mail: tutv@hcmute.edu.vn

This paper focuses on solving the Pickup and Delivery Problem with Time Windows, in which number

of pickup and delivery requests that have to be served by a fleet of vehicles. The problem also associates

with a number of tight constraints regarding time windows and vehicle capacity must be satisfied. We

introduces an extension of Large Neighborhood Search (LNS) by hybridizing with Path Relinking in order

to enhance heuristic intensification. In addition, we also introduced an efficient and straightforward feasi-

bility checking procedure. The performance of proposed heuristic is test on set of 100-location problems.

Computational results show a very good performance of the hybridization.

 Key Words : Pickup and delivery problem, Time windows, Large neighborhood search, Metaheuristics,

Path relinking

1. INTRODUCTION

Transportation and logistics operation has been

considered as a competitive differentiator in business

due to not only vast cost it incur, but also its im-

portant to service satisfaction goal. Especially in the

context of highly sophisticated transport system,

there are always needs for transportation optimiza-

tion to provide efficient strategies relating to the de-

sign and management of distribution systems that in-

cur least cost while still maintain a desired service

level. These facts have been inspiring and motivating

the strong emerge of routing problem. Not only its

practical applications, but also its beautifully chal-

lenging complexity that draw attention and effort of

researchers.

Traveling salesman problem (TSP) is the most fa-

mous classic NP-hard problem and is one of the most

intensively studied problem in computational mathe-

matics. Three other most well known and extensively

studied routing problems are the extension of TSP. In

the Pickup and Delivery Problem (PDP) each trans-

portation request specifies a single origin and a single

destination and all vehicles depart from and return to

a central depot. The Dial a Ride Problem (DARP) is

a PDP in which the loads to be transported represent

people and all customer requests have load sizes

equal to one. The Vehicle Routing Problem (VRP) is

a PDP in which either all the origins or all the desti-

nations are located at the depot. Inspired by the wide

range of practical application and its generalization,

we further consider the pickup and delivery problem

with time windows (PDPTW).

 As a generalization of the Traveling Salesman

Problem (TSP), PDP is inherently known to be NP-

hard, and the presence of many related constraints

makes the problem even more complicated.

Significant progress has occurred in the past five

years, with the development of new exact and ap-

proximate algorithms for several types of PDPs.

These exact algorithms employ decomposition tech-

niques such as branch-and-cut and branch-and-cut-

and-price, while the new heuristics are based on tabu

search, simulated annealing and variable neighbor-

hood search.

Regardless of the superior quality of solution, there

are only few papers on exact approaches for the PDP.

Branch-and-cut in the work of 2, 9), as well as branch-

第 56回土木計画学研究発表会・講演集P30

 2

and-price-and-cut algorithm in 8) have been used in

the attempt to generate optimal solution. However, as

their high complexity nature, the largest instances

that have been solved to optimality so far have no

more than 96 requests and 8 vehicles, and have tight

time windows and ride time constraints, along with a

vast amount of computational time required.

When it comes to approximation methods, it usu-

ally refer to metaheuristics for their success and im-

portant contribution in solving NP-hard combinato-

rial problems. They have the capability to provide

enough satisfactory results for large-scale instances

in different types of optimization problems within

reasonable time limits. As for solving PDPTW, there

are several successful works using various kind me-

taheuristics.

One of the first attempt to solve PDPTW using me-

taheuristic belongs to 7) work. Their approach based

on reactive tabu search that combines several stand-

ard neighborhoods. Soon later, 6) developed a hybrid

metaheuristic which combines simulated annealing

and tabu search. Based on Solomon’s VRPTW

benchmark 13), they also modified and proposed 56

new benchmark instances for PDPTW, which would

be used to test our algorithm in the later section. Af-

terward, the success of metaheuristics by 1) based on

large neighborhood search has proven to be efficient

for classes of the PDP compare to the previous. In the

same year, an important extension for LNS, adaptive

large neighborhood search (ALNS) was developed in

the work of 10) in which an adaptive weight adjust-

ment was introduced to choose the most suitable pair

of removal and insertion heuristics each iteration

based on its historical performance, instead of choos-

ing randomly like in previous studies. That adaptive

feature significantly influence quality of solutions

and has made it become probably the most effective

metaheuristic for PDPTW so far, with results re-

ported for up to 1000 locations. Since then, there are

several more related works and most of them sole fo-

cus on modifying and improve this adaptive mecha-

nism and there are no significant improvement intro-

duced to the LNS. What’s more, to the best of our

knowledge, there are no LNS which takes advantages

of the pool of historical good solutions.

