
 1

High-Performance Computing Enhancement of

Macroscopic Day-to-day Traffic Assignment

Wasuwat PETPRAKOB1, Lalith WIJERATHNE2, Takamasa IRYO3, Junji URATA4 ,

and Kazuki FUKUDA5

1Department of Civil Engineering, The University of Tokyo

 (7-3-1, Hongo, Bunkyo, Tokyo, 113-8654, Japan)

E-mail:wasuwat@eri.u-tokyo.ac.jp
2Earthquake Research Institute, The University of Tokyo

 (1-1-1, Yayoi, Bunkyo, Tokyo, 113-0032, Japan)

E-mail:lalith@eri.u-tokyo.ac.jp
3Department of Civil Engineering, Kobe University

(1-1, Rokkodai-cho, Nada, Kobe, 657-8501, Japan)

E-mail:iryo@kobe-u.ac.jp
4Department of Civil Engineering, Kobe University

(1-1, Rokkodai-cho, Nada, Kobe, 657-8501, Japan)

E-mail:urata@person.kobe-u.ac.jp
5Department of Civil Engineering, Kobe University

(1-1, Rokkodai-cho, Nada, Kobe, 657-8501, Japan)

E-mail: 163t130t@stu.kobe-u.ac.jp

A major earthquake can damage road network disrupting the passenger traffic and supply chain network

for many months or years. When a commercial center like Tokyo is affected by such natural disaster, it can

bring serious economic losses both in short and long term. In order to minimize the economic losses, it is

vital to optimally utilize the active portion of the road network meeting the traffic demand with minimum

delay. It is well known that a dynamic traffic assignment is NP-hard problem, hence it is essential to develop

high-performance computing extensions to find nearly optimal solutions for this post-disaster traffic as-

signment. According to our literature survey, no scalable parallel implementations of a suitable traffic as-

signment algorithm are reported in the literature.

In this paper, we present a preliminary implementation of HPC enhanced day-to-day traffic assignment

with the details of strategies to attain higher parallel scalability. According to numerical experiments, the

proposed methods significantly accelerate the runtime of day-to-day traffic assignment and improve the

scalability of day-to-day traffic assignment.

 Key Words : day-to-day traffic assignment, post disaster route guidance, high performance compu-ting,

domain decomposition

1. INTRODUCTION

Damages to the lifeline networks during a major

earthquake can bring long lasting disruptions to

manufacturing and other economic activities leading

to a secondary disaster. Especially when a commer-

cial center like Tokyo is affected by a major earth-

quake, the resulting secondary disaster can bring

serious risk to the nation’s economy and even send

ripples in the global economy. It is hard to say which

lifeline network plays the most critical role since the

industries and other economic activities depend on

these in a rather complicated manner. Road network

is one of the vital element with a significant influ-

ence on the economic activities.

Depending on the severity of damages, recovery of

road network after a major earthquake can take sev-

eral months to years of time. As an example, it has

taken 21 months to fully recover the road network

after the 1995 Kobe earthquake1). It is vital to find the

means to optimally utilize the functioning portion of

a damaged network to meet the traffic demand with

minimum traffic delays so that degree of secondary

economic disasters is minimized. Such post-disaster

traffic assignment plans should be continuously

updated according to the progress of recovery of

第 56回土木計画学研究発表会・講演集7

 2

damaged segments.

It is well known that optimal traffic assignment

problem is NP-hard problem, hence it is essential to

choose a suitable algorithm and develop efficient

high-performance computing extensions to find near

optimal solutions for this post-disaster traffic as-

signment problem. There exists a number of methods

to find near optimal traffic assignment2),3),4),5).

However, according to our literature survey, none of

these methods have been applied to solve large scale

problems like Tokyo probably due to the extensive

computational demand. This emphasizes the need of

choosing a computationally light algorithm and

high-performance computing.

