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A major earthquake can damage road network disrupting the passenger traffic and supply chain network 

for many months or years. When a commercial center like Tokyo is affected by such natural disaster, it can 

bring serious economic losses both in short and long term. In order to minimize the economic losses, it is 

vital to optimally utilize the active portion of the road network meeting the traffic demand with minimum 

delay. It is well known that a dynamic traffic assignment is NP-hard problem, hence it is essential to develop 

high-performance computing extensions to find nearly optimal solutions for this post-disaster traffic as-

signment. According to our literature survey, no scalable parallel implementations of a suitable traffic as-

signment algorithm are reported in the literature.  

In this paper, we present a preliminary implementation of HPC enhanced day-to-day traffic assignment 

with the details of strategies to attain higher parallel scalability. According to numerical experiments, the 

proposed methods significantly accelerate the runtime of day-to-day traffic assignment and improve the 

scalability of day-to-day traffic assignment. 

 

   Key Words : day-to-day traffic assignment, post disaster route guidance, high performance compu-ting, 

domain decomposition 

 

 

1. INTRODUCTION 
 

Damages to the lifeline networks during a major 

earthquake can bring long lasting disruptions to 

manufacturing and other economic activities leading 

to a secondary disaster. Especially when a commer-

cial center like Tokyo is affected by a major earth-

quake, the resulting secondary disaster can bring 

serious risk to the nation’s economy and even send 

ripples in the global economy. It is hard to say which 

lifeline network plays the most critical role since the 

industries and other economic activities depend on 

these in a rather complicated manner. Road network 

is one of the vital element with a significant influ-

ence on the economic activities.  

Depending on the severity of damages, recovery of 

road network after a major earthquake can take sev-

eral months to years of time. As an example, it has 

taken 21 months to fully recover the road network 

after the 1995 Kobe earthquake1). It is vital to find the 

means to optimally utilize the functioning portion of 

a damaged network to meet the traffic demand with 

minimum traffic delays so that degree of secondary 

economic disasters is minimized. Such post-disaster 

traffic assignment plans should be continuously 

updated according to the progress of recovery of 
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damaged segments.  

It is well known that optimal traffic assignment 

problem is NP-hard problem, hence it is essential to 

choose a suitable algorithm and develop efficient 

high-performance computing extensions to find near 

optimal solutions for this post-disaster traffic as-

signment problem. There exists a number of methods 

to find near optimal traffic assignment2),3),4),5). 

However, according to our literature survey, none of 

these methods have been applied to solve large scale 

problems like Tokyo probably due to the extensive 

computational demand. This emphasizes the need of 

choosing a computationally light algorithm and 

high-performance computing.  

Out of the many methods for near optimal traffic 

assignment, in this study, we use the method of 

day-to-day traffic assignment, which mimics how 

people find shorter routes by changing their routes 

according to experiences on previous days. As one 

would easily guess, this method replans the route of a 

random subset of vehicles according to travel time 

information of the previous simulation, and estimate 

the resulting travel time by simulating the traffic 

after the route replanning. The above process is re-

peated until the total delay time reaches a certain 

convergence criterion. The advantage of this method 

is that the total computation time can be reduced by 

using a light weight macroscopic traffic simulator. 

According to our literature survey, there are re-

ported cases of parallel implementations of dynamic 

traffic assignment3), 4). However, these implementa-

tions do not scale well (i.e. reduce the computation 

time linearly with respect to the number of CPUs 

used) to solve large scale problems in a shorter time 

by utilizing high-performance computer clusters or 

super computers. The current best implementation 

scales up to 128 CPUs, and takes around 1 hour and 

30 minutes6) for a single day iteration. According to 

our estimations, it would take more than a month to 

find a solution for New York network. Though sev-

eral months period is acceptable for regular traffic 

assignment problems, it is too long for post-disaster 

recovery problem. For practical applications in post 

disaster recovery, the total computation time has to 

be at least reduce to a week so that traffic assignment 

plans can be regularly updated with the progress of 

the recovery of damages. Hence, a better scalable 

HPC enhanced day-to-day traffic assignment must be 

implemented for solving post disaster traffic as-

signment problems. 

