
An efficient implementation of the ALT algorithm for
the Time-Dependent Shortest Path Problem

Genaro PEQUE Jr1, Junji URATA2and Takamasa IRYO3

1Non-Member of JSCE, Dept. of Civil Eng., Kobe University
(1-1, Rokkodai-cho, Nada, Kobe, Hyogo, 657-8501, Japan)

E-mail: gpequejr@panda.kobe-u.ac.jp
2Member of JSCE, Dept. of Civil Eng., Kobe University

(1-1, Rokkodai-cho, Nada, Kobe, Hyogo, 657-8501, Japan)
E-mail: urata@person.kobe-u.ac.jp

3Member of JSCE, Professor, Dept. of Civil Eng., Kobe University
(1-1, Rokkodai-cho, Nada, Kobe, Hyogo, 657-8501, Japan)

E-mail: iryo@kobe-u.ac.jp

Although ALT algorithms have been successfully applied to time-independent transportation networks,
applying it to time-dependent transportation networks is not straightforward. The difficulty arises when
a driver has to recalculate the shortest path to his/her destination at the time of his/her departure by con-
sidering the effect of other vehicles on the travel time. While this doesn’t pose a substantial negative
computational effect when the number of drivers is small, this is crucial when dealing with large-scale
time-dependent transportation networks with millions of vehicles and a very large time horizon. This is one
of the most computationally demanding components when simulating large-scale time-dependent trans-
portation networks and is called the time-dependent shortest path (TDSP) problem.

In this paper we are motivated in efficiently implementing and improving the time-dependent ALT algo-
rithm using the C++ programming language that will be used in the repeated calculation of the shortest path
of each driver to their destination in a large-scale time-dependent transportation network. Results show that
search space reduction using a probabilistic variant of the landmark selection strategy avoid16), a proposed
scoring mechanism for maxcover, an added landmark selection constraint based on a theorem on trees14)

and careful implementation of the ALT algorithm in C++ plays a big role in the reduction of computation
time when solving the TDSP problem.

Key Words: ALT algorithm, Time-dependent shortest path problem, large-scale simulation, Time-
dependent networks, c++ programming language

1. Introduction

Transportation networks are normally represented
using link-weighted graphs with non-negative link
weights (e.g. the travel time on a road). Given this
link-weighted graph, the task of finding the shortest
path between two nodes (e.g. origin and destination
nodes) is known as the (classical) shortest path prob-
lem and is usually solved using the well-known Di-
jkstra’s algorithm12). Many algorithms such as the
bidirectional Dijkstra22), A* search18) and its exten-
sions15),16),19) have been proposed which accelerated
the shortest path calculations.

In this paper, we consider a generalization of the
link-weighted graph where links have time-dependent
weights that is a function of the departure time at
the starting node. This is formally called a time-
dependent network, and the shortest path problem in a

time-dependent network is called the time-dependent
shortest path (TDSP) problem. Work on the TDSP
problem was first done by Cooke and Halsey5) where
they proposed a Dynamic Programming algorithm4)

(not polynomial-time) which can only treat integer
time values. Dreyfus13) proposed a polynomial-time
algorithm which is a straightforward generalization of
Dijkstra’s algorithm. However, it was shown to work
correctly only if the time-dependent network satisfies
the first-in, first-out (FIFO) property17),20),26). Subse-
quently, the TDSP problem in FIFO networks have
been solved using algorithms such as Dijkstra’s algo-
rithm6), its generalization known as the A* (A-star)
search28) and its extensions24),25),28).

In the simulation of large-scale time-dependent
transportation networks, the repeated calculation of
the TDSP of each driver to their destination is one
of its most computationally demanding components.

1

第 55 回土木計画学研究発表会・講演集34-05

Hence, shortest path algorithms are not only being
improved but also the preprocessing techniques used
to store additional information about the network
to accelerate the shortest path calculation. Delling
and Wagner11) identified the basic ingredients that
all existing high-performance speed-up techniques
for route planning in time-dependent networks rely
on. These are Dijkstra’s algorithm implemented as
a label-correcting algorithm6), A* search using pre-
processed landmarks (ALT)25) and its variants24), Arc-
Flags7),11), and contraction8). From the list mentioned,
we focus on the preprocessing of landmarks used in
the A* search because of its easy adaption to time-
dependent scenarios and its robustness to the input.
Bauer et al.3) have shown that most of the preprocess-
ing based speed-up techniques have some degrees of
freedom which are NP-hard to determine optimally,
and are therefore heuristically determined in practice.
This also applies to the ALT algorithm, for which it
is shown that selecting a set of landmarks that min-
imizes the expected “search space” (i.e. the set of
nodes that have to be “explored” before the solution
is found) for a random single-source, single-target
query is NP-hard. Several heuristics for this purpose
have been proposed such as: random, farthest and
avoid15), advanced avoid9), as well as maxcover16).

