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This paper aims at evaluating the impacts of Urban Consolidation Centers (UCC) for sustainable city lo-
gistics using Adaptive Dynamic Programming (ADP) based multi-agent simulation. ADP based learning 
performs better in the accuracy, stability, and adaptability of the outcomes than other learning techniques 
when agents need to interact in constantly changing environment, such as city logistics. The ADP models 
for the freight carrier and UCC operator as the learning agents have been developed. Economic efficiency 
and environment friendliness criteria were used to evaluate the sustainability of UCC. The results proved 
that the implementation of UCC as a sustainable city logistics scheme is efficient in reducing 8% of the 
total delivery cost for freight carrier, and reducing 36% of the total emissions released to the environment. 
It is also showed that the use of learning agents is essential to demonstrate the successful implementation 
of the UCC, as it is only in the learning-based simulation, UCC operator could get a profit. Our simulation 
analysis also confirmed that as compared to widely used reinforced learning algorithms (Q-learning), ADP 
brings in the increased accuracy, stability and adaptability to the evaluations’ results of UCC.  
   Key Words : sustainability, city logistics, urban consolidation centre, adaptive dynamic programming, 

multi-agent system 
 
 

1. INTRODUCTION 
 

Sustainable city logistics has become an important 
issue in urban and transportation planning due to high 
population density in urban areas as well as due to the 
social, economic, and environmental problems asso-
ciated with it. City logistics is defined as the process 
of fully optimizing the logistics and transport activi-
ties with the support of advanced information sys-
tems in urban areas considering the traffic environ-
ment, the traffic congestion, the traffic safety, and the 
energy savings within the framework of a market 
economy1). The harmonization of economic effi-
ciency and environmental friendliness in city logis-
tics is essential for ensuring sustainable development 
in urban areas2), which faces two difficult problems. 
First is the efficiency of goods delivery within the un-
certain environment (due to the parking issues, traffic 
congestion, and other restrictions in the urban area) 

that directly effects the operational cost as well as the 
action selection in presence of optional solutions or 
policies. The second issue is the involvement of mul-
tiple agents in city logistics system, such as freight 
carriers, shippers, customers, and administrator. All 
of these key stakeholders in urban freight transport 
have their own specific objectives and tend to behave 
in a different manner to any urban freight policy3). 
These stakeholders also interact and influence each 
other in the city logistics environment, which makes 
the environment unpredictable. Therefore, the main 
challenge for the city logistics is to provide a sustain-
able urban freight transportation while considering 
multi-agent problems within the uncertain environ-
ment.  

In order to achieve theses aims, numerous city lo-
gistics initiatives have been proposed and imple-
mented in several cities, including the Urban Consol-
idation Centers (UCC)4). It is important to evaluate 
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the city logistics policies before they can be effec-
tively deployed due to their manifold implications on 
different city logistics stakeholders5). For that pur-
pose, decision support tools (DST) are needed to help 
public decision makers and practitioners to make de-
cisions, acceptable to all parties. These DSTs are 
mainly based on modeling, optimization, simulation, 
and evaluation procedures.  

There has been many attempts to develop multi-
agent simulations to analyze decision making process 
of various stakeholders in city logistics, but almost all 
of them rely on Q-learning6,7,8). However, based on 
previous research experiences, which will be de-
scribed in more detail in the next section, it has been 
found that ADP based learning performs better in the 
accuracy of the outcomes when agents need to inter-
act in uncertain environment, such as city logistics. 
Therefore, in order to have an accurate evaluation of 
the UCC, an ADP-based multi-agent simulation has 
also been developed, which can be used as a DST to 
achieve better outcomes in the decision process of de-
signing and implementation of sustainable city logis-
tics policies. 
 