In this paper, we present details of a preliminary 

implementation of a scalable parallel day-to-day 

traffic assignment method with the aim of applica-

tions in post disaster traffic assignment of large 

networks. Strategies for improving the scalability of 

each component of day-to-day traffic assignment is 

presented, and improvements in scalability are 

demonstrated with examples. Also, the remaining 

bottlenecks are discussed and possible remedies to 

improve their scalability are presented.   

The rest of this paper is organized as follows. The 

second section presents a short introduction to the 

method of day-to-day traffic assignment. The third 

section presents HPC enhancement of day-to-day 

traffic assignment. The fourth section presents the 

numerical experiment of HPC enhancement. 

 

 

2. DAY-TO-DAY TRAFFIC ASSIGNMENT 
 

For the sake of completeness, we present an 

overview of the day-to-day traffic assignment algo-

rithm. Day-to-day traffic assignment mimics how 

drivers adjust their route choices to reduce their 

travel time or reduce their delay time based on their 

day-to-day travel experiences.  

In this paper, a macroscopic traffic simulator is 

used in each iteration of day-to-day traffic simulator 

due to the cost-effectiveness. Each link (road seg-

ment) in macroscopic traffic simulator keeps a list of 

vehicles passing through the link. Each element in 

the links’ vehicle list stores information pertaining to 

a vehicle such as a vehicle id, entry time to the link 

and departure time from the link.  

The main components involved in day-to-day 

traffic assignment are shown in Fig.1. The main 5 

steps involved are briefly explained below. 

1. Randomly select a set of vehicles: If the all 

the vehicles are not yet included, introduce a 

certain percentage of vehicles from the input 

origin-destination pairs (OD pairs). Also, 

choose a random subset of the vehicles al-

ready introduced to the system. 

 
Fig.1 An overview of serial day-to-day traffic assignment.  
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2. Path finding:  Find the paths with minimum 

travel time, based on the previous travel time 

estimated with step 4 of previous iterations,  

for the set of vehicles selected in the above 

step. 

3. Loading vehicles: The randomly selected 

vehicles in step 1 are assigned to the vehicle 

lists of the links along the corresponding 

paths. The entry time and the departure time 

of newly assigned vehicles are set to infinity. 

4. Updating vehicle trajectory: Simulate traffic 

flow using a suitable link delay model for 

handling congestions  Store the travel time 

information of each link at suitable time in-

terval so that travel time can be estimated in 

step 2 of next day iteration. 

5. Stop criterion: Evaluate the total delay, and 

decide to terminate iterations or return to step 

1 and continue iterations based on a suitable 

criterion. 

The day-to-day traffic assignment’s result depends 

on random parameters like in which order the vehi-

cles are introduced, etc. Depending on these random 

parameters we may arrive at different solutions. It is 

best to conduct many simulations with different 

random parameters and choose a suitable stable so-

lution. By the stability of the solutions can be tested 

in several ways. One prominent way is to give a 

random variation, within a practical time range, to 

the departure time of the vehicles and estimate the 

resulting traffic condition by simulating traffic flow. 

For this simulation for stability testing, it is better to 

use a microscopic traffic simulator so that most of 

the affecting factors can be taken into account. A 

criterion like the percentage increase of delay time 

can be used to test whether the traffic condition is not 

significantly affected by the random variations. 

 

 

3. HPC ENHANCEMENT 
As mentioned in the introduction, the post-disaster 

traffic assignment could not be solved unless a 

scalable HPC extension is developed. The 

post-disaster traffic assignment is one of an NP-hard 

problem. Therefore, we have to utilize cutting edge 

super computers such as K-computer to solve 

post-disaster traffic assignment problem for a city 

like Tokyo.  

Most of the high-performance computing re-

sources like computer clusters and super computers 

consist of a large number of computers connected 

with hierarchical layers of high-speed network 

hardware. Each computer, referred as computing 

nodes, may have multiple multi-core CPUs which 

share the memory of the corresponding computer. 

However, a CPU core of a given computer cannot 

directly access the memory of another computer, 

hence the name distributed memory systems. More 

accurately these are a hybrid system with shared 

memory within each node and distributed memory 

among computing nodes. 