For our purpose, we propose a probabilistic vari-
ant of the landmark selection strategy avoid, a scor-
ing mechanism for selecting a set of landmarks us-
ing maxcover and a landmark selection constraint
based on a theorem on trees14). Most of the im-
provements of avoid is based on the assumption that
some landmarks selected earlier on might be of lim-
ited usefulness once others are selected9),16). This
is highly intuitive from a constructive heuristics and
time-independent network perspective, however, as
link weights change over time in time-dependent
networks, specifically in highly congested parts of
the network, the preprocessed landmark-based lower
bound cost estimates become unreliable (i.e. the al-
gorithm’s search space would increase dramatically).
Moreover, the set of landmarks determined using con-
structive heuristics are used to determine the next can-
didate landmark from a shortest path tree rooted at a
node determined probabilistically. Based on this, it
would then be intuitive to propose a probabilistic vari-
ant of avoid. This variant modifies the deterministic
shortest path tree traversal to a probabilistic one us-
ing the child node’s size to calculate its probability
of being traversed. The justification is based on the
heuristic nature of landmark selection and that any
landmark selected by avoid is optimal only to the
origin-destination (OD) pairs in the shortest path tree
graph it was selected from. Thus, even a determin-
istic shortest path tree traversal can lead to subopti-
mal landmark candidates for the overall network. To

improve the landmarks selected by avoid, maxcover
was proposed16). The original maxcover method se-
lects a subset of landmarks from a larger candidate
set of landmarks that “covers” as many links as pos-
sible. However, the goal in this paper is to select
a subset of landmarks that covers as many links as
possible including links that are not fully covered us-
ing some scoring mechanism to anticipate changes in
link weights of time-dependent networks. This en-
sures that most of the nodes have good lower bound
cost estimates that can account for potential changes
in shortest paths across the time-dependent network.
Lastly, a landmark selection constraint based on a the-
orem on trees14) is introduced. Landmark candidates
are restricted only to nodes that doesn’t belong to a
shortest path between landmarks in the landmark set.
This is from the observation in14) that in tree graphs,
nodes on the shortest path between landmarks should
not be added to the set of landmarks because these
nodes will not improve the overall ALT search space.

Using the time-independent Chicago and Kanto
networks for experimental analysis, results show that
the proposed landmark selection strategies outper-
form the previous methods. However, when applied
to time-dependent networks, landmark-based meth-
ods’ effectiveness (including the proposed methods)
degrade quickly up to the point where its advantage
over Dijkstra and A* algorithms is almost negligible.

This paper is organized as follows. In section 2,
we introduce the notations used in this paper. Section
3 introduces the ALT algorithm for time-independent
and time-dependent networks, and its bidirectional
variant. Additionally, the landmark selection strate-
gies used by the ALT algorithm is presented together
with some proposed improvements. In section 4, a
brief summary of the graph and landmark data rep-
resentation, data structures and speed-up techniques
used in the C++ language is introduced. This is fol-
lowed by the experimental analysis conducted on the
Chicago and Kanto networks in section 5. Lastly, we
present our conclusions based on our experiments in
section 6.

2. Preliminaries

A graph, G = (V,E), consists of a finite set of
nodes, V , and a finite set of links, E. Links can
either be composed of unordered or ordered pairs,
(u, v) ∈ E, u, v ∈ V , of nodes. We will sometimes
interchange e ∈ E and (u, v) ∈ E to represent a
link. When a graph is composed of the former, it is
called an undirected graph. If it is composed of the
latter, it is called a directed graph. Throughout this
paper, only directed graphs are studied. The node u
is called the tail while the node v is called the head
of the link. The number of nodes, |V |, in the directed

2

第 55 回土木計画学研究発表会・講演集

graph is denoted by n, the number of links |E| by
m, and its links are weighted by a link cost function,
c : E → F. The function space, F, consist of positive
periodic functions, f : Π → R+, Π = [0, p], p ∈ N,
such that f(0) = f(p) and f(x) + x ≤ f(y) + y
for any x, y ∈ Π, x ≤ y which respects the FIFO
property wherein the computation of shortest paths
is polynomially solvable20). The link cost function is
used to evaluate the travel time for a link on a specific
departure time p. The upper and lower bounds of f is
noted by f = maxx∈Πf(x) and f = minx∈Πf(x),
respectively. A time-independent lower bound graph,
G, of the time-dependent graph, G, can be obtained
by substituting the time-dependent link cost function,
c, by c using f . A reverse graph,

←−
G = (V,

←−
E), is the

obtained from graph G by substituting (u, v) ∈ E by
(v, u).

A node sequence P = (u1, ..., uk) in G is called
a path if (ui, ui+1) ∈ E for all 1 ≤ i < k.
In time-independent scenarios, the cost of a path is
given by dist(u1, uk) =

∑k−1
i=1 c(ui,ui+1) and a path

of minimum cost between two nodes, s and d, is
called the (s, d)−shortest path with its cost denoted
as dist∗(s, d). A potential function is a function
π : V → R+. Given π, the reduced link cost is de-
fined as ce,π = c(u,v) − π(u) + π(v). Suppose ce is
replaced by ce,π, then for any two nodes x and y, the
link cost of any (x, y)−path (including the shortest)
changes by the same amount, π(y)− π(x), and thus,
are equivalent. We say that π is feasible if ce,π ≥ 0
for all e ∈ E. Feasibility of π is necessary for A*
(also Dijkstra) to work correctly. A potential, π, is
called valid to a given network if the A* algorithm
with the potential, π, outputs an (s, d)−shortest path
for any pair of nodes (s, d).

In this paper, we consider time-dependent scenar-
ios where the link cost function is given by the
non-negative travel time function c(v,u)(tu), where
tu ∈ Π is the time to leave the node u. In gen-
eral, c(u,v)(tu) ̸= c(v,u)(tv). An (s, d)−path with
a specified departure time from s, ts, is called an
(s, d, ts)−path and the TDSP problem asks to find an
(s, d, ts)−path that leaves s at time ts and minimizes
the arrival time at d. Additionally, we only consider
networks with the FIFO property and non-negative
link weights unless stated otherwise. If the FIFO
property doesn’t hold, the problem is NP-hard27).