 
2. LITERATURE REVIEW 
 
(1) Evaluation models for evaluating city logistics 
measures  

Multi-agent systems (MAS) based on the rein-
forced learning (RL) algorithms have been used for 
evaluating the behavior of stakeholders, who are af-
fected by the implementation of a city logistics pol-
icy. In MAS environment, multiple agents come to-
gether and interact, cooperate, coordinate, and nego-
tiate with each other to reach their intended objec-
tives. Various other city logistics policies have been 
evaluated using MAS with Q-learning such as load 
factor control and road pricing6), e-Commerce7), truck 
ban and motorway toll discounts8). These researches 
used Q-learning to model evolving behavior of the 
key stakeholders, namely the carriers, shippers, ad-
ministrator, and residents relating to urban freight 
transport. The MAS with Q-learning algorithms have 
also been used to evaluate the dynamic usage of 
UCC9). The results indicated that the main policy 
measures that contribute to the successful functioning 
of the UCC are road pricing, operational subsidies 
and the application of time windows. Another study 
evaluated the Joint Delivery System (JDS) with park-
ing restrictions using MAS with Q-learning10) and the 
results showed that JDS with UCC and car parking 
management have the potential for improving envi-
ronmental issues related with the urban freight. MAS 
with Monte Carlo Method was used by Taniguchi et. 
al.11) to model the effects of city logistics schemes 

with simulation model based on the dynamic vehicle 
routing and scheduling problem. The results indi-
cated that implementing a truck ban in the environ-
mentally damaged areas and discounting motorway 
tolls in the urban motorway network will have a large 
environmental impact, resulting in an acceptable en-
vironment for all stakeholders.   

It can be observed that most of the MAS research 
in city logistics use Q-learning to represent the deci-
sion making of the agents. A comparative study con-
ducted by Fagan and Meier12), proved that ADP per-
forms particularly well on the criteria of accuracy, 
adaptability and stability in multi-agent environment 
compared to other RL algorithms (i.e., Q-learning 
and Sarsa). Similar to their area of application (intel-
ligence traffic systems), the city logistics environ-
ment also presents a very dynamic and uncertain en-
vironment, therefore, it can be expected that the ADP 
can improve the quality of the multi-agent simula-
tions in city logistics as compared to the ones, which 
use Q-learning. 
 
(2) ADP for evaluating city logistics measures 

Hardin13), concluded that the learning and adapta-
tion make the system more robust to imperfect 
knowledge of the environment. ADP is a learning 
model in RL part that can be used in the simulation 
field and optimal control field. As an optimal control 
tool, Zhang, et al.,14) has described that ADP scheme 
is suitable for applications to the systems with strong 
coupling, strong nonlinearity, and high complexity. It 
has also been concluded that the ADP is capable to 
deal with uncertainty15). ADP has been widely imple-
mented at the confluence of control problem16), intel-
ligence traffic systems12), and robotics17). However, 
none of these previous researches has used the ADP 
in the multi-agent simulation field, particularly in the 
area of city logistics, which represents a highly un-
certain environment. Therefore, in this study, we will 
develop and use the ADP based multi-agent simula-
tion to evaluate the UCC for sustainable city logistics 
as illustrated in the general research framework 
(Fig.1). 

 

 
Fig. 1 General research framework 
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3. FRAMEWORK OF THE LEARNING 
PROCESS 

Fig. 2 shows the learning process framework of the 
models developed in this research. The framework 
consists of two sub-models, which are; 1) learning 
model for stakeholders using ADP and Q-learning, 
and 2) the model for vehicle routing problem with 
soft-time window (VRPSTW). VRPSTW model cal-
culates the delivery cost for each freight carrier and 
UCC operator. The two learning models (ADP and 
Q-learning) have the same function, i.e. to evaluate 
the behavior (action) of stakeholders by updating as 
well as learning based on the received (reward) value 
from the interaction with the environment (calculated 
by VRPSTW), and to take an action. 

 

 
Fig. 2 Framework of the learning process 

 
(1) MAS-ADP models for the learning agents 

Recognizing agent’s objective is important in 
modeling its learning behavior. Considering, freight 
carrier as a company that specializes in the last mile 
delivery of goods from depot to the customers, its ob-
jective is set to minimize the total cost of delivering 
goods to customers as equation (1), which is calcu-
lated by the VRPSTW. For more details on the 
VRPSTW formulation and solution algorithms, read-
ers are referred to Qureshi, et al.18). 
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The UCC operator has been considered as a private 

or public company that consolidates and delivers the 
goods from the UCC to customers. Therefore, the 
UCC operator’s objective is to maximize the profit, 
defined by equations (2) to (4). 
 
𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸⌊𝐵𝐵𝑢𝑢(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)⌋ = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 ∗ 𝐸𝐸�𝐷𝐷𝑓𝑓(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)� − 𝐸𝐸[𝑑𝑑𝑢𝑢]

   (2) 
Subject to  

0 ≤ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 ≤ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚  (3) 
 

0 ≤ 𝐸𝐸[𝐷𝐷(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)] ≤ 𝐷𝐷𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚  (4) 

 
Where 𝐸𝐸⌊𝐵𝐵(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)⌋ is the expected profit of UCC 
operator based on the proposed price (UCCfee) by the 
UCC operator; 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum price 
that the UCC operator can propose, 𝐸𝐸�𝐷𝐷𝑓𝑓(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)� 
is the expected demand received from freight carrier 
f, 𝐷𝐷𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum receivable demand from 
freight carrier f, and 𝐸𝐸[𝑑𝑑𝑢𝑢] is the expected delivery 
cost for the UCC operator u to deliver goods to the 
customer (calculated by VRPSTW model).   

The MAS-ADP algorithm for updating the utility 
value function for freight carrier and UCC operator is 
formulated as in equation (5):  

 
( ) )(,),()( 1,,,1,,,,

1

++∑
+

+← tlala
s

tlatlatlalatlatlalatlala sVassTasRsV
t

γ

(5) 
 

where 𝑉𝑉𝑙𝑙𝑚𝑚(𝑠𝑠𝑓𝑓,𝑡𝑡) is the expected delivery cost obtained 
by the learning agents la (freight carrier and UCC op-
erator) when the agent chooses an action 𝑀𝑀𝑙𝑙𝑚𝑚,𝑡𝑡 in the 
state 𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡 . 𝑅𝑅𝑙𝑙𝑚𝑚(𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡 ,𝑀𝑀𝑙𝑙𝑚𝑚,𝑡𝑡)  is the expected reward 
when action 𝑀𝑀𝑙𝑙𝑚𝑚,𝑡𝑡  is taken from state 𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡 . The pa-
rameter 𝛾𝛾𝑙𝑙𝑚𝑚 is the discount rate for the learning agent 
la, which is set to be a number between 0 < 𝛾𝛾 < 1. 
A discount rate of 1 means that the agent will con-
sider the long term reward, while 0 means that it only 
considers the current rewards. 𝑉𝑉𝑙𝑙𝑚𝑚(𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡+1) is the ex-
pected delivery cost received by the learning agents 
la in the next state 𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡+1. The learning agents will 
update the expected reward 𝑅𝑅𝑙𝑙𝑚𝑚(𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡 ,𝑀𝑀𝑙𝑙𝑚𝑚,𝑡𝑡) and ex-
pected transfer probability 𝑇𝑇𝑙𝑙𝑚𝑚(𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡+1�𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡 ,𝑀𝑀𝑙𝑙𝑚𝑚,𝑡𝑡)  
using the equation (6) and equation (7) below, 
 

)),(),((),(),( ,,,,,,,, tlatlalatlatlalalatlatlalatlatlala asTastasTasT −+← α  

(6) 
)),(),((),(),( ,,,,,,,, tlatlalatlatlalalatlatlalatlatlala asRasrasRasR −+← α  

(7) 
Here, 𝛼𝛼 is the learning rate of a learning agent, which 
is set to be a number between 0 < 𝛼𝛼 < 1. The learn-
ing rate of 1 means that the agent will consider the 
most current information while 0 means agent does 
not learn at all. 𝑟𝑟𝑙𝑙𝑚𝑚(𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡 ,𝑀𝑀𝑙𝑙𝑚𝑚,𝑡𝑡) is the immediate re-
ward, and 𝑡𝑡𝑙𝑙𝑚𝑚(𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡 ,𝑀𝑀𝑙𝑙𝑚𝑚,𝑡𝑡)  is the immediate transfer 
obtained by the learning agents la based on the pos-
sible actions 𝑀𝑀𝑙𝑙𝑚𝑚,𝑡𝑡.  

The first learning agent, freight carrier (i.e. la = f ) 
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can choose two possible actions, viz., direct delivery 
(DD) or JDS, with corresponding immediate rewards 
given by equation (8) and equation (9), respectively.  