Out of the many methods for near optimal traffic

assignment, in this study, we use the method of

day-to-day traffic assignment, which mimics how

people find shorter routes by changing their routes

according to experiences on previous days. As one

would easily guess, this method replans the route of a

random subset of vehicles according to travel time

information of the previous simulation, and estimate

the resulting travel time by simulating the traffic

after the route replanning. The above process is re-

peated until the total delay time reaches a certain

convergence criterion. The advantage of this method

is that the total computation time can be reduced by

using a light weight macroscopic traffic simulator.

According to our literature survey, there are re-

ported cases of parallel implementations of dynamic

traffic assignment3), 4). However, these implementa-

tions do not scale well (i.e. reduce the computation

time linearly with respect to the number of CPUs

used) to solve large scale problems in a shorter time

by utilizing high-performance computer clusters or

super computers. The current best implementation

scales up to 128 CPUs, and takes around 1 hour and

30 minutes6) for a single day iteration. According to

our estimations, it would take more than a month to

find a solution for New York network. Though sev-

eral months period is acceptable for regular traffic

assignment problems, it is too long for post-disaster

recovery problem. For practical applications in post

disaster recovery, the total computation time has to

be at least reduce to a week so that traffic assignment

plans can be regularly updated with the progress of

the recovery of damages. Hence, a better scalable

HPC enhanced day-to-day traffic assignment must be

implemented for solving post disaster traffic as-

signment problems.

In this paper, we present details of a preliminary

implementation of a scalable parallel day-to-day

traffic assignment method with the aim of applica-

tions in post disaster traffic assignment of large

networks. Strategies for improving the scalability of

each component of day-to-day traffic assignment is

presented, and improvements in scalability are

demonstrated with examples. Also, the remaining

bottlenecks are discussed and possible remedies to

improve their scalability are presented.

The rest of this paper is organized as follows. The

second section presents a short introduction to the

method of day-to-day traffic assignment. The third

section presents HPC enhancement of day-to-day

traffic assignment. The fourth section presents the

numerical experiment of HPC enhancement.

2. DAY-TO-DAY TRAFFIC ASSIGNMENT

For the sake of completeness, we present an

overview of the day-to-day traffic assignment algo-

rithm. Day-to-day traffic assignment mimics how

drivers adjust their route choices to reduce their

travel time or reduce their delay time based on their

day-to-day travel experiences.

In this paper, a macroscopic traffic simulator is

used in each iteration of day-to-day traffic simulator

due to the cost-effectiveness. Each link (road seg-

ment) in macroscopic traffic simulator keeps a list of

vehicles passing through the link. Each element in

the links’ vehicle list stores information pertaining to

a vehicle such as a vehicle id, entry time to the link

and departure time from the link.

The main components involved in day-to-day

traffic assignment are shown in Fig.1. The main 5

steps involved are briefly explained below.

1. Randomly select a set of vehicles: If the all

the vehicles are not yet included, introduce a

certain percentage of vehicles from the input

origin-destination pairs (OD pairs). Also,

choose a random subset of the vehicles al-

ready introduced to the system.

Fig.1 An overview of serial day-to-day traffic assignment.

第 56回土木計画学研究発表会・講演集

 3

2. Path finding: Find the paths with minimum

travel time, based on the previous travel time

estimated with step 4 of previous iterations,

for the set of vehicles selected in the above

step.

3. Loading vehicles: The randomly selected

vehicles in step 1 are assigned to the vehicle

lists of the links along the corresponding

paths. The entry time and the departure time

of newly assigned vehicles are set to infinity.

4. Updating vehicle trajectory: Simulate traffic

flow using a suitable link delay model for

handling congestions Store the travel time

information of each link at suitable time in-

terval so that travel time can be estimated in

step 2 of next day iteration.

5. Stop criterion: Evaluate the total delay, and

decide to terminate iterations or return to step

1 and continue iterations based on a suitable

criterion.

The day-to-day traffic assignment’s result depends

on random parameters like in which order the vehi-

cles are introduced, etc. Depending on these random

parameters we may arrive at different solutions. It is

best to conduct many simulations with different

random parameters and choose a suitable stable so-

lution. By the stability of the solutions can be tested

in several ways. One prominent way is to give a

random variation, within a practical time range, to

the departure time of the vehicles and estimate the

resulting traffic condition by simulating traffic flow.