The following Theorem shows that the FIFO prop-
erty is important in calculating the TDSP.
Theorem 1. (Halpern17), Kaufman and Smith20), Orda
and Rom26)). For a time-dependent FIFO network and
an (s, d, ts) query, there exists an (s, d, ts)−shortest
path and it is simple.

3. The A* algorithm with landmarks
(ALT)

In this section, the ALT algorithm developed by
Goldberg and Harrelson15) for the time-independent
shortest path problem and its extension to the time-
dependent problem is introduced.

(1) ALT algorithm development
a) Time-independent ALT algorithm

The ALT algorithm is based on the A* search,
Landmarks, and Triangle inequality (not based on Eu-
clidean distances but on shortest path distances). The
ALT algorithm relies on landmarks, a small subset of
nodes, l ∈ L ⊂ V , which are used to calculate the
potentials of each node, v, in the network during the
shortest path search. In order to explain the ALT al-
gorithm, the A* search algorithm will be introduced
first. The introduction is taken from25).

Consider the shortest path problem from a source
node, s, to a target node, d, in a network and sup-
pose that there is a potential function π : V → R+

such that π(v) provides an estimate of the length
of a (v, d)−shortest path for a given target node, d.
Given a function g : V → R+ and a priority, h, de-
fined by h(v) = g(v) + π(v). Let g∗(v) and π∗(v)
represent the length of the (s, v)−shortest path and
(v, d)−shortest path, respectively. This means that
g∗(v) = dist∗(s, v) and π∗(v) = dist∗(v, d) and so
h∗(v) = g∗(v) + π∗(v) = dist∗(s, d). Let Q be a
set of nodes that are active (i.e. currently being pro-
cessed) and R be a set of nodes that have been settled
(i.e. nodes that have been processed). Then the A*
algorithm is described as follows.

A* algorithm:
Input: A network (G, c), a source node s, a target
node d and a potential function π : V → R+.
Output: An (s, d)− shortest path and dist∗(s, d).
Algorithm:

1. For all v ∈ V −
{
s
}

, let g(v) = ∞, prev(v) =
NULL. Let g(s) = 0, Q =

{
s
}

and R = ∅.
2. While d /∈ R do:

(a) Let u = argmin
{

h(v)|v ∈ Q
}

. Remove u
from Q and insert it into R.

(b) For all adjacent nodes v of u with v /∈ R, if
g(v) > g(u) + c(u,v), then set g(v) = g(u) + c(u,v),

h(v) = g(u)+ c(u,v)+π(v) and prev(v) = u
and insert v into Q.

3. Output the (s, d)−path by tracing prev(v) and
the length g(d).

The A* algorithm is equivalent to Dijkstra’s algo-
rithm when π(v) = 0 for all v ∈ V .

Let L = {l1, ..., lk} be a set of nodes. Based on

3

第 55 回土木計画学研究発表会・講演集

Fig.1 A triangle inequality formed by a landmark and two
arbitrary nodes (u, v).

the optimality of the shortest path, for any 3-tuple
(u,w, v), it holds that dist∗(u, v) ≤ dist∗(u,w) +
dist∗(w, v). A potential π(u, l) of u with respect to a
landmark l ∈ L is defined as π(u, l) = dist∗(l, v) −
dist∗(l, u) for a target node v. By definition, the tri-
angle inequality π(u, l) = dist∗(l, v)− dist∗(l, u) ≤
dist∗(u, v) holds and is shown in Fig. 1.

To compute tighter bounds, the maxi-
mum potential produced by a landmark in
the landmark set can be used, i.e. π(u) =
max {0,max {dist∗(l, v)− dist∗(l, u)|l ∈ L}}.
The following Lemma by Goldberg and Harrelson15)

states that π is feasible.
Lemma 1. (Goldberg and Harrelson15)) For a given
network, a target node v and a landmark l, the poten-
tial function π computed using landmarks is feasible.
b) Time-dependent ALT algorithm

For the ALT algorithm in a time-dependent net-
work, the following Lemma shows that a road’s
free-flow travel time (assumed to be bounded, non-
negative and time-independent) used as the link cost
can be used to produce feasible potentials for any
given landmark as long as the network satisfies the
FIFO property and triangle inequality condition (Fig.
2).
Lemma 2. (Ohshima25)). In a FIFO time-dependent
network and a given landmark, l ∈ L, the time-
dependent potential, π̃(u, l, tu), is feasible.

Let c̃(u,v) = min
(
c(u,v)(tu)

)
for all tu ∈ Π (e.g.

road’s free-flow travel time) and d̃ist∗(u, v) be the
length of the (u, v)−shortest path with respect to c̃,
then d̃ist∗(u, v) ≤ d̃ist∗(u,w) + d̃ist∗(w, v), for
any 3-tuple (u,w, v) holds. Given a landmark l, the
time-dependent potential for an arbitrary (u, v) is de-
noted as π̃(u, l, tu) = d̃ist∗(l, v)− d̃ist∗(l, u). It fol-
lows that, π̃(u, l, tu) = d̃ist∗(l, v) − d̃ist∗(l, u) ≤
d̃ist∗(u, v) ≤ dist∗(u, v, tu) given a v ∈ V , for
any u ∈ V and all tu ∈ Π. Assume that the
FIFO time-dependent condition, tu,1+ π̃(u, l, tu,1) ≤
tu,2 + π̃(u, l, tu,2), is satisfied. The following fact is
well-known.
Lemma 3. If π̃1 and π̃2 are feasible potential func-
tions, then max

{
π̃1, π̃2

}
is a feasible potential func-

tion.