For the sake of improving the LNS while still keep-

ing it straightforward and easy to be implemented, we

are not going to integrate the an adaptive weight ad-

justment component originally proposed in 10); rather,

we improve the heuristic in a different way by mak-

ing use of path relinking inside LNS to improve its

intensification. Similar to LNS, path relinking is a

fairly new approach conceptually introduced in 4) and

has been applied to VRP with great success in 5).

Our main contributions in this study are as follows:

 We introduce a new adaptive layer using path re-

linking for improving classical LNS

 We consider a number of realistic constraints and

provide an efficient feasibility checking proce-

dure with waiting strategy.

 We consider the trade-off between the cost for hir-

ing vehicles and cost for total distance.

2. PROBLEM DESCRIPTION

In PDPTW, there are n shipments that need to be

served and m vehicles available. The problem is de-

fined on a complete graph, P = {1,…, n} is the set of

pickup nodes, D = {n+1,…, 2n} is the set of delivery

nodes. Then the pair of nodes {i, i+n} represents for

pickup and delivery nodes of shipment i. K represents

for the set of vehicles, |K| = m. The graph G = (V, A)

consists of V nodes and A = V×V arcs. Vertex V0 rep-

resents depot at which is based fleet of vehicles. Each

edge (i, j) ∈ A is assigned a distance dij ≥ 0 and travel

time tij ≥ 0.

Each node i ∈ V has its amount of goods li that

need to be picked up/delivered. li ≥ 0 for i ∈ P, and li

= -li-n for i ∈ D. We denote CapV as the capacity of

vehicles.

The PDPTW in this study considers these follow-

ing practical constraints:

- Every route starts and ends at the same depot;

- Pairing and precedence: for every shipment i, the

pickup and delivery points belong to the same route

and the pickup point is visited earlier than its corre-

spond delivery;

- The load of vehicle k does not exceed capacity C

at any time along the route;

- The total duration of route k does not exceed the

maximum route duration;

- The total distance of route k does not exceed the

maximum route distance;

- The service time at every node in route is fall

within the time windows interval.

We denote Ai as the arrival time of a vehicle at

node i, then Bi ≥ max(ei, Ai) as the beginning of the

service at node i, and Di = Bi + si as the departure

time from i to the next visit. Each node i ∈ V has a

service duration si and a time window [ei, li]. si repre-

sents the time needed for serving point i. A service

must be started within its time window, from ei to li.

Vehicles are allowed to arrive at node i before its ear-

liest time ei; however, it have to wait until ei to start

it service with waiting time Wi = Bi - Ai. And clearly,

time window constraint at node i is violated if Bi > li

and any late service after latest time li is not allowed.

The total driving time of a vehicle thus corresponds

to the amount of time between the last node (at depot)

第 56回土木計画学研究発表会・講演集

 3

arrival and the departure from the first node (at de-

pot). It can be computed as Lk = A0’ – D0, where A0’

is the time when vehicle k come back at depot.

The objective is to minimize the weighted sum

consisting of: (i) the sum of cost for the distance trav-

eled by vehicles, and (ii) the total of fixed cost hiring

vehicles with weighted coefficients α, and β, respec-

tively. In real-life applications, these coefficient is

usually assigned with real cost unit so that to mini-

mize the correspond total operating cost. In bench-

mark, these coefficients are adjusted accordingly de-

pending on instances and objectives.

3. SOLUTION METHODOLOGY

This section describes components of ALNS heu-

ristic solving the PDPTW. Some components are

mainly based on the works of 10). However, compare

to 10), the heuristic in this paper is extended in several

ways:

- We integrate path relinking as an important in-

tensification component inside LNS.

- We propose an efficient and straightforward fea-

sibility checking routine for realistic constraints in

terms of spatial and temporal aspects along with wait-

ing strategy at depot to minimize tour duration.

- We consider the trade off between the vehicle

cost and travel cost, rather than utilize two-stage

method in 10) to separately minimize number of vehi-

cles and distance, respectively.

The overall pseudocode LNS is presented in the

algorithm below.