 

ktftftftff pOasr ,,,,, ),( +=                  (8) 

 

tftftff UCCfeeasr ,,, ),( =              (9) 
 
where 𝑂𝑂𝑓𝑓,𝑡𝑡is the operational delivery cost (calculated 
by VRPSTW model) when freight carrier f decides to 
deliver goods directly to its customer (i.e. 𝑀𝑀𝑓𝑓,𝑡𝑡 = DD) 
on time t, and 𝑝𝑝𝑓𝑓,𝑡𝑡,𝑘𝑘  is equal to ∑

=Ci
ip which is the to-

tal additional parking cost for a freight carrier  f to be 
paid to serve customers 𝑖𝑖 ∈ 𝑈𝑈. The set of customers 
is represented by C. The second possibility of imme-
diate reward (equation (9)) that freight carrier can 
possibly receive is the consequence of choosing the 
joint delivery system with UCC (i.e. 𝑀𝑀𝑓𝑓,𝑡𝑡 = JDS). It is 
obtained by multiplying the UCC fee offered by UCC 
operator with the total number of demand (parcels) 
that freight carrier gives to the UCC operator.  

The second learning agent, the UCC operator (i.e. 
la = u) has three options of actions, which are price 
up, flat price, and price down. The immediate reward 
of the UCC operator will be converted to percentage 
profit and compared with the desired percentage 
profit margin which is assumed as 9% in this re-
search. The UCC operator will make decision (𝑀𝑀𝑢𝑢,𝑡𝑡 ) 
based on the rules explained by equation 10: 

 

𝑀𝑀𝑢𝑢,𝑡𝑡 = �
𝑃𝑃𝑟𝑟𝑖𝑖𝑃𝑃𝑈𝑈 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝑖𝑖𝑈𝑈 𝑟𝑟𝑢𝑢�𝑠𝑠𝑢𝑢,𝑡𝑡, 𝑀𝑀𝑢𝑢,𝑡𝑡� < 0%         

𝑃𝑃𝑟𝑟𝑖𝑖𝑃𝑃𝑈𝑈 𝑈𝑈𝑝𝑝, 𝑖𝑖𝑈𝑈 𝑟𝑟𝑢𝑢�𝑠𝑠𝑢𝑢,𝑡𝑡, 𝑀𝑀𝑢𝑢,𝑡𝑡� > 9%               

𝐹𝐹𝐹𝐹𝑀𝑀𝑡𝑡 𝑃𝑃𝑟𝑟𝑖𝑖𝑃𝑃𝑈𝑈, 𝑖𝑖𝑈𝑈 0% ≤ 𝑟𝑟𝑢𝑢�𝑠𝑠𝑢𝑢,𝑡𝑡, 𝑀𝑀𝑢𝑢,𝑡𝑡� ≤ 9%

       
(10) 

 
Depending on the selected action, the UCC opera-

tor will update the immediate profits as one of the 
equations (11) to (13). 

 
utttutuu dDUCCfeeUpasr −= )*(),( ,,
        (11) 

utttutuu dDUCCfeeFlatasr −= )*(),( ,,
         (12) 

utttutuu dDUCCfeeDownasr −= )*(),( ,,
          (13) 

 
where tUCCfeeUp , tUCCfeeFlat and 

tUCCfeeDown  are the UCC prices offered by the 
UCC operator to freight carrier in state su,t, Dt is the 
demand received by the UCC operator in state su,t, du 
is the operational delivery cost for the UCC operator 
(calculated by VRPSTW model).    
 
 

(2) MAS Q-learning models for the learning 
agents  

As mentioned earlier, Q-learning-based MAS 
has been extensively used in the evaluation of the 
city logistics policies (including the UCC) and as 
one of the objectives of this research is to come 
up with a more accurate evaluation tool (i.e. the 
ADP-based MAS), we give a brief description of 
the Q-learning19) before comparing the results of 
the two MAS models. The action-value function 
for each learning agent la is updated using equa-
tion (14) in Q-learning, which is equivalent to 
equation (5) in ADP.  