Fig.2 The triangle inequality condition for the potential
function π̃.

Then, for a set of landmarks, L, each node u, a tar-
get v and any time tu, the time-dependent potential,

π̃(u, tu, l) =

max
{
0,max

{
d̃ist∗(l, v)− d̃ist∗(l, u)|l ∈ L

}}
, (1)

is feasible. It is clear that a potential that returns
zero is feasible. Additionally, as long as time-
dependent link costs only increase and do not drop
below the minimum link costs used to calculate the
potentials, the potentials stay feasible. For any 3-
tuple (u,w, v) and all time tu, tw ∈ Π, if the
FIFO time-dependent and triangle inequality condi-
tion π̃(u, l, tu) ≤ ce(tu) + π̃(w, l, tw + ce(tu)) are
satisfied, as a consequence of the theorem on the gen-
eralized A* algorithm28) the next Corollary states that
the ALT algorithm is valid.
Corollary 1. If the potential function π̃ satisfies the
FIFO property, the triangle inequality condition and
node v is reachable from node u in a time-dependent
network, then the ALT algorithm is valid.

For simplicity, the l ∈ L and tu ∈ Π in π̃(u, l, tu)
will be dropped since only the potentials in the time-
dependent network (G, ce(t)) are treated for all e and
t, and the potentials in an ALT algorithm are always
taken as the shortest path distance from the node u to
a landmark l. Hence, π̃(u, l, tu) = π̃(u).
c) Bidirectional ALT algorithm

Although the ALT algorithm provides faster results
when compared to Dijkstra’s algorithm, this is only
a mild speed-up when compared to an ALT algorithm
applied bidirectionally (i.e. alternating an (s, d, t) and
(d, s, t) query on the graphs G and

←−
G , respectively).

It may seem simple to do this, however, for a solu-
tion to be valid the potential functions of the forward
and backward searches (i.e. π̃f and π̃b, respectively)
must be consistent, meaning c(u,v),π̃f

must be equal
to c(v,u),π̃b

. Ikeda et al.19) developed an average poten-
tial function defined as pf (v) = (π̃f (v) − π̃b(v))/2
for the forward and pb(v) = (π̃b(v) − π̃f (v))/2 for
the backward search. By adding π̃b(d)/2 to the for-
ward and π̃f (s)/2 to the backward search, pf and pb
provide lower bounds to the target and source nodes,
respectively. These potentials are both feasible and

4

第 55 回土木計画学研究発表会・講演集

consistent but provide worse lower bounds than the
original potentials.

Since potentials are always feasible if the free-flow
travel time of the roads are used, both landmark selec-
tion and distance computation can still be performed
on the lower bound graph, G. The bidirectional ALT
implemented in this paper was developed by Nan-
nicini et al.24) and was summarized by Delling and
Wagner11) as follows:

1. A bidirectional ALT is applied to the graph, G,
where the forward search is performed on the time-
dependent network, and the backward search is run
on the lower bound graph, G. All nodes settled by
the backward search are added to a set M . Phase 1
terminates as soon as the two search scopes meet.

2. Suppose that v ∈ V is a node settled by
both searches, then the time-dependent cost µ =
distv(s, d, t) of the path from s to d passing through
v is an upper bound to dist(s, d, t). Let β be the value
of the minimum element in the priority queue of the
backward search. Then, phase 2 terminates as soon as
β > µ.

3. In phase 3, only the forward search continues
with the additional constraint that only nodes in the
set M can be explored. The forward search terminates
when d is settled.

(2) Proposed landmark selection strategies
In this subsection, the landmark selection strategies

avoid15) and maxcover16) will be discussed. Addi-
tionally, a probabilistic variant of avoid, a maxcover
scoring mechanism and a landmark selection con-
straint based on a theorem on trees is proposed. New
landmark selection strategies are then developed.

As noted by Goldberg and Werneck16), “optimal”
landmark selection can be defined in many ways de-
pending on how landmark quality is measured. In
their paper, avoid and maxcover are shown to be
connected as maxcover uses avoid to create a can-
didate set of nodes bigger than the required number
of landmarks.

In the avoid method, it is assumed that a set of
landmarks, L, has already been picked and that ad-
ditional landmarks are required. A shortest path tree,
Tr, rooted at node r, selected uniformly at random
from the set of nodes, is computed. Then, for each
node v ∈ V , the difference between dist∗(r, v) and
the lower bound for dist∗(r, v) given by L is calcu-
lated. This is the node’s weight which is a measure
of how bad the current cost estimates are. For each
node v ∈ V , its size, size(v), is computed. The
size depends on Tv, the subtree of Tr rooted at v. If
Tv contains a landmark, set size(v) = 0, otherwise,
set size(v) as the sum of the weights of all nodes
in Tv. Let w be the node of maximum size, traverse
Tw starting from w and always follow the child with

Fig.3 The avoid method. (a) A sample network with 7
nodes is shown. In (b), Node 5 is randomly selected
and a shortest path tree, T5, is computed. The node
weights are then computed even for the node 7 land-
mark. In (c), node sizes are computed. Since, node
7 is a landmark and the subtree, T6, has a landmark,
both sizes are set to 0. Starting from the node with
the maximum weight (node 4), traverse the tree de-
terministically until a leaf is reached (node 3) and
make this a landmark.

the largest size until a leaf node is reached. Make this
leaf a new landmark (see Fig. 3). A variant of avoid,
called advanced avoid, was proposed9) to try to com-
pensate for the main disadvantage of avoid by ex-
changing the initial landmarks with other landmarks
later generated by avoid.