The communications between computer systems 

are made by using high-performance interconnect. A 

distributed-memory system is more scalable com-

paring to a shared-memory system. 

To utilize a distributed-memory system, the work 

and data involved in solving a problem must be split 

into parts and assign to individual CPU, just as a 

human manager assign different works his support-

ing staff. Since a CPU in one node cannot access the 

memory of another commuting node, the work and 

data have to be split so that each processor can do 

some work independently with the data assigned to 

it. In order to solve the whole problem CPUs, have to 

exchange necessary data using the high-speed net-

work. A library called Message Passing Interface 

(MPI) is widely used for this data exchange.  In order 

to attain a good scalability (i.e. reduce the computa-

tion time linearly with respect the number of CPUs 

used), it is important to assign nearly equal work load 

to each CPU and maximize the ratio between the 

time for computation and data exchange. 

   

(a)  Example of road network’s bidirec- 

tional graph 

(b)  Example of decomposed undirected  

graph 

(c)  Example of decomposed bidirec- 

tional graph. 

Fig.2 Steps for partitioning a bidirectional graph 

 

Collapse 

Decompose Map 
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(1) Domain decomposition scheme 

In order to assign each CPU core (or MPI process) 

an equal work load which can be independently 

completed with the assigned data, the network is 

partitioned into contiguous sub-networks. We use 

the graph partitioning library called METIS7) for 

partitioning the network. In order to maintain the 

continuity, each CPU core has to exchange infor-

mation incoming/outgoing vehicles to/from its sub-

domain with the CPU cores owning the neighboring 

subdomains. The partitioning scheme used in METIS 

minimizes the number of links intersected by the 

boundaries of subdomains, thereby minimizing the 

volume of data communicated. 

There are two main partitioning scheme, 

node-based partitioning, and link-based partitioning. 

In node-based partitioning, the workload of each 

node can be estimated. Therefore, regions which 

have an equal summation of nodes’ workload can be 

formed. Likewise, the workload of each link is ap-

proximated to be a number of passing-though vehi-

cles in link-based partitioning. Therefore, regions 

which have an equal summation of links’ workload 

can be formed. 

Figure 2 illustrates the main steps involved in 

domain decomposition. For simplicity, we use a 

simple network and consider decomposing to 2 CPU 

cores. First, the input bi-directional graph in Fig.2(a) 

is collapsed into the undirected graph and necessary 

related quantities are properly aggregated. Currently, 

each link of the undirected graph is assigned the 

summation of the number of vehicles passing the 

corresponding bi-directional links. Assuming the 

computation time for each link is proportional to the 

number of vehicles passing through, this number of 

vehicles is used as a weight in partitioning with 

METIS so that each subdomain has an equal amount 

of work load. A partitioned collapsed network is 

shown in Fig.2(b). Mapping the partition data back 

to the original bi-directional graph we obtain the 

partitioned network for the day-to-day simulations 

(see Fig.2(c)). A partitioned real traffic network is 

shown in Fig.3.; the colors represent the owner MPI 

rank id. 

If the example road network is decomposed 

without collapsing, then it produces an overlapping 

graph network like the one shown in Fig.4. Such 

overlapping not only make the data exchange among 

CPU cores quite complicated but also make it diffi-

cult use some strategies to reduce or hide the data 

communication time among MPI processes. 

If a domain decomposition guarantees to produce 

the continuous and non-overlapping partition, then 

the communication hiding technique can be em-

ployed. The communication hiding technique is to 

overlap the analysis of intra links with the analysis of 

inter links. To apply the communication hiding to the 

day-to-day traffic assignment, the links in decom-

posed partitions are categorized into 3 groups in-

cluding “to_receive_link”, “to_send_links”, and 

 
Fig.5 Communication pattern 

 

 
Fig.3 Example of decomposed practical road network. 

 

 

Fig.4 Example of over-lapping graphs 
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“in-ner_most_links”. The example of the commu-

nication table is illustrated in Fig.5. The communi-

cation hiding technique is summarized as follows: 

1. The group of “to_send_links” (blue solid ar-

rows) are analyzed and then the messages of 

this group are posted to neighbors. The dotted 

black arrows in Fig.5 represent the messages 

which are posted to neighbors. 