 





 ++−← ++∈+

),(min),()1(),( 1,1,,,,,,
1,

tlatlalaAatlalatlatlalalatlatla asQrasQasQ
latla

γαα

(14) 
 

where 𝑄𝑄(𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡 ,𝑀𝑀𝑙𝑙𝑚𝑚,𝑡𝑡) is the expected delivery cost ob-
tained by the learning agent la when it chooses an ac-
tion 𝑀𝑀𝑙𝑙𝑚𝑚,𝑡𝑡  in state 𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡 . The immediate reward is 
given by 𝑟𝑟𝑙𝑙𝑚𝑚,𝑡𝑡 when action 𝑀𝑀𝑙𝑙𝑚𝑚,𝑡𝑡 is taken in state 𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡 ;

),(min 1,1,
1,

++∈+
tlatlalaAa

asQ
latla

is the minimum expected de-

livery cost received by the learning agent la in the 
next state 𝑠𝑠𝑙𝑙𝑚𝑚,𝑡𝑡+1  for all possible actions. As men-
tioned earlier, in this research, there are two possible 
actions for freight carrier f (i.e. JDS with UCC, and 
DD). Therefore, the immediate delivery cost 𝑟𝑟𝑙𝑙𝑚𝑚,𝑡𝑡 that 
a freight carrier will receive will be expressed as 
equation (8) and equation (9) (similar to the ADP). 
Similarly, the 𝑟𝑟𝑙𝑙𝑚𝑚,𝑡𝑡 value for the UCC operator (la = 
u) will also be calculated using equations (11) to (13) 
(same as ADP).  It can be emphasized here that the 
main difference between the ADP and the Q-learning 
is the update function equation (5) vs. equation (14).  
 
(3) Environmental emissions model 

Environmental emissions are considered as the 
negative effect of city logistics. In order to evaluate 
the benefit of using UCC for the environment, we cal-
culated the carbon di-oxide (CO2), oxides of nitrogen 
(NOx) and suspended particulate matter (SPM) pro-
duced by the trucks. These three environmental emis-
sions are estimated using equation (15) to (17)20).  

 
𝑈𝑈𝑂𝑂2 = 𝐹𝐹𝑖𝑖𝑖𝑖(278.448 + 0.048059𝑣𝑣𝑖𝑖𝑖𝑖2 − 5.1227𝑣𝑣𝑖𝑖𝑖𝑖 + 2347.1

𝑣𝑣𝑖𝑖𝑖𝑖
   (15) 

 
𝑁𝑁𝑂𝑂𝑚𝑚 = 𝐹𝐹𝑖𝑖𝑖𝑖(1.06116 + 0.000213𝑣𝑣𝑖𝑖𝑖𝑖2 − 0.0246𝑣𝑣𝑖𝑖𝑖𝑖 + 16.258

𝑣𝑣𝑖𝑖𝑖𝑖
   (16) 

 
𝑆𝑆𝑃𝑃𝑀𝑀 = 𝐹𝐹𝑖𝑖𝑖𝑖(0.03442 + 0.000039391𝑣𝑣𝑖𝑖𝑖𝑖2 −
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0.0036777𝑣𝑣𝑖𝑖𝑖𝑖 + 1.2754
𝑣𝑣𝑖𝑖𝑖𝑖                   (17) 

 
where, 
𝑈𝑈𝑂𝑂2: expected carbon oxide emissions in grams 
𝑁𝑁𝑂𝑂𝑚𝑚: expected nitrogen oxide emissions in grams 
SPM: expected suspended particulate matter in 
grams 
𝐹𝐹𝑖𝑖𝑖𝑖: length of road link between nodes i and j in kilo-
metres 
𝑣𝑣𝑖𝑖𝑖𝑖: speed of vehicle travelling on road link between 
nodes i and j in kilometres per hour 
 
 
4. CASE STUDY 

A square topology-based, hypothetical network 
(Fig. 3) is used for evaluation of the UCC based on 
the simulations using ADP and Q-learning models 
within MAS. Four carriers (A, B, C, D), one UCC, 
and 20 customers are involved in this network. In our 
simulation, the MAS models are iterated for 24 epi-
sodes (24 weeks), each include 5 weekdays from 
Monday to Friday as states. The agents will make de-
cisions as actions in every state (day) by considering 
the fluctuating parking cost, UCC fees, and demand 
received from their customer every day.  