For this simulation for stability testing, it is better to

use a microscopic traffic simulator so that most of

the affecting factors can be taken into account. A

criterion like the percentage increase of delay time

can be used to test whether the traffic condition is not

significantly affected by the random variations.

3. HPC ENHANCEMENT
As mentioned in the introduction, the post-disaster

traffic assignment could not be solved unless a

scalable HPC extension is developed. The

post-disaster traffic assignment is one of an NP-hard

problem. Therefore, we have to utilize cutting edge

super computers such as K-computer to solve

post-disaster traffic assignment problem for a city

like Tokyo.

Most of the high-performance computing re-

sources like computer clusters and super computers

consist of a large number of computers connected

with hierarchical layers of high-speed network

hardware. Each computer, referred as computing

nodes, may have multiple multi-core CPUs which

share the memory of the corresponding computer.

However, a CPU core of a given computer cannot

directly access the memory of another computer,

hence the name distributed memory systems. More

accurately these are a hybrid system with shared

memory within each node and distributed memory

among computing nodes.

The communications between computer systems

are made by using high-performance interconnect. A

distributed-memory system is more scalable com-

paring to a shared-memory system.

To utilize a distributed-memory system, the work

and data involved in solving a problem must be split

into parts and assign to individual CPU, just as a

human manager assign different works his support-

ing staff. Since a CPU in one node cannot access the

memory of another commuting node, the work and

data have to be split so that each processor can do

some work independently with the data assigned to

it. In order to solve the whole problem CPUs, have to

exchange necessary data using the high-speed net-

work. A library called Message Passing Interface

(MPI) is widely used for this data exchange. In order

to attain a good scalability (i.e. reduce the computa-

tion time linearly with respect the number of CPUs

used), it is important to assign nearly equal work load

to each CPU and maximize the ratio between the

time for computation and data exchange.

(a) Example of road network’s bidirec-

tional graph

(b) Example of decomposed undirected

graph

(c) Example of decomposed bidirec-

tional graph.

Fig.2 Steps for partitioning a bidirectional graph

Collapse

Decompose Map

第 56回土木計画学研究発表会・講演集

 4

(1) Domain decomposition scheme

In order to assign each CPU core (or MPI process)

an equal work load which can be independently

completed with the assigned data, the network is

partitioned into contiguous sub-networks. We use

the graph partitioning library called METIS7) for

partitioning the network. In order to maintain the

continuity, each CPU core has to exchange infor-

mation incoming/outgoing vehicles to/from its sub-

domain with the CPU cores owning the neighboring

subdomains. The partitioning scheme used in METIS

minimizes the number of links intersected by the

boundaries of subdomains, thereby minimizing the

volume of data communicated.

There are two main partitioning scheme,

node-based partitioning, and link-based partitioning.

In node-based partitioning, the workload of each

node can be estimated. Therefore, regions which

have an equal summation of nodes’ workload can be

formed. Likewise, the workload of each link is ap-

proximated to be a number of passing-though vehi-

cles in link-based partitioning. Therefore, regions

which have an equal summation of links’ workload

can be formed.

Figure 2 illustrates the main steps involved in

domain decomposition. For simplicity, we use a

simple network and consider decomposing to 2 CPU

cores. First, the input bi-directional graph in Fig.2(a)

is collapsed into the undirected graph and necessary

related quantities are properly aggregated. Currently,

each link of the undirected graph is assigned the

summation of the number of vehicles passing the

corresponding bi-directional links. Assuming the

computation time for each link is proportional to the

number of vehicles passing through, this number of

vehicles is used as a weight in partitioning with

METIS so that each subdomain has an equal amount

of work load. A partitioned collapsed network is

shown in Fig.2(b). Mapping the partition data back

to the original bi-directional graph we obtain the

partitioned network for the day-to-day simulations

(see Fig.2(c)). A partitioned real traffic network is

shown in Fig.3.; the colors represent the owner MPI

rank id.