Algorithm 1: LNS heuristic

1 Function LNS (s ∈ {solution}, q ∈ ℕ)

2 Solution sbest = s

 E = ϕ

3 repeat
4 s’ = s

5 Remove q shipment from s’

6 Reinsert removed shipments into

 partial solution s’

7 if (f(s’)) < f(sbest)) then

8 sbest = s’

9 if accept(s’, s) then

10 s = s’

11 if |E| > 0 then

12 Randomly select an elite solution

 s* from E

13 s = PathRelinking(s, s*)

14 Update elite set (s, E)

15 until stop-criterion are met

16 return sbest

(1) Destroy Procedures

This section present four removal heuristics. All

of them take a solution and the amount of shipments

to be removed q as input. The output of these heuris-

tics is a solution which has q shipments removed and

unassigned. What’s more, Shaw removal and Worst

removal are acquired randomized feature character-

ized the level of randomization by parameter p.

a) Random Removal

Random Removal is the simplest heuristic among

all. It simply randomly picks shipments and removes

origin and destination out from the route. The heuris-

tic repeatedly run until a certain degree of destruction

is reached. Due to the natural simplicity, it can be im-

plemented significantly fast. It is also a very im-

portant heuristic for the LNS algorithm because of

being able to maintain diversification for exploring a

large search space, avoiding stuck in local optimum.

b) Worst Removal

Given a shipment i served in solution s, we define

the cost for serving shipment i as the difference be-

tween cost of s and cost of the solution without ship-

ment i, f-i(s). The heuristic tries to remove the ship-

ment that cost most with the hope that the shipment

would be reinserted in another position with better

cost incurred.

argmax[cost(i, s) = f(s) – f-i(s)]

A shipment includes pickup and delivery points.

Therefore, two node in route are removed in each re-

moval. That leads to two possible scenarios when it

comes to cost computing. If pickup and delivery

points of a shipment next to each other in route order,

j = i+1,
1 1 1 1, , , ,i i i j j j i jR R R R R R R Rcost d d d d

 . Oth-

erwise, if j >i+1,
1 1 1 1, , ,i i i i i iR R R R R Rcost d d d

1 1 1 1, , ,j j j j j jR R R R R Rd d d

 .

The procedure is repeated until enough shipments

are removed. It is worth to notice that the cost differ-

ences change after every removal done. However, not

all cost differences have to be recalculated after every

iteration due to the fact that the change only occur on

the route at which the shipment was removed. With

that in mind, only the cost of those shipments in pre-

viously destroyed route would be recalculated after

each removal.

Besides, in order to make sure the heuristic keep

repeatedly removing the same options and create di-

versification, instead of always removing the first

ranked request, the process can be randomized with

parameter p ≥ 1. A random number x in interval [0,1)

would be determined in each selection, the candidate

at xp|L| th place in descending list L is selected. The

higher p is set, the wider range selection would be

due to the highly sensitive of x p with p.

第 56回土木計画学研究発表会・講演集

 4

Algorithm 2: Worst Removal

1 Function WorstRemoval (s ∈ {solution},

 q ∈ ℕ, p ∈ ℝ+)

2 while q > 0 do

3 List L = list of shipments sorted by

 cost(i, s) in descending order

4 Pick a random value of x

 in the interval [0,1)

5 r_shipment = L[xp|L|]

6 Remove r_shipment from s

7 q = q – 1

8 end while

c) Shaw Removal

This heuristic was originally proposed by 12) and

slightly modified by 10) to suit the PDPTW. The heu-

ristic is a combination of service time-oriented and

distance-oriented approach. The basic idea is to at-

tempt to remove shipments to some extend similar to

each other in terms of distance and time. And expect

the later insertion procedure would likely shuffle

these shipments around with a probability of generat-

ing a new and might be better solution.

The relatedness of two shipments i and j uses the

measure R(i, j). The lower R(i, j), the more related the

two shipments. R(i, j) consists of two measured

terms: distance and time window. They are weighted

with theirs corresponding weights ρ, η, respectively.

The formulation is given by:

, , , ,

() () () ()

(,) ()

 (| | | |)

i j i j n i n j i n j n

P i P j D i D j

R i j d d d d

T T T T

P(i) and D(i) represent the pickup and delivery

point of shipment i. Ti represents the average of ear-

liest and latest time of location i.