Most of the improvements of avoid are based on
the assumption that some landmarks selected earlier
on might be of limited usefulness once others are se-
lected due to the constructive heuristics used to deter-
mine them. Thus, improvements such as advanced
avoid or maxcover were used to try to discard land-
marks selected initially or probabilistically, respec-
tively, based on some criteria. However, landmark
selection becomes restricted to the existing landmark
set or its subset. Therefore, a probabilistic variant
of avoid is proposed where the deterministic short-
est path tree traversal is replaced with a probabilistic
one using the softmax function,

σ(v) =
eτsize(v)∑

ṽ↢u e
τsize(ṽ)

, (2)

ṽ ∈ Z,

where “↢” denotes node adjacency, τ ∈ [0, 1], and
Z ⊂ V represents the set of child nodes, ṽ, of node u
in the directed shortest path tree graph. A τ = 1 uses
deterministic traversal while a τ = 0 uses a uniformly
random traversal of the nodes in Z. The softmax
function highlights nodes with large sizes and sup-
presses nodes with sizes which are significantly be-
low the maximum size. This is used based on the as-
sumption that a landmark set’s effectiveness is tested
only with respect to the root node and the possible OD
pairs in its shortest path tree and thus, landmarks se-
lected in this manner are optimal only to the OD pairs
in their respective shortest path trees and the land-
mark set used to calculate the node sizes. Moreover,
these landmarks may only be reliable in the begin-

5

第 55 回土木計画学研究発表会・講演集

ning, uncongested period, and end of a simulation for
time-dependent networks as increase in link costs can
make preprocessed landmark information unreliable.

For the maxcover method, the reduced cost of a
link with respect to a landmark,

c(u,v),l = c(u,v) − dist∗(l, u) + dist∗(l, v), (3)
(u, v) ∈ E , l ∈ L,

is used to measure how good a solution (set of land-
marks) is. A landmark covers a link if the reduced
cost is zero, with a best case when the landmark cov-
ers every link on the path. This method also tries to
compensate for the disadvantages of avoid by com-
puting a set of landmarks 4 times bigger than needed
using avoid. Interpreting each landmark as the set
of links it covers, a local search procedure based on
swapping is then applied to a subset, k, of the 4k land-
marks until a local optimum is reached (i.e. a solution
where a set of landmarks covers most links). Antici-
pating changes in link weights in time-dependent net-
works, maxcover’s scoring mechanism should also
include links whose reduced link costs are close to
zero. This is because given an (s, d) query, the priori-
ties h(ṽ) < h(v̂) of adjacent nodes ṽ and v̂ of node u
and a potential π, if h(ṽ) + x < h(v̂) holds for some
x ≥ 0 and all ṽ due to some potential π̂ < π, then
the algorithm’s search space remains the same. Thus,
the goal is not to find a landmark set that provides the
tightest landmark-based lower bounds for all nodes
(i.e. nodes with zero reduced costs) but to find a land-
mark set that provides a good overall landmark-based
lower bound (i.e. nodes with near zero and zero re-
duced costs). For each landmark, let each link be rep-
resented by,

b(u,v),l =

{
1, if c(u,v),l = 0

1
1+c(u,v),l

, otherwise
. (4)

Then, the following score should be maximized,

scoreL⊂C =
∑

(u,v)∈E

max
{
b(u,v),l|l ∈ L

}
, (5)

k = |L|.
Lastly, an additional landmark selection constraint

is added that restricts nodes on shortest paths be-
tween landmarks from being added in the landmark
set. Fuchs14) observed that on tree graphs, nodes on
the shortest path between landmarks will not improve
the overall ALT search space. This is shown by the
following Theorem.
Theorem 3. (Fuchs14)). Let the graph, G = (V,E),
be a tree and L = {l1, ..., lk} with k ≥ 2 a set of
landmarks. Without loss of generality, let v be a node
on the shortest path between la and lb, where a ̸= b
and a, b ≤ k. Then, the set L̂ = {l1, ..., lk, v} will not
improve the overall ALT search space.

Fig.4 (A figure taken from14)). In both images the same
complete binary tree with 15 nodes is shown. On the
left (a) the tree is drawn with one landmark, node 8,
as root and on the right (b) the path from the land-
mark 8 to the landmark 12 substitutes a root nodes.

a) Probabilistic avoid and probabilistic
maxcover

New landmark selection strategies called proba-
bilistic avoid and probabilistic maxcover are devel-
oped to select k landmarks as follows.

Probabilistic avoid:
Algorithm:

1. Starting with x landmarks, select a node, r ∈ V ,
uniformly at random. If the node is in the landmark
set L, repeat this step. Otherwise, create a shortest
path tree, Tr, rooted at node r.