2. While we are waiting for the message from 

neighbors, we analyze the group of 

“in-ner_most_links” (black solid arrows). 

3. The messages from neighbors are finalized 

and then the group of “to_receive_links” 

(dotted green arrow) are analyzed. 

If we follow these steps, we do useful computa-

tions while data communication is going on, thereby 

completely hiding the time spent for communication. 

This communication hiding is a widely used standard 

technique in parallel computing. 

As we discussed earlier, the continuity of the 

problem must be maintained by using ghost copies. 

In the day-to-day traffic assignment, the group of 

“to_receive_links” behaves as ghost copies. Ac-

cording to Fig.5, the group of “to_receive_links” is 

the same group of “to_send_links” but they belong to 

different processors. 

 

(2) Parallelized day-to-day traffic assignment 

 

Figure 6 illustrates the parallelized day-to-day 

traffic assignment. The dotted-arrows indicate the 

communication between processors. The unidirec-

tional dotted-arrows represent one-way communica-

tion, and the bi-directional dotted-arrows represent 

two-way communication. The thick dotted arrows 

indicate a large number of communications of dot-

ted-arrows indicates the number of communication 

messages. 

 

(3) Path finding 

We use the well-known Dijkstra’s algorithm8) for 

path finding. It is very difficult to parallelize9),10),11),12) 

since it is an inherently sequential algorithm. The 

worst case complexity of this algorithm is  

where  is the number of vertices (nodes). There-

fore, node-based partitioning is the best to distribute 

the workload to each processor. 

Because of the inherent serial nature of Dijkstra's 

algorithm, it is difficult to implement either shared or 

distributed memory parallel code with a good scala-

bility9),10),11),12). According to Jasika et al. 12) the av-

erage speed-up ratio of shared-memory parallel 

Dijkstra’s algorithm is only 10%. Though there are 

several studies on distributed-memory parallel im-

plementations of Dijkstra’s algorithm9),10),11) , none of 

those are scalable. The main reason for the limited 

scalability is the need of a large number of commu-

nications and difficulty in assigning equal work load 

to each MPI process. 

Due to the inherent difficulties of scalable parallel 

implementation of Dijkstra's algorithm, we use em-

barrassingly parallel computation model for path 

finding for a large number of vehicles. In other 

words, instead of making the path finding the task of 

a vehicle parallel, we use only one MPI process for 

finding a path for a given vehicle. The only disad-

vantage of this is the need of gathering previous 

iterations' travel time information of the whole net-

work to each MPI process. This demands a some-

what large amount of memory. However, it is not a 

serious bottleneck due to the large memory in mod-

ern compute nodes and the possibility of reducing the 

memory demand with some data compressing ap-

proaches. To distribute the workload for the pro-

posed parallel path finding, each processor is as-

signed to find paths for an equal number of vehicles. 

After path finding process, each processor synchro-

nizes the found path with every processor. Instead of 

calling embarrassingly parallel path finding, we call 

this approach synchronized-distributed-memory 

parallel path finding since synchronization of pre-

vious iteration’s travel time and distributing the path 

found by a given MPI process to rest of all the MPI 

processes are parts of path finding for a day-to-day 

algorithm. 

As an added benefit of above synchronization of 

paths, vehicles loading can be conducted without the 

need of any MPI communications. However, if we 

use a parallel implementation of path finding like the 

algorithm by Jasika et al.12), the vehicle loading in-

volves a large number of MPI communications 

which can degenerate the scalability. 

In the next section, the proposed path finding is 

compared with the parallel path finding algorithm by 

Jasika et al.12). As it will be shown, the use of parallel 

 
Fig.6 Flowchart of parallelized day-to-day traffic assignment. 
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path finding involves an unknown large number of 

MPI communications and assigning nearly equal 

loads to each MPI process is quite difficult. On the 

other hand, the proposed path finding approach in-

volves only 4 collective MPI commiunications and it 

is possible to assign nearly equal work load to each 

MPI process, hence producing higher scalability.   