Algorithm 3: Shaw Removal

1 Function ShawRemoval (s ∈ {solution},

 q ∈ N, p ∈ R+)

2 Randomly pick a rshipment

3 Set list D = {rshipment}

4 while |D| < q do

5 r = a randomly selected shipment in D

6 List L = list of shipments i not in D

 sorted by R(r, i) in ascending order

7 Pick a random value of x

 in the interval [0,1)

8 Append shipment L[xp|L|] to list D

9 end while

10 Remove all shipments in D from s

Similar to Worst removal, randomization is also

introduced to generate a certain degree of diversifica-

tion for the heuristic through a determined parameter

p ≥ 1.

(2) Repair Procedures

Heuristics in this section are going to repair given

partial routes destroyed in the previous step by re-

moval heuristics. It is worth to note that these heuris-

tics operate in parallel way in which they construct

routes in the same time. They not only rebuild the

partial route, but also can be used to build entire so-

lution from scratch as a construction heuristic.

Algorithm 4: Repair Heuristic

1 Function RepairHeuristic (partial solution s,

set of unassigned shipments D)

2 while |D| > 0 do

3 Ascending order insertion cost list L

4 Determine top-ranked request-vehicle

 pair (r, i) from L

5 Insert shipment i to its best position in

 route r

6 Remove i from set D

7 Update insertion cost

8 end while

a) Greedy Insertion

The heuristic bases on the simple idea of inserting

shipments into their best position that have cheapest

cost at the moment. Denote fr,s,i,j as the change in ob-

jective function value shipment s would incur when

being inserted in route r at i, j. We calculate all pos-

sible f.

In general sense, we would pick the insertion that

cost c least overall. Define c = min(f). This operator

continues until all shipments assigned.

During the operator, if no feasible route found, a

new route is created in order to satisfy all remaining

requests.

Similar to Worst removal, it is important to note

that each insertion only affect one route in which a

new shipment has just been inserted. Therefore, there

is no need to recalculate insertion cost in all the other

untouched routes.

One of obviously natural drawback this heuristic

carrying from the Greedy algorithms family is its my-

opic. In fact, it often postpones the placement of the

customers with higher cost increments to the last it-

erations where no many available spots left for insert-

ing. Therefore, there are high risks of showing up

more unexpected costs at last which likely to quickly

escalate the overall cost.

The following heuristic will try to address this

drawback.

b) Regret-2 Insertion
The Regret insertion is an improvement of the

Greedy insertion. To overcome inherent disad-

vantage of the latter, instead of inserting the shipment

that has the cheapest cost, the Regret insertion looks

第 56回土木計画学研究発表会・講演集

 5

further information through the so-called regret val-

ues, then give decisions accordingly based on this

measure.

Regret heuristic uses a variable xik ∈ {1,…,m}, in-

dicates the route for which the customer i has the kth

lowest insertion cost. In the regret-2 heuristic, a re-

gret value is defined as
2 1, ,i ii i x i xc f f , where

,i xmf is the change in objective function value in-

curred by inserting customer i into the mth best posi-

tion. In order words, the regret value defines the dif-

ference in the cost of inserting the customer in its best

position and its second-best position.

In each iteration, the heuristic chooses the ship-

ment i that maximizes:

max ci

In normal sense, we pick the insertion that we

would regret most if we would have not done it.

The regret heuristic can be extended to k to help it

increase its sight pool, thereby improve solution qual-

ity. However, we are not going to focus on such thing

in this paper, these heuristics, even are imprecise, are

enough to compose precise local search heuristics ac-

cording to 10).

(3) Choosing removal and insertion heuristics

In the previous section, we defined three removal

heuristics and two insertion heuristics. Technically,

one just need one removal and one insertion heuristic

for the search. However, an obvious fact and big is-

sue one usually face when works with optimization

problem is that one heuristic could be very efficient

in one kind of instance but very bad in others. By al-

ternating between the different heuristics, we could

make up a more robust heuristic. That is the reason

why we are going to use all mentioned heuristics. On

the other hand, how to choose heuristics is also a very

important aspect that profoundly influence the qual-

ity of solutions. The work of 10) has been proved its

success with the adaptive weight adjustment which

operates and tunes weight based on the previous per-

formance of heuristics. However, that is not what we

want to focus on in this paper.