 

 
Fig. 3 Test road network 

 
This research uses some assumptions as listed in 

Table 1;  
 

Table 1. Simulation Assumptions 
Item Value  

Working time  8 AM to 8 PM 
Time window 60 minutes per cus-

tomer 
Capacity of the truck 200 parcels/ truck 
Waiting charge (𝑃𝑃𝑒𝑒) for early arrival I Yen/ minute 
Penalty charge (𝑃𝑃𝑙𝑙) for late arrival  5 Yen/ minute 

 
 

5. RESULTS AND DISCUSSIONS 
All simulations are done using MATLAB.  The 

learning rate and the discount factor for ADP have 
been used as 0.2 and 0.6, respectively; whereas, the 

learning rate and the discount factor for Q-learning 
have been set as 0.2 and 0.8, respectively. These val-
ues are based on the results of a sensitivity analysis 
that has been done prior to the case study. In this 
study, we performed two separate simulations using 
ADP and Q-learning to evaluate the impacts of UCC 
for sustainable city logistics using the following cri-
teria; 1) economics’ efficiency for each learning 
agent, i.e., cost saving for the freight carrier, and  
profitability for the UCC operator; 2) environmen-
tally friendliness. This study also evaluated the accu-
racy, stability and adaptability of the outcomes of 
both simulations on evaluating the UCC within 
multi-agent and uncertain environment. The differ-
ences between these two simulations arise from the 
different action selection depending suggested by the 
learning model.  

 
(1) Accuracy of the learning models 

Accuracy of the outcomes obtained in the ADP and 
Q-learning is important for the learning models to 
evaluate a sustainable city logistics scheme (such as 
UCC in this study). The “accuracy”, refers to the 
closeness of the gap between the expected value ob-
tained in the ADP and Q-learning based simulations 
to the corresponding value experienced by the learn-
ing agent. For example, for the freight carrier (as 
learning agent), equations (5) and (14) give the “ex-
pected cost” for each possible action (JDS or DD) in 
each state by the ADP and Q-learning algorithms, re-
spectively. Based on this expected cost the agent 
chooses an action. “Cost experienced” by the freight 
carrier depends on this choice and is given by equa-
tion (8) or (9). Smaller gap between these two costs 
means more accurate method.  

Fig. 4 shows that the percentage gap between ex-
pected cost and the experienced cost in the ADP-
based simulation is lower (39.6%) than the Q-learn-
ing based simulation (47.7%) for freight carrier A; 
similar pattern were obtained for freight carriers B, 
C, and D. Similarly, in case of the UCC operator, the 
percentage gap between the expected profit (equa-
tions (5) and (14)) and the experienced profits (equa-
tions (11) to (13)) in the ADP-based simulation is 
also lower (46.4%) than the Q-learning based simu-
lation (51.9%) as shown in Fig. 5. It proves that the 
ADP-based learning can improve the accuracy of the 
simulation, thereby improving the quality of simula-
tion. 
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Fig. 4 Accuracy gaps (%) in case of freight carrier A 
 

 
Fig. 5 Accuracy gaps (%) in case of UCC operator 

 
(2) Stability and adaptability of the learning mod-

els 
Adaptation enables an agent to make the right and 

the stable decisions by learning the new information 
from the environment. To calculate the third compar-
ative criterion, “stability”, we compared the number 
of changes in the selection of action suggested by 
ADP-based simulation and Q-learning based simula-
tion. Fewer changes in action (policy) selection by an 
agent means better stability.  

In the simulation, as shown in Fig. 6, the number 
of changed actions (from direct delivery to JDS or 
vice versa) in ADP is less than Q-learning especially 
in case freight carrier A and B, which means ADP is 
more adaptive to the changing environment by 
providing stable action selection. In case freight 
carrier A and B, ADP is 7.5% more stable in the 
actions selection compared with Q-learning in 
average, while in case freight carrier C and D, both 
ADP and Q-learning have the same reaction in the 
number of changed actions. Therefore, in the 
simulation, the actions selection of both ADP and Q-
learning in choosing action JDS with UCC and direct 
delivery (DD) was the same. In addition, Fig.7 shows 
the variation in action selection, i.e., for freight car-
rier A in ADP and Q-learning based simulations. In 
this figure, number 0 shows a decision of direct de-
livery, whereas, 1 represents JDS with UCC. We can 
see from Fig.7 that both ADP and Q-learning guided 
the freight carrier A to different decisions on action 
selection. Q-learning based simulation is less stable 
in the pattern of action selection as it decisions vary 
a lot from choosing direct delivery to JDS with UCC 
or vice versa as compared to the ADP-based simula-
tion. In case freight carrier A, ADP-based simulation 
resulted in a change of action 41 times out of 120 
days, while Q-learning based simulation required 
change of action 45 times out of 120 days.  