If the example road network is decomposed

without collapsing, then it produces an overlapping

graph network like the one shown in Fig.4. Such

overlapping not only make the data exchange among

CPU cores quite complicated but also make it diffi-

cult use some strategies to reduce or hide the data

communication time among MPI processes.

If a domain decomposition guarantees to produce

the continuous and non-overlapping partition, then

the communication hiding technique can be em-

ployed. The communication hiding technique is to

overlap the analysis of intra links with the analysis of

inter links. To apply the communication hiding to the

day-to-day traffic assignment, the links in decom-

posed partitions are categorized into 3 groups in-

cluding “to_receive_link”, “to_send_links”, and

Fig.5 Communication pattern

Fig.3 Example of decomposed practical road network.

Fig.4 Example of over-lapping graphs

第 56回土木計画学研究発表会・講演集

 5

“in-ner_most_links”. The example of the commu-

nication table is illustrated in Fig.5. The communi-

cation hiding technique is summarized as follows:

1. The group of “to_send_links” (blue solid ar-

rows) are analyzed and then the messages of

this group are posted to neighbors. The dotted

black arrows in Fig.5 represent the messages

which are posted to neighbors.

2. While we are waiting for the message from

neighbors, we analyze the group of

“in-ner_most_links” (black solid arrows).

3. The messages from neighbors are finalized

and then the group of “to_receive_links”

(dotted green arrow) are analyzed.

If we follow these steps, we do useful computa-

tions while data communication is going on, thereby

completely hiding the time spent for communication.

This communication hiding is a widely used standard

technique in parallel computing.

As we discussed earlier, the continuity of the

problem must be maintained by using ghost copies.

In the day-to-day traffic assignment, the group of

“to_receive_links” behaves as ghost copies. Ac-

cording to Fig.5, the group of “to_receive_links” is

the same group of “to_send_links” but they belong to

different processors.

(2) Parallelized day-to-day traffic assignment

Figure 6 illustrates the parallelized day-to-day

traffic assignment. The dotted-arrows indicate the

communication between processors. The unidirec-

tional dotted-arrows represent one-way communica-

tion, and the bi-directional dotted-arrows represent

two-way communication. The thick dotted arrows

indicate a large number of communications of dot-

ted-arrows indicates the number of communication

messages.

(3) Path finding

We use the well-known Dijkstra’s algorithm8) for

path finding. It is very difficult to parallelize9),10),11),12)

since it is an inherently sequential algorithm. The

worst case complexity of this algorithm is

where is the number of vertices (nodes). There-

fore, node-based partitioning is the best to distribute

the workload to each processor.

Because of the inherent serial nature of Dijkstra's

algorithm, it is difficult to implement either shared or

distributed memory parallel code with a good scala-

bility9),10),11),12). According to Jasika et al. 12) the av-

erage speed-up ratio of shared-memory parallel

Dijkstra’s algorithm is only 10%. Though there are

several studies on distributed-memory parallel im-

plementations of Dijkstra’s algorithm9),10),11) , none of

those are scalable. The main reason for the limited

scalability is the need of a large number of commu-

nications and difficulty in assigning equal work load

to each MPI process.

Due to the inherent difficulties of scalable parallel

implementation of Dijkstra's algorithm, we use em-

barrassingly parallel computation model for path

finding for a large number of vehicles. In other

words, instead of making the path finding the task of

a vehicle parallel, we use only one MPI process for

finding a path for a given vehicle. The only disad-

vantage of this is the need of gathering previous

iterations' travel time information of the whole net-

work to each MPI process. This demands a some-

what large amount of memory. However, it is not a

serious bottleneck due to the large memory in mod-

ern compute nodes and the possibility of reducing the

memory demand with some data compressing ap-

proaches. To distribute the workload for the pro-

posed parallel path finding, each processor is as-

signed to find paths for an equal number of vehicles.