Rather, to select the heuristic to use in each itera-

tion, we use roulette wheel selection principle and the

selection of insertion heuristic and removal heuristic

are independent to each other. Instead, we want to ap-

proach the adaptive aspect under a different method

that we will detail in the next section.

(4) Acceptance and Stopping Criteria
Purpose of acceptance is to decide whether to ac-

cept the newly created solution or to keep the current

solution to continue manipulating. It provides the

search opportunities to escape local optimum and to

further explore other search spaces that might have

promising solutions. Therefore, the acceptance

method is one important part that decides the success

of every state-of-the-art metaheuristic.

There are several types of acceptance method, for

instance, Greedy acceptance, Threshold acceptance,

Simulated Annealing, e.g. to name a few. They all

share a same common that is acceptance of any im-

proving solutions. The rule of acceptance of non-im-

proving solutions is the only difference.

Among all, we are inspired by Simulated Anneal-

ing acceptance method, which has been playing the

key role in the success of this metaheuristic. Obvi-

ously by that, it will accept any improved solution.

Besides, we will also accept a non-improvement so-

lution s’ given current solution s with probability
 ’ –f s

T

f s

e

 where T is temperature.

At the beginning, the initial temperature Tstart is set

so that a solution w % worse than the current one

would be accepted with probability 0.5. Therefore,

Tstart is dependent on and is calculated according to

the value of initial solution. To do so, we can deduce

from:
initial(s).

0.5start

f w

T
e

 , hence,
().

log 2

initial
start

f s w
T .

The temperature decreases after every iteration T =

T.c with a cooling rate c (0 < c < 1).

The algorithm stops when certain amount of iter-

ations have been done.

(5) Path Relinking
Metaheuristic algorithms could also have some

limitations as the premature convergence, which may

cause the algorithm to trap in local optima or to stag-

nate and therefore it is a challenging problem for the

metaheuristics approaches.

The aim of the path relinking phase is to introduce

progressively attributes of the guiding solution into

solutions obtained by moving away from the initial

solution. In order to generate desired path, an initial

solution and a guiding solution, representing for start

point and end point, respectively, will be needed and

be picked from a so-called reference list which con-

tains all elite solutions. Attributes of guiding solution

are gradually introduced and replace those from ini-

tial one in intermediate solutions along the path. As a

consequence, a solution contains more and more at-

tributes of the destination as one moves to the end.

In this section, we manage to hybridized path re-

linking with LNS. A path relinking is rarely used

alone, it is either used as an external component for

post-optimization or as an internal procedure within

metaheuristic. In this study, we integrate path relink-

ing inside LNS as an intensification method by ex-

ploring the path which links elite solutions randomly

第 56回土木計画学研究発表会・講演集

 6

chosen together in the reference set built during iter-

ation.

At first, we start with an empty elite set and limit

it to contain a most nE solutions inside. It is formed

by a set of diverse high-quality solutions found dur-

ing the search. However, it should represent different

potentially good regions and therefore should not in-

clude solution that are too similar, even if they are

high quality. Every intermediate solution from path

relinking is considered to be inserted in elite set. So-

lutions resulting from path relinking would be con-

sidered as a candidate to be inserted in the elite set.

The procedure is described in algorithm below.

Algorithm 5: Path Relinking

1 Function PathRelinking (initial solution Si,

guiding solution Sg)

2 S = Si

3 S* = S

4 f* = f(S)

5 while |N(S:Sg)| ≥ 1 do

6 S = argmin{f(S’):S’∈N(S:Sg)}

7 if f(s) < f* then

8 S* = S

9 f* = f(S)

10 end-while

11 return S*, f(S*)

The algorithm relinks the locally optimal solution

produced in each LNS iteration with a single solution

which is randomly chosen from the elite set. It fol-

lows the backward path relinking strategy in which

the initial solution is better the guiding solution, con-

trast to the forward strategy. The reason is that PR

explore more thoroughly the neighborhood of the in-

itial solution than that of guiding one as it moves

along the path, the size of the neighborhood progres-

sively decreases. Since it is more likely to find an im-

proving solution in the restricted neighborhood of the

better solution than in that of the worse, backward

path relinking usually tends to perform better than

forward path relinking.