 

 
 
Fig. 6 number of changes in action selection for freight car-

riers  

 
Fig. 7 variation in the selection of action for freight A 

 
In the simulation result, as shown in Fig.8, the 

number of changes in actions (from increasing the 
UCC fee (price up) to decreasing the UCC fee (price 
down) and using flat price or vice versa) in ADP-
based simulation and the Q-learning based simulation 
is almost same. In case of UCC operator, ADP-based 
simulation resulted in a change of action 37 times out 
of 120 days, while Q-learning based simulation 
required less change of action 36 times out of 120 
days. Both ADP and Q-learning guided the UCC 
operator to different decisions on action of UCC fee 
selection. The UCC fee suggested by the ADP is 
always 5% lower in average than UCC fee suggested 
by Q-learning (Fig. 12).  It makes the possibility of 
choosing JDS with UCC by freight carrier is higher 
that direct delivery. Using the decision of ADP, the 
UCC operator will get more profits as well as reduce 
the emissions released to the environment. 
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FIGURE 8 variation in the selection of action for UCC oper-

ator  
 
(3) Sustainability criteria: economics’ efficiency 
a) Freight carrier  

The meaning of efficiency for freight carrier is de-
livery of goods at lower cost to the customers. To cal-
culate the efficiency for freight carrier, we compared 
the difference in the experienced cost for the freight 
carrier in the existence of UCC and without UCC. 
The existence of UCC provides more alternatives of 
goods’ delivery for freight carrier, which are direct 
delivery, and JDS with UCC. The ADP and Q-learn-
ing as the learning models will suggest the actions 
based on the reward received from the environment.  

Both ADP and Q-learning based simulation re-
sulted in the lower experienced delivery costs for 
freight carriers in the case of UCC than the without 
UCC case (Fig. 9). The delivery cost with UCC re-
sulted from ADP based simulation is 8.4% lower on 
average as compared to the experienced delivery cost 
without UCC. Corresponding figures for the Q-learn-
ing based simulation was 6.7%. Fig. 10 illustrates 
more details with the cumulative experienced deliv-
ery cost for a freight along the simulation. It means 
that implementing the UCC as a sustainable city lo-
gistics policy is efficient to minimize the delivery 
costs for a freight carrier. Moreover, using ADP as 
the freight carriers’ behavior learning model is better 
than using the Q-learning, as the former choice can 
further save almost 1.7%, on average, of the total de-
livery costs; thereby improving the quality of the city 
logistics simulation i.e. ADP-based simulation pro-
vides more favorable comparison with the no-policy 
(without UCC) case. 

 

 

Fig. 9 Experienced delivery costs by freight carriers (FC) 
with UCC and without UCC 

 

 
Fig. 10 Simulation results of cumulative experienced deliv-

ery cost for the freight carrier D 
 

(b) UCC operator   
The economic efficiency for UCC operator means 

higher profits at lower UCC fee offered to freight car-
riers to foster more demand. To calculate the profita-
bility, we compared the difference in the experienced 
profits for UCC operator under the learning environ-
ment with freight carrier and without learning. In the 
learning environment, we assumed the UCC operator 
will update the UCC fee every day by learning the 
reward received (profits) based on the business pro-
vided by the freight carriers. Without learning (α=0), 
the UCC operator will not consider the current infor-
mation from the environment. Therefore, the UCC 
operator is assumed to offer fixed UCC fee (150 JPY/ 
parcel) to the freight carrier every day. As mentioned 
earlier, equations (5) and (14) give the “expected 
profit” for each possible action in each state by the 
ADP and Q-learning algorithms, respectively. Based 
on this expected profit, UCC operator chooses an ac-
tion. “Profit experienced” by the UCC operator de-
pends on this choice and is given by equations (11) to 
(13). 