After path finding process, each processor synchro-

nizes the found path with every processor. Instead of

calling embarrassingly parallel path finding, we call

this approach synchronized-distributed-memory

parallel path finding since synchronization of pre-

vious iteration’s travel time and distributing the path

found by a given MPI process to rest of all the MPI

processes are parts of path finding for a day-to-day

algorithm.

As an added benefit of above synchronization of

paths, vehicles loading can be conducted without the

need of any MPI communications. However, if we

use a parallel implementation of path finding like the

algorithm by Jasika et al.12), the vehicle loading in-

volves a large number of MPI communications

which can degenerate the scalability.

In the next section, the proposed path finding is

compared with the parallel path finding algorithm by

Jasika et al.12). As it will be shown, the use of parallel

Fig.6 Flowchart of parallelized day-to-day traffic assignment.

第 56回土木計画学研究発表会・講演集

 6

path finding involves an unknown large number of

MPI communications and assigning nearly equal

loads to each MPI process is quite difficult. On the

other hand, the proposed path finding approach in-

volves only 4 collective MPI commiunications and it

is possible to assign nearly equal work load to each

MPI process, hence producing higher scalability.

The flowchart of the day-to-day traffic assignment

after applying, the synchronized-distributed-memory

parallel path finding is illustrated in Fig.9.

(4) Active sub-network domain decomposition

According to preliminary simulations of a real

road network, vehicles move along only some links

(active links) in each iteration of day-to-day traffic

assignment; at least during the first several daily

iterations. Instead of partitioning the whole network,

portioning only the active network has two ad-

vantages. The first is avoiding bad partitioning due to

the use of small weights for links with no traffic;

METIS does not accept zero as a weight. The second

the large reduction of total computation time by

eliminating the number of unnecessary memory ac-

cess to main memory.

Figure 7 illustrates the flowchart of parallelized

day-to-day traffic assignment with the active

sub-network. After loading vehicle algorithm, the

inactive links can be easily identified

The active sub-network is created by picking only

active links from a full network. Instead of decom-

posing the full network, the active sub-network is

decomposed and used in updating vehicle algo-

rithms. According to Fig.7, after domain decompo-

sition scheme, only updating vehicle trajectory al-

gorithm uses the partition information. Hence, the

link-based partition is used to equally distribute the

workload for accelerating the updating vehicle tra-

jectory algorithm. The result of active sub-network

domain decomposition is illustrated Fig.8.

The active sub-network accelerates the runtime of

updating vehicle trajectory algorithm significantly

because it makes the program more cache-friendly.

The number of accessing unnecessary memory is

eliminated. Also, the quality of partitions is im-

proved because all partitions contain only the links

that have traffic flow.

4. NUMERICAL EXPERIMENTS

In this section, we demonstrate the scalability of

the parallel computing strategies mentioned in the

previous section. The advantages communication

hiding in scalability is not presented due to space

limitations. All the numerical examples use the

network shown in Fig.3; consists of 152,464 links

and 37,511 nodes.

(1) Distributed-memory parallel path finding

versus synchronized-distributed-memory

parallel path finding

In order to demonstrate the advantage of using the

proposed synchronized-distributed-memory parallel

path finding (see section 3(3)), its scalability is

compared with that of the distributed-memory par-

allel Dijkstra’s algorithm by Hribar et al9).

For the sake of completeness, first the distribut-

ed-memory parallel Dijkstra’s algorithm9) is briefly

summarized as follows:

1. Place all vehicles’ source in local subnetwork

into local queue

2. Find the shortest path for all source in local

queue

3. Send updated boundary node labels to

neighbors

4. Receive boundary node labels from neighbors

and place in queue

Fig.7 Flowchart of parallelized day-to-day traffic assignment

with active sub-network domain decomposition.