The flowchart of the day-to-day traffic assignment 

after applying, the synchronized-distributed-memory 

parallel path finding is illustrated in Fig.9. 

 

(4) Active sub-network domain decomposition 

According to preliminary simulations of a real 

road network, vehicles move along only some links 

(active links) in each iteration of day-to-day traffic 

assignment; at least during the first several daily 

iterations. Instead of partitioning the whole network, 

portioning only the active network has two ad-

vantages. The first is avoiding bad partitioning due to 

the use of small weights for links with no traffic; 

METIS does not accept zero as a weight. The second 

the large reduction of total computation time by 

eliminating the number of unnecessary memory ac-

cess to main memory.  

Figure 7 illustrates the flowchart of parallelized 

day-to-day traffic assignment with the active 

sub-network. After loading vehicle algorithm, the 

inactive links can be easily identified 

The active sub-network is created by picking only 

active links from a full network. Instead of decom-

posing the full network, the active sub-network is 

decomposed and used in updating vehicle algo-

rithms. According to Fig.7, after domain decompo-

sition scheme, only updating vehicle trajectory al-

gorithm uses the partition information. Hence, the 

link-based partition is used to equally distribute the 

workload for accelerating the updating vehicle tra-

jectory algorithm. The result of active sub-network 

domain decomposition is illustrated Fig.8. 

The active sub-network accelerates the runtime of 

updating vehicle trajectory algorithm significantly 

because it makes the program more cache-friendly. 

The number of accessing unnecessary memory is 

eliminated. Also, the quality of partitions is im-

proved because all partitions contain only the links 

that have traffic flow. 

 

 

4. NUMERICAL EXPERIMENTS 

 
In this section, we demonstrate the scalability of 

the parallel computing strategies mentioned in the 

previous section. The advantages communication 

hiding in scalability is not presented due to space 

limitations. All the numerical examples use the 

network shown in Fig.3; consists of 152,464 links 

and 37,511 nodes. 

 

(1) Distributed-memory parallel path finding 

versus synchronized-distributed-memory 

parallel path finding 

In order to demonstrate the advantage of using the 

proposed synchronized-distributed-memory parallel 

path finding (see section 3(3)), its scalability is 

compared with that of the distributed-memory par-

allel Dijkstra’s algorithm by Hribar et al9). 

For the sake of completeness, first the distribut-

ed-memory parallel Dijkstra’s algorithm9) is briefly 

summarized as follows: 

1. Place all vehicles’ source in local subnetwork 

into local queue 

2. Find the shortest path for all source in local 

queue 

3. Send updated boundary node labels to 

neighbors 

4. Receive boundary node labels from neighbors 

and place in queue 

 

 
Fig.7 Flowchart of parallelized day-to-day traffic assignment 

with active sub-network domain decomposition. 

 

 
Fig.8 Example of decomposed active sub-network 
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5. Perform global operation for termination de-

tection. If the algorithm is not terminated, 

then repeat step 2 to step 4 

In this comparison, 5,000 vehicles with random 

OD pairs are generated. A workstation consisting 

two Intel Xeon CPUs (E5-2697 v2 @ 2.70GHz) with 

256 GB memory is used; a total of 24 CPU cores. 

The scalability of distributed-memory parallel path 

finding is quantitatively compared with the scalabil-

ity of synchronized-distributed-memory parallel path 

finding in Fig.11. As is seen the scalability of syn-

chronized-distributed-memory is much better com-

pared with the distributed-memory parallel path 

finding.  

The reason for the poor scalability of a distribut-

ed-memory parallel path finding is the involvement 

of a large number of communication with an unpre-

dictable pattern of destinations. The example of 

communication pattern of the distributed-memory 

parallel path finding is illustrated in Fig.9. The bi-

directional dotted-arrow represent the communica-

tion messages. Each partition can exchange the up-

dated node labels with their neighbors in each itera-

tion. In some iteration, it is possible that there are 

inactive partitions. Therefore, the communication 

pattern is not predictable. To explain why it involves 

 
Fig.11 Scalability of parallel path finding algorithms 

 

Table 1  Execution time of parallel path finding algorithm 

 