(6) Feasibility Evaluation and Waiting Strategy
The repair steps need to evaluate the insertion of

single request into given feasible routes. Guarantee-

ing pairing and precedence is straightforward and is

certainly for granted thanks to the consideration of

insertion procedures, while verification capacity con-

straint and temporal constraints is quite tricky and

time consuming. Especially during the LNS, millions

of insertions must be checked for its feasibility, so

that the check should be as efficient as possible.

We apply the concept of Forward Time Slack

(FTS) originally proposed by 11) in the context of

TSPTW. We assume that the service times are sched-

uled as early as possible. Denote
(,)u v i

u i v

TWT w

 is

the total waiting time on path from point u to point v.

Then we get:

, 1 (,)()v u i i i u v

u i v

B B s TWT

Given a feasible schedule T for route R, the FTS

Fi at a node vi gives the maximum amount of time by

which the service time at vi can be delayed so that the

resulting schedule is not violated time windows.

 (,)minu u i i i
u i q

F TWT l B

The algorithm 6 interprets the basic course of a

feasibility test for the PDPTW.

Algorithm 6: Feasibility Check

1 Function FeasibilityCheck (given shipment

s, route r, position i and j)

2 c = items carrying at location [i-1]

3 if c + item of s at pickup point

 > capacity then

4 return False

5 else:

6 if j > i + 1 then

7 cmax = max amount of item carrying

 from position [i] to [j-1]

8 if item of s at pickup point + cmax

 > capacity then

9 return False

10 if j > i + 1 then

11 Bp = Service time at position [i-1]

12 tsi = CheckInsertion(P(s), i, Bp)

13 if tsi = False then

14 return False

15 else:

16 Bd = new service time

 at position [j-2]

17 tsj = CheckInsertion(D(s), j-1, Bd)

18 if tsj = False then

19 return False

20 else:

21 Bp = Service time at position [i-1]

22 tsj = CheckInsertion(s, i, Bp)

23 if tsj = False then

24 return False

25 new_end = new arrival time at depot

 after insertion

26 if new_end – D0 > maxduration then

27 return False

28 return True

Algorithm 7: Check Insertion

1 Function CheckInsertion (given pickup/de-

livery point v, inserted position i, service time

at precedence position B)

第 56回土木計画学研究発表会・講演集

 7

2 p = precedence point, location at [i-1]

3 Bv = max(ev, B + sp + tp,v)

4 if Bv > lv then

5 return False

6 else:

7 s = successor point, location at [i]

8 Bs’ = Bv + sv + tv,s

9 timeshift = max(Bs’ – Bs, 0)

10 if timeshift > Fs then

11 return False

12 else:

13 return timeshift

It is clear that let the vehicle leave depot as soon

as possible and service every vertex as fast as possi-

ble as long as vehicle arrive is the safe way to satis-

fied time windows. In other words, D0 = e0 and si =

max(ai, ei). However, according to 3), in fact, setting

D0 = e0 + F0 instead of D0 = e0 will thus yield a mod-

ified route of minimal total duration with equal vio-

lations of time window constraints and equal or

smaller violations of total duration constraints.

4. COMPUTATIONAL EXPERIMENTS

This section describes computational results to as-

sess the performance of the proposed algorithm. We

use the 100-location instances constructed by 6). The

instances are single depot pickup and delivery prob-

lem with time windows with primary objective to

minimize number of homogeneous vehicle used and

the secondary objective is to minimize the total dis-

tance travel.

There are 2 main objectives for this section:

- To determine whether any problem properties

can influence the LNS heuristics ability to obtain

good solutions.

- To check the performance of LNS as applying in

large instances.

The algorithm is coded in Python 3.6 and run on

computers with a Core i3-6100 3.7 GHz CPU and 16

GB of RAM.

(1) Data Sets and Parameter Setting
All problem have 100 customers, a central depot,

vehicle capacity constraint, precedence constraints

together with coupling constraints. The benchmark

was created to simulated different scenarios in real

life practice. Instances are categorized based on spa-

tial distribution of customers and schedule horizon

characteristics. Each group carries certain difficul-

ties, in order to test the all-rounded of search algo-

rithm. In terms of spatial distribution, the customers

are clustered in LC problems, while those in LR prob-

lems, in contrast, are randomly distributed; what’s

more, customers are also partially clustered and par-

tially randomly distributed in LRC problems. Fur-

thermore, in terms of schedule horizon characteris-

tics, LC1, LR1 and LRC1 problems have tight and

short scheduling horizon; while LC2, LR2 and LRC2

have longer scheduling horizon. Hence, there are 6

types of instances being solved here.