2. Calculate the weight of each node defined
as the difference between the shortest path distance
dist∗(r, v) and the lower bound of dist∗(r, v) with
respect to L.

3. Then calculate the size, size(v), of each node in
the shortest path tree Tv (a subtree of Tr). The size is
calculated as follows, if Tv contains a landmark, set
size(v) = 0, otherwise, set size(v) as the sum of the
weights of all nodes in Tv.

4. Select the node with the maximum size, w ∈ V .
Traverse the subtree Tw starting from w probabilisti-
cally using equation (2) until a leaf is reached.

5. If the leaf is not a landmark or a node in the
shortest path between any two landmarks, make this
leaf a new landmark. Otherwise, repeat step 1.

6. Repeat these steps until k landmarks are ob-
tained.

Probabilistic maxcover:
Algorithm:

1. Starting with x landmarks, generate 4k−x land-
marks using probabilistic avoid and add each to the
landmark candidate set, C.

2. For each landmark l ∈ C, calculate the reduced
cost, c(u,v),l, of each link, (u, v), with respect to land-

6

第 55 回土木計画学研究発表会・講演集

mark l and represent each link by b(u,v),l from equa-
tion (4).

3. Starting with a set L of k landmarks selected
uniformly at random, calculate this set’s score using
equation (5).

4. Select a landmark, l̃ ∈ L, randomly and replace
it with a landmark, l̂ ∈ C−L, then calculate its score
using equation (5). If the current score is higher than
the previous score, retain the landmark l̂. Otherwise,
replace landmark l̂ with the earlier replaced landmark
l̃. Repeat this process for k iterations.

5. After the iteration terminates, select the land-
mark set, L, with the highest score.

4. C++ implementation

Our implementation stores the graph and landmark
data on a hard disk with no assumed capacity con-
straint. The graphs (G and

←−
G) are represented as 32-

bit vectors which consist of the tail node, its adjacent
node and the link cost (e.g. 12 bytes or 92 bits per
row). When read into the memory (e.g. Random Ac-
cess Memory), the graphs are stored on an associative
container which contains a key-value pair with unique
keys. This allows for a search, insertion and removal
of elements in the container to have average constant-
time complexity. The key is the tail node u while the
value is a 2-tuple which consist of the head node and
link cost, (u, ce). The landmark data is stored as a
32-bit, n × (k + 1) vector consisted of node IDs and
k landmarks (e.g. 24 bytes or 192 bits per row for
k = 5). A fixed, 32-bit vector container is used to
store the landmark data when read into the memory
which means that there is also no assumed capacity
constraint on the memory.

To accelerate computation of expensive function
calls (e.g. repeated calls of the Dijkstra’s algorithm
to compute the shortest path tree in avoid), memoiza-
tion is used. It is an optimization technique used pri-
marily to speed up computer programs by storing the
results of expensive function calls and returning the
cached result when the same inputs occur again. This
reduced the time to create shortest path trees from a
few days in the Kanto network to only a few minutes.

5. Experimental analysis

In this section, the proposed landmark selection al-
gorithms, probabilistic avoid (ALT prob avoid) and
probabilistic maxcover (ALT prob maxcover), were
tested using the ALT algorithm on a time-independent
Chicago network, and a time-independent and time-
dependent Kanto network. Results of the tests were
compared with the Dijkstra, A*, and ALT algorithms
using random (ALT random), avoid (ALT avoid)

and maxcover (ALT maxcover) landmark selection
strategies on the same networks using the same set-
tings. Each ALT algorithm was run 5 times and the
best solution was used. The Chicago network has
933 nodes and 2,950 links while the Kanto network
has 195,180 nodes and 439,979 links. Shortest path
search were conducted on 500 OD pairs selected uni-
formly at random. The same OD pairs were used for
each run of the ALT algorithm with different land-
mark sets chosen based on the different landmark se-
lection strategies. In the Chicago network, 6 land-
marks were used for each ALT shortest path search
while 16 landmarks were used in the Kanto network.
These tests were conducted on an Ubuntu 16.04 LTS,
64-bit computer with 62.8 GB of RAM and an Intel
Core i7-5960X CPU @ 3.00 GHz × 16.

Two machine-independent measures of quality
were used to get a better understanding of the algo-
rithms. We measure an algorithm’s efficiency defined
as,

efficiency =
|(s, d)− shortest path|

|R|
, (6)

where |(s, d) − path| is the number of nodes in the
(s, d)−shortest path and |R| is the number of nodes
settled by the algorithm. The average and the 99th
percentile efficiencies were taken as we are interested
in optimizing the worst case efficiency of the algo-
rithm16). The 99th percentile is used as it gives a more
stable measure of the relative performance between
two different landmark selection methods.

Fig. 5 shows the efficiency of the Dijkstra, A*
search and ALT algorithms on the time-independent
Chicago network (higher is better). It is noticeable
from the average results that a 9.2% and 11.3% in-
crease in average efficiency was achieved by the prob-
abilistic avoid and probabilistic maxcover against
avoid and maxcover, respectively. For the 99th per-
centile, the figure confirms the results of other re-
searchers and also supports the results of the average
efficiency showing the probabilistic avoid (a 1.6% in-
crease) and probabilistic maxcover (a 3.7% increase)
perform slightly better than avoid and maxcover, re-
spectively.