#processors 

Runtime of  

case 1 (s) 

Runtime of 

 case 2 (s) Ratio 

2 9135.34 39.64 230.5 

4 6429.58 25.24 254.764 

8 2949.18 10.68 276.14 

16 2269.82 5.94312 381.924 

24 2127.69 4.15 512.696 

Case 1: distributed-memory parall path finding 

Case 2: synchronized-distributed-memory parallel 

              path finding 

Ratio: 

edsynchroniz

ddistribute

Runtime

Runtime
 

 
Fig.12 Scalability of synchronized-distributed-memory  

                 parallel path finding with large scale problem 

 

Table 2   Execution time of synchronized-distributed-memory 

   parallel path finding with large scale problem 

 

#processors 

Runtime of synchro-

nized-distributed-memory 

path finding (s) Speed-up 

8 2334.6 1 

64 294.5 7.93 

256 77.94 29.95 

512 39.6687 58.85 

 

 

 
Fig.9  Communication pattern in a distributed-memory  

parallel path finding 

 

 
Fig.10   Communication pattern in a distributed-memory  

parallel path finding 
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an unpredictable number of communications, refer  

Fig.10. Here, each partition is represented by dif-

ferent colors, and we consider only one vehicle with 

the path shown in red color. In this particular case, it 

needs at least 5 iterations to finish, and the exact 

number of iterations may be larger. In the practical 

problem, there are more partitions and much more 

vehicles leading to an unpredictable number of 

communication. Further, the scalability of the syn-

chronized-distributed-memory parallel path finding 

is studied with large scale problem on K computer. In 

this experiment, 500,000 vehicles with random OD 

pairs. The result shown in Fig.12 indicates that the 

scalability almost reaches the ideal case. The 

wall-clock execution times of both experiments are 

depicted in Table 1 and Table 2. In addition to the 

scalability, the synchronized-distributed-memory 

parallel path finding is much faster than the distrib-

uted-memory parallel path finding when the number 

of MPI processors is increasing. Both these signifi-

cantly contribute to solving post-disaster traffic as-

signment problem for large networks. 

 

(2) Full network domain decomposition scheme 

versus active sub-network domain decom-

position scheme 

The objective of this set of simulations is to 

demonstrate the advantages of using only active 

network proposed in section 3(4). In this experiment, 

200,000 vehicles with random OD pairs are used. 

The scalability of distributed-memory parallel up-

dating vehicle trajectory was studied with two do-

main decomposition schemes (full domain decom-

position and active sub-network domain decomposi-

tion). The decomposed full domain is illustrated in 

Fig.3 and the decomposed active sub-network do-

main is illustrated in Fig.8. The full network consists 

of 152,464 links and 37,511 nodes, while the active 

network consists of 22,404 links and 37,511 nodes.  

As shown in Fig.13 the scalability of distribut-

ed-memory parallel updating trajectory algorithm is 

significantly higher when the active sub-network 

domain decomposition is used. Moreover, according 

to the wall-clock execution times given in Table 3 the 

execution time of the updating vehicle trajectory 

algorithm with active sub-network domain decom-

position is 20 times faster than the updating vehicle 

trajectory algorithm with full network domain de-

composition. 

 

 

5. CONCLUSION AND FUTURE 

RESEARCH 
 

In this paper, we presented a preliminary imple-

mentation of HPC enhancements of day-to-day traf-

fic assignment. We propose a synchro-

nized-distributed-memory parallel path finding 

scheme which significantly improves the scalability 

of path finding. Further, it is demonstrated that using 

only the active sub-network the scalability of up-

dating trajectory algorithm is significantly improved. 

Both these strategies significantly reduce the execu-

tion time of day-to-day traffic assignment moving us 

closer to use day-to-day traffic assignment to find the 

user equilibrium state for large scale road networks.   

In the future, the scalability of updating vehicle 

trajectory is planned to be further improved by using 

the dynamic load balancing technique. Also, a 

mesoscopic traffic simulator might be used instead 

of the macroscopic traffic simulator because it would 

be easier to apply sophisticated traffic models such 

as traffic light control model or lane changing model. 
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