In each case, the problem is solved 5 times to com-

pute average number of vehicle used and average to-

tal distance obtained. Since the primary objective of

the instances is to minimize number of vehicle used,

the fix cost of a vehicle is set to H = 1,000, we set α

= 1, while β = H. Besides, due to the fact that in-

stances in the benchmark do not concern about max-

imum route duration and total route distance, we as-

sign very big values to parameters maxduration and

maxdistance so that the algorithm can fit benchmark

criteria.

Since LNS algorithm is composed by several pro-

cedures and each procedure has it own parameters,

parameters setting should be determined in prelimi-

nary experiments. Most of parameters we select from
10) works, while several are modified several to con-

sider trade-off between solution quality and CPU

time. Besides, the parameter q that defines the num-

ber of vertices removed from solution at each itera-

tion is randomly determined in fixed interval [0.05n,

0.4n]. Parameters are gathered in table 1.

Table 1 Parameter configuration

Parameter Role Value

N Total iteration per run 5000

α Distance weight 1

β Fixed-cost vehicle

weight

1000

c SA cooling factor 0.9996

p Randomized parameter 6

w Tolerance threshold 0.015

q Degree of destruction random

(2) Results
The results on 100-location problems of 6) bench-

mark are shown in table 2. The name of problems and

the best solutions so far are placed in first three col-

umns. Columns two and three give the total number

of vehicles and the total traveled distance of the best

known solutions. Likewise, the next two columns

show the same information of the best solutions ob-

tained in 5 runs of LNS. The last two columns display

average values of 5 runs.

As can be seen, the proposed hybrid heuristic

shows promising results. The objective function

value out of 51 over 56 instances was found equal the

best known solution collected so far from previous

studies.

第 56回土木計画学研究発表会・講演集

 8

Table 2 Result on 100-location problems benchmark 6)