Table 1 shows the landmark generation and query
times of the shortest path search algorithms in the
time-independent Chicago network. These results
were taken using one randomly picked OD pair for the
search query (in this case, an OD pair with a shortest
path which consist of 7 nodes). In terms of the speed
in landmark generation, random is the fastest, avoid
and probabilistic avoid took almost the same amount
of time, and both maxcover and probabilistic max-
cover also took almost the same amount of time. The
largest percentage of time taken by maxcover and
probabilistic maxcover was on the repeated calls to

7

第 55 回土木計画学研究発表会・講演集

Fig.5 Shortest path search efficiency in the Chicago time-
independent network.

Table1 Landmark generation of 6 landmarks and query
times for a 7-node shortest path in the Chicago
time-independent network.

Algorithm Generation time (ms) Query time (ms)
Dijkstra — 84.30

A* — 75.70
ALT random 23 0.707
ALT avoid 44 0.543

ALT prob avoid 45 0.501
ALT maxcover 297 0.443

ALT prob maxcover 301 0.442

avoid and probabilistic avoid, respectively. These re-
sults confirm our assumptions regarding the improve-
ments for avoid and maxcover.

The same tests were conducted on the Kanto net-
work shown in Fig. 6. In Fig. 7, although a similar
pattern is shown, only modest increases in efficiencies
were obtained. A 0.7% and 0.3% increase in average
efficiency between ALT avoid and ALT prob avoid,
and ALT maxcover and ALT prob maxcover, respec-
tively. Additionally, a 4.1% difference in efficiency
between the Dijkstra and A* algorithm in this net-
work as compared to a 2.2% difference in the Chicago
network can be seen. The difference is caused by the
increased number of nodes in between the OD pairs
in this network (Dijkstra’s algorithm’s search space
increases exponentially) as compared to the Chicago
network creating a larger disparity between the two.
There is also a noticeable 8.5% increase in efficiency
between the A* and ALT random algorithm which is
due to the increase in landmarks available for the ALT
random algorithm (16 landmarks in this network as
compared to only 6 landmarks in the Chicago net-
work). Moreover, a 5.4% increase in efficiency be-
tween the ALT prob avoid and ALT maxcover can be
seen. This difference is due to the fact that maxcover
chooses 16 landmarks from 64 landmark candidates
(4k = 4×16) using a local optimization technique for
maximum link coverage which confirms the results of
Goldberg and Harrelson15). Lastly, the 99th percentile

Fig.6 The Kanto network (black nodes) shown with the
Dijkstra’s (pink nodes), A*’s (blue nodes), ALT
maxcover’s (red nodes) and ALT probabilistic max-
cover’s (yellow nodes) search spaces. The OD’s
(blue diamond) shortest path are the grey nodes. The
landmarks (selected using maxcover) are shown as
green stars.

Fig.7 Shortest path search efficiency in the Kanto time-
independent network.

Table2 Landmark generation of 16 landmarks and query
times for a 185-node shortest path in the Kanto
time-independent network.

Algorithm Generation time (s) Query time (s)
Dijkstra — 0.2471

A* — 0.1660
ALT random 15.8 0.1553
ALT avoid 1673.4 0.1488

ALT prob avoid 1597.4 0.0958
ALT maxcover 10140.4 0.0624

ALT prob maxcover 9884.4 0.0515

efficiency result shows a similar pattern from the av-
erage efficiency result (an increase of 0.1% for both)
which confirms the algorithms’ effectiveness.

Table 2 shows the landmark generation and query
times of the shortest path search algorithms in the
time-independent Kanto network. These results were
taken using one randomly picked OD pair for the
search query (in this case, an OD pair with a short-

8

第 55 回土木計画学研究発表会・講演集

Fig.8 The effect of the time-dependent link costs on landmark efficiencies relative to ALT prob maxcover in the Kanto
network.

est path which consist of 185 nodes). In terms of the
speed in landmark generation, random is the fastest
while avoid and probabilistic avoid has a slight dif-
ference caused by the algorithm design (since avoid
sometimes find the same landmark, a node r is again
selected randomly to be the root for the shortest path
tree). The same situation occurred in the case of
maxcover and probabilistic maxcover. Similarly, the
largest percentage of time taken by maxcover and
probabilistic maxcover was on the repeated calls to
avoid and probabilistic avoid, respectively. Addi-
tionally, the query times of each algorithm confirms
the assumption that the lesser the search space of the
algorithm, the faster the shortest path search calcula-
tion. These results also confirm our assumptions re-
garding the improvements for avoid and maxcover.

Tests of the algorithms’ efficiencies on the time-
dependent Kanto network were conducted on 5 ran-
domly chosen OD pairs. The efficiency values shown
in Fig. 8 are all relative to ALT prob maxcover for
clarity (i.e. all ALT prob maxcover values are all set
to 1.00). Three tests representing no congestion, mild
congestion (e.g. 5 minute delay) and heavy conges-
tion (e.g. 30 minute delay) which is a usual sce-
nario in a traffic simulation were used. Addition-
ally, only the Dijkstra, A*, ALT maxcover and ALT
prob maxcover algorithms were run for each OD pair
in each case.