Fig.8 Example of decomposed active sub-network

第 56回土木計画学研究発表会・講演集

 7

5. Perform global operation for termination de-

tection. If the algorithm is not terminated,

then repeat step 2 to step 4

In this comparison, 5,000 vehicles with random

OD pairs are generated. A workstation consisting

two Intel Xeon CPUs (E5-2697 v2 @ 2.70GHz) with

256 GB memory is used; a total of 24 CPU cores.

The scalability of distributed-memory parallel path

finding is quantitatively compared with the scalabil-

ity of synchronized-distributed-memory parallel path

finding in Fig.11. As is seen the scalability of syn-

chronized-distributed-memory is much better com-

pared with the distributed-memory parallel path

finding.

The reason for the poor scalability of a distribut-

ed-memory parallel path finding is the involvement

of a large number of communication with an unpre-

dictable pattern of destinations. The example of

communication pattern of the distributed-memory

parallel path finding is illustrated in Fig.9. The bi-

directional dotted-arrow represent the communica-

tion messages. Each partition can exchange the up-

dated node labels with their neighbors in each itera-

tion. In some iteration, it is possible that there are

inactive partitions. Therefore, the communication

pattern is not predictable. To explain why it involves

Fig.11 Scalability of parallel path finding algorithms

Table 1 Execution time of parallel path finding algorithm

#processors

Runtime of

case 1 (s)

Runtime of

 case 2 (s) Ratio

2 9135.34 39.64 230.5

4 6429.58 25.24 254.764

8 2949.18 10.68 276.14

16 2269.82 5.94312 381.924

24 2127.69 4.15 512.696

Case 1: distributed-memory parall path finding

Case 2: synchronized-distributed-memory parallel

 path finding

Ratio:

edsynchroniz

ddistribute

Runtime

Runtime

Fig.12 Scalability of synchronized-distributed-memory

 parallel path finding with large scale problem

Table 2 Execution time of synchronized-distributed-memory

 parallel path finding with large scale problem

#processors

Runtime of synchro-

nized-distributed-memory

path finding (s) Speed-up

8 2334.6 1

64 294.5 7.93

256 77.94 29.95

512 39.6687 58.85

Fig.9 Communication pattern in a distributed-memory

parallel path finding

Fig.10 Communication pattern in a distributed-memory

parallel path finding

第 56回土木計画学研究発表会・講演集

 8

an unpredictable number of communications, refer

Fig.10. Here, each partition is represented by dif-

ferent colors, and we consider only one vehicle with

the path shown in red color. In this particular case, it

needs at least 5 iterations to finish, and the exact

number of iterations may be larger. In the practical

problem, there are more partitions and much more

vehicles leading to an unpredictable number of

communication. Further, the scalability of the syn-

chronized-distributed-memory parallel path finding

is studied with large scale problem on K computer. In

this experiment, 500,000 vehicles with random OD

pairs. The result shown in Fig.12 indicates that the

scalability almost reaches the ideal case. The

wall-clock execution times of both experiments are

depicted in Table 1 and Table 2. In addition to the

scalability, the synchronized-distributed-memory

parallel path finding is much faster than the distrib-

uted-memory parallel path finding when the number

of MPI processors is increasing. Both these signifi-

cantly contribute to solving post-disaster traffic as-

signment problem for large networks.

(2) Full network domain decomposition scheme

versus active sub-network domain decom-

position scheme

The objective of this set of simulations is to

demonstrate the advantages of using only active

network proposed in section 3(4). In this experiment,

200,000 vehicles with random OD pairs are used.

The scalability of distributed-memory parallel up-

dating vehicle trajectory was studied with two do-

main decomposition schemes (full domain decom-

position and active sub-network domain decomposi-

tion). The decomposed full domain is illustrated in

Fig.3 and the decomposed active sub-network do-

main is illustrated in Fig.8. The full network consists

of 152,464 links and 37,511 nodes, while the active

network consists of 22,404 links and 37,511 nodes.

As shown in Fig.13 the scalability of distribut-

ed-memory parallel updating trajectory algorithm is

significantly higher when the active sub-network

domain decomposition is used. Moreover, according

to the wall-clock execution times given in Table 3 the

execution time of the updating vehicle trajectory

algorithm with active sub-network domain decom-

position is 20 times faster than the updating vehicle

trajectory algorithm with full network domain de-

composition.