Instance
Best known solutions Best of 5 runs Average of 5 runs

Vehicles Distance Vehicles Distance Vehicles Distance

LC101 10 828.94 10 828.94 10 828.94
LC102 10 828.94 10 828.94 10 828.94
LC103 9 1035.35 9 1035.35 9.4 959.25

LC104 9 860.01 9 861.65 9 868.394

LC105 10 828.94 10 828.94 10 828.94
LC106 10 828.94 10 828.94 10 828.94

LC107 10 828.94 10 828.94 10 828.94
LC108 10 826.44 10 826.44 10 826.44

LC109 9 1000.6 10 827.82 10 827.82

LC201 3 591.56 3 591.56 3 591.56
LC202 3 591.56 3 591.56 3 591.56

LC203 3 591.17 3 591.17 3 591.17
LC204 3 590.6 3 590.6 3 590.942

LC205 3 588.88 3 588.88 3 588.88
LC206 3 588.49 3 588.49 3 588.49

LC207 3 588.29 3 588.29 3 588.29

LC208 3 588.32 3 588.32 3 588.32
LR101 19 1650.8 19 1650.8 19 1650.8

LR102 17 1487.57 17 1487.57 17 1487.57
LR103 13 1292.68 13 1292.68 13 1292.68

LR104 9 1013.39 9 1016.93 9.8 1040.628

LR105 14 1377.11 14 1377.11 14 1377.11
LR106 12 1252.62 12 1252.62 12 1252.62

LR107 10 1111.31 10 1111.31 10 1111.31
LR108 9 968.97 9 968.97 9 968.97

LR109 11 1208.96 11 1208.96 11 1208.96

LR110 10 1159.35 11 1193.18 11 1183.412

LR111 10 1108.9 10 1108.9 10 1108.9

LR112 9 1003.77 9 1003.77 9.6 1020.172
LR201 4 1253.23 4 1253.23 4 1253.23

LR202 3 1197.67 3 1197.67 3 1197.67
LR203 3 949.4 3 949.4 3 949.4

LR204 2 849.05 2 849.05 2 849.05

LR205 3 1054.02 3 1054.02 3 1054.02
LR206 3 931.63 3 931.63 3 931.63

LR207 2 903.06 2 903.06 2 903.06
LR208 2 734.85 2 734.85 2 736.46

LR209 3 930.59 3 930.59 3 930.59
LR210 3 964.22 3 964.22 3 964.22

LR211 2 911.52 3 884.29 3 902.82

LRC101 14 1708.8 14 1708.8 14 1708.8
LRC102 12 1558.07 12 1558.07 12 1558.07

LRC103 11 1258.74 11 1258.74 11 1258.74
LRC104 10 1128.4 10 1128.4 10 1128.4

LRC105 13 1637.62 13 1637.62 13 1637.62

LRC106 11 1424.73 11 1424.73 11 1424.73
LRC107 11 1230.14 11 1230.14 11 1230.14

LRC108 10 1147.43 10 1147.43 10 1147.43
LRC201 4 1406.94 4 1406.94 4 1406.94

LRC202 3 1374.27 3 1374.27 3 1374.27

LRC203 3 1089.07 3 1089.07 3 1089.07
LRC204 3 818.66 3 818.66 3 818.66

LRC205 4 1302.2 4 1302.2 4 1302.2
LRC206 3 1159.03 3 1159.03 3 1159.03

LRC207 3 1062.05 3 1062.05 3 1062.05
LRC208 3 852.76 3 852.76 3 852.76

第 56回土木計画学研究発表会・講演集

 9

5. CONCLUSION

In this study, the authors proposed an extension for

the large neighborhood search to solve the pickup and

delivery problem with time windows by hybridizing

with an intensification method, path relinking. The

heuristic was tested on 100-location benchmark and

could obtain good results, in which almost problems

were solved optimally. It shows the success of this

hybridization.

In addition, an efficient and straightforward feasi-

bility checking procedure was also presented in the

study. It not only facilitates the identification of fea-

sible insertions but also helps improve the quality of

solutions by allowing delaying the departure time at

depot before vehicles leaving for servicing. This

strategy eventually helps minimize the total driving

time of each tour.

REFERENCES
1) Bent, R., Hentenryck, P.V. : A two-stage hybrid algorithm

for pickup and delivery vehicle routing problems with time

windows. Comput. Oper. Res. 33, 875–893, 2006.

2) Cordeau, J.-F. : A Branch-and-Cut Algorithm for the Dial-

a-Ride Problem. Oper. Res. 54, 573–586, 2006.

3) Cordeau, J.-F., Laporte, G. : A tabu search heuristic for the

static multi-vehicle dial-a-ride problem. Transp. Res. Part

B Methodol. 37, 579–594, 2003.

4) Glover, F., Laguna, M., Taillard, E., de Werra, D. : Tabu

search. Baltzer Basel, 1993.

5) Ho, S.C., Gendreau, M. : Path relinking for the vehicle

routing problem. J. Heuristics 12, 55–72, 2006.

6) Li, H., Lim, A. : A Metaheuristic for the Pickup and Deliv-

ery Problem with Time Windows. Int. J. Artif. Intell. Tools

12, 173–186, 2003.

7) Nanry, W.P., Barnes, J.W. : Solving the pickup and delivery

problem with time windows using reactive tabu search.

Transp. Res. Part B Methodol. 34, 107–121, 2000.

8) Ropke, S., Cordeau, J.-F. : Branch and Cut and Price for the

Pickup and Delivery Problem with Time Windows. Transp.

Sci. 43, 267–286, 2009.

9) Ropke, S., Cordeau, J.-F., Laporte, G. : Models and branch-

and-cut algorithms for pickup and delivery problems with

time windows. Networks 49, 258–272, 2007.

10) Ropke, S., Pisinger, D. : An Adaptive Large Neighborhood

Search Heuristic for the Pickup and Delivery Problem with

Time Windows. Transp. Sci. 40, 455–472, 2006.

11) Savelsbergh, M.W.P. : The Vehicle Routing Problem with

Time Windows: Minimizing Route Duration. ORSA J.

Comput. 4, 146–154, 1992.

12) Shaw, P. : Using Constraint Programming and Local Search

Methods to Solve Vehicle Routing Problems, in: Principles

and Practice of Constraint Programming — CP98. Pre-

sented at the International Conference on Principles and

Practice of Constraint Programming, Springer, Berlin, Hei-

delberg, pp. 417–431, 1998.

13) Solomon, M.M. : Algorithms for the Vehicle Routing and

Scheduling Problems with Time Window Constraints. Oper.

Res. 35, 254–265, 1987.

第 56回土木計画学研究発表会・講演集