Fig. 11 clearly shows that the UCC would fail dra-
matically if a fixed UCC fee policy is followed with-
out learning from the environment, as the cumulative 
experienced profit received by the UCC operator 
without learning is way lower than the cumulative ex-
perienced profits resulted from learning using either 
of ADP or Q-learning. A dip in the cumulative expe-
rienced profit curve shows a negative profit obtained 
in that episode.  The negative profit means the UCC 
failed to cover the downstream delivery cost based on 
the business (demand) received from the freight car-
riers. If the UCC operator is modelled as a learning 
agent, it learns from these negative reward values to 
adjust the UCC fee (may be to attract more demand) 
and becomes profitable again. It shows the im-
portance of the MAS-based simulations in the evalu-
ation of the city logistics policies where one stake-
holder’s the action/behavior can seriously impact the 
other. It is important for the UCC operator to learn 
from the behavior of the freight carriers (refuse to 
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join UCC due to high fees) to become profitable. 
 

 
Fig. 11 experienced profits without learning by UCC opera-

tor 
 

Moreover, Fig. 11 shows that using ADP as the UCC 
operator’s behavior learning model is better than the 
Q-learning. The two simulations suggest different ac-
tions of managing the UCC fee level to the UCC op-
erator, which results in the difference of the experi-
enced profits. The UCC fee suggested by the ADP is 
always 5% lower, on average, than the UCC fee sug-
gested by Q-learning (Fig. 12). It increases the possi-
bility of choosing JDS with UCC by freight carrier 
than the direct delivery under the ADP-based learn-
ing. The impact is also evident in the profits, which 
were 3.7% for ADP as compared to 2.1% for Q-learn-
ing (Fig. 13). 

 
Fig. 12 UCC fee per parcel offered by UCC operator 

 

 
Fig. 13 experienced profits received by UCC operator 

 
 

(4) Sustainability criteria: environmentally 
friendliness 

We evaluated the impacts of UCC by calculating 
the total emissions (CO2, NOx and SPM) from the 
delivery activities made by freight carriers and the 
UCC operator with and without UCC using ADP and 
Q-learning. The existence of UCC will reduce 36% 

(averaged from ADP and Q-learning results) of total 
emissions as compared to the condition without 
UCC. As explained earlier, the differences of the re-
sult between these two simulations arise from the dif-
ferent action selection suggested by the learning 
model. The experienced emission level of CO2 
(Fig.14), NOx (Fig. 15), and SMP (Fig. 16), obtained 
under ADP-based simulation is 7.8% lower than the 
Q-learning based simulation. It means that using 
ADP as the learning model for both agents is better 
than using the Q-learning, as the former choice can 
reduce almost 8%, of the total emissions released to 
the environment; thereby improving the quality of the 
city logistics simulation, i.e. ADP-based simulation 
provides better comparison with the no-policy (with-
out UCC) case.   

 
Fig. 14 CO2 emissions 

 

 
Fig. 15 NOx emissions 

 

 
Fig. 16 SPM emissions 
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5. CONCLUSIONS AND FUTURE WORK 
This paper developed the ADP models for evaluat-

ing the UCC as a sustainable city logistics policy. 
Economic efficiency and environmentally friendli-
ness criteria were used to evaluate the sustainability 
of UCC. The results showed that the implementation 
of UCC as a sustainable city logistics scheme is effi-
cient by reducing 8% of the total delivery cost for the 
freight carrier, and reducing 34% of the total emis-
sions released to the environment. It is also showed 
that the use of learning agents is essential to demon-
strate the successful implementation of the UCC, as 
it is only in the learning-based simulation, UCC op-
erator could get a profit.  

In addition, simulations should accommodate the 
agent’s objective. It was observed that simulation us-
ing ADP resulted in a further 1.7% less experienced 
cost as compared to the simulation done using Q-
learning. In case of UCC operator, the ADP satisfy 
its objective by getting higher profits than the Q-
learning based simulation. The differences of the re-
sults between these two simulations arise from the 
different action selection suggested by the learning 
model. Therefore, the accuracy, stability and adapta-
bility of the outcomes is also very important for the 
learning models, especially within the uncertain en-
vironment. It was found that ADP-based simulation 
improved the accuracy, stability and adaptability of 
the expected delivery costs for the freight carrier as 
compared to the Q-learning based simulation.  

As shown in the general research framework (Fig-
ure 1), other city logistics stakeholders (such as cus-
tomer, administrator, and residents) will also be con-
sidered and modelled using ADP in the future. The 
model application to the real life applications of UCC 
(such as in Motomachi, Japan) is planned to be done 
in the future in order to verify the model application.  
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