5. CONCLUSION AND FUTURE

RESEARCH

In this paper, we presented a preliminary imple-

mentation of HPC enhancements of day-to-day traf-

fic assignment. We propose a synchro-

nized-distributed-memory parallel path finding

scheme which significantly improves the scalability

of path finding. Further, it is demonstrated that using

only the active sub-network the scalability of up-

dating trajectory algorithm is significantly improved.

Both these strategies significantly reduce the execu-

tion time of day-to-day traffic assignment moving us

closer to use day-to-day traffic assignment to find the

user equilibrium state for large scale road networks.

In the future, the scalability of updating vehicle

trajectory is planned to be further improved by using

the dynamic load balancing technique. Also, a

mesoscopic traffic simulator might be used instead

of the macroscopic traffic simulator because it would

be easier to apply sophisticated traffic models such

as traffic light control model or lane changing model.

ACKNOWLEDGMENT: Most of the results are

obtained using K computer at the RIKEN Advanced

Institute for Computational Science

REFERENCES
1) Chang, S.E. and Nojima, N. : Measuring post-disaster

transportation system performance: the 1995 Kobe earth-

quake in comparative perspective, Transportation Research

Part A: Policy and Practice Vol. 35, Pt. 6, pp. 475-494.,

2001.

2) Shen, Z. M., Pannala, J., Rai, R., and Tsoi, T. S. : Modeling

Transportation Networks During Disruptions and Emer-

gency Evacuations, University of California Transportation

Center. UC Berkeley: University of California Transporta-

tion Center, 2008.

3) Chabini, I., Jiang, H., Macneille, P., and Miller, R. : Parallel

implementations of Dynamic Traffic Assignment models.

Systems, Man and Cybernetics, 2003. IEEE International

Conference, pp. 1246-1252, 2003.

4) Attanasi, A., Silvestri, E., Meschini, P., and Gentile, G. :

Real world applications using parallel computing tech-

niques in dynamic traffic assignment and shortest path

search, 2015 IEEE 18th International Conference on Intel-

ligent Transportation Systems, pp. 316-321, 2015.

5) O’Cearbhaill E.A. and O’Mahony M. : Parallel implemen-

tation of a transportation network model. Journal of Parallel

and Distributed Computing Vol. 65, pp. 1-14, 2005.

6) Thulasidasan, S. and Eidenbenz S. : Accelerating traffic

microsimulations: A parallel discrete-event queue-based

approach for speed and scale. Proceedings of the 2009

Winter Simulation Conference (WSC), pp. 2457-2466,

2009.

7) Karypis, G. and Kumar, V. : A Fast and High Quality Mul-

tilevel Scheme for Partitioning Irregular Graphs. Interna-

tional Conference on Parallel Processing, pp. 113-122,

1995.

8) Dijkstra, E. : A note on two problems in connexion with

graphs. Numerische Mathematik 1, pp. 269-271, 1959.

9) Hribar, M.R., Taylor, V.E., and Boyce D.E. : Termination

第 56回土木計画学研究発表会・講演集

 9

detection for parallel shortest path algorithms, Journal of

Parallel Distributed Computing Vol. 55, pp. 153–165,

1998.

10) Hribar, M.R., Taylor, V.E., Boyce, D.E. : Implementing

parallel shortest path for parallel transportation applications,

Parallel Computing Vol. 27 Pt. 12, pp. 1537-1568, 2001.

11) Chabini, I. and Ganugapati, S. : Parallel Algorithms for

Dynamic Shortest Path Problems. International Transac-

tions in Operational Research Vol. 9 Pt. 3, pp. 279-302,

2002.

12) Jasika, N., Alispahic, N., Elma, A., Ilvana, K., Elma., L.,

and Nosovic N. : Dijkstra's shortest path algorithm serial

and parallel execution performance analysis. 2012 Pro-

ceedings of the 35th International Convention MIPRO, pp.

1811-1815, 2012.

(Received July 31, 2017)

第 56回土木計画学研究発表会・講演集