In the no congestion sections of Fig. 8, the al-
gorithms reproduce the results taken in the previous
time-independent scenario of the Kanto network. Al-

though a small variation in the results may be ob-
served, these are consistent with the findings in the
time-independent case. In the mild congestion sec-
tions, it can be noticed that ALT prob maxcover per-
forms better at anticipating the change in link costs
than maxcover. However, these landmark-based
lower bounds’ effectiveness degrades quickly up to
the point where the difference between the Dijkstra
and A* algorithm during the heavy congestion sec-
tions are almost negligible. This result is expected
because the landmark-based lower bound estimates
were based on the lower bound link costs. Since the
link costs have increased, these lower bounds become
highly inaccurate. Additionally, The increase in query
times for each case were proportional to the increase
in search space in the algorithms for 16 landmarks.

Note that these savings in efficiency may be small
but it can become useful in a large-scale simulation
when multiplied with the number of drivers that will
calculate their shortest paths to their destinations.

6. Conclusion

We presented an efficient implementation of the
ALT algorithm for the time-dependent shortest path
problem improving upon the landmark selection
strategies in15) by anticipating changes in the link
costs in the network using the C++ programming lan-
guage.

For the time-independent networks, results show

9

第 55 回土木計画学研究発表会・講演集

that the proposed landmark selection strategies per-
formed better than previous methods achieving at
most an 11.3% and 3.7% increase in average effi-
ciency and 99th percentile in the Chicago network, re-
spectively. In the Kanto network, a similar result pat-
tern, albeit, only a very modest improvement (at most
a 0.7% and 0.1% for the average and 99th percentile
efficiency, respectively) compared to the Chicago net-
work was obtained.

When the algorithms were applied to the time-
dependent Kanto network, the proposed algorithms
still performed better than the previous methods.
However, the landmark-based methods’ effectiveness
quickly degraded even in mild congestion scenarios.
Additionally, it further degraded when heavy conges-
tion occurred up to the point where its advantage over
Dijkstra and A* algorithms were almost negligible.
Moreover, as discussed in11), pure ALT suffers from
two major drawbacks. Space consumption is rather
high and even more important ALT cannot compete
with hierarchical approaches concerning query per-
formance in transportation networks.

It would be better to use other speed-up techniques
combined with the ALT algorithm such as the Core-
ALT10) or L-SHARC7), or a totally different speed-up
technique like Contraction Hierarchies1) when used
in time-dependent networks. However, the speed-
up techniques mentioned above are highly applica-
ble only if preprocessing time is not an issue with
Core-ALT as an exception. So in11), they showed
how Core-ALT remedies both drawbacks mentioned
above without violating the advantages of pure ALT,
i.e., easy adaption to dynamic scenarios and robust-
ness to the input. Therefore, a future direction is to
combine the proposed methods with the Core-ALT
speed-up technique.

ACKNOWLEDGMENT: This research was con-
ducted as part of Sub-group B, “Development of a
System for Integrated Simulation of Earthquake and
Tsunami Hazard and Disaster“, of Priority Issue (3),
“Construction of integrated prediction system of com-
plex disasters by earthquake and tsunami“, of the Post
K Project, “Application development and R & D on
social and scientific issues to be addressed intensively
in Post K (Ministry of Education, Culture, Sports,
Science and Technology)“. Additionally, we would
like to acknowledge the help of the Regional Futures
Research Center for providing us useful information
regarding shortest path search algorithms.

REFERENCES
1) Batz, V., Delling, D., Sanders, P. and Vetter, C. (2009).

Time-Dependent Contraction Hierarchies. In Proceed-
ings of the 11th Workshop on Algorithm Engineering
and Experiments (ALENEX’09), pages 97105. SIAM,
April.

2) Bauer, R., Delling, D., Sanders, P., Schieferdecker, D.,
Schultes, D., and Wagner, D. (2008). Combining Hier-
archical and Goal-Directed Speed-Up Techniques for
Dijkstra ’s Algorithm. In C. C. McGeoch, editor, Pro-
ceedings of the 7th Workshop on Experimental Algo-
rithms (WEA ’08), volume 5038 of Lecture Notes in
Computer Science, pages 303318. Springer, June.

3) Bauer, R., Columbus, T., Katz, B., Krug, M. and Wag-
ner, D. (2010). Preprocessing Speed-Up Techniques is
Hard. In Proceedings of the 7th Conference on Algo-
rithms and Complexity (CIAC ’10), Lecture Notes in
Computer Science, Springer.

4) Bellman, R. (1958). On a routing problem. Quarterly
of Applied Mathematics, 16:87-90.

5) Cooke, K. L. and Halsey, E. (1966). The shortest route
through a network with time-dependent internodal tran-
sit. J. Math. Anal. Appl., 14:493-498.

6) Dean, B. C. (1999). Continuous-Time Dynamic Short-
est Path Algorithms. Master ’s thesis, Massachusetts
Institute of Technology.

7) Delling, D. (2008). Time-Dependent SHARC-Routing.
Algorithmica, July 2009, Special Issue: European Sym-
posium on Algorithms.

8) Delling, D. (2009). Engineering and Augmenting
Route Planning Algorithms. PhD thesis, Universitt
Karlsruhe (TH), Fakultt fr Informatik.

9) Delling, D., Sanders, P., Schultes, D., and Wagner, D.
(2006). Highway hierarchies star. In 9th DIMACS Im-
plementation Challenge.

10) Delling, D. and Nannicini, G. (2008). Bidirectional
Core-Based Routing in Dynamic Time-Dependent
Road Networks. In S.-H. Hong, H. Nagamochi, and
T. Fukunaga, editors, Proceedings of the 19th Inter-
national Symposium on Algorithms and Computation
(ISAAC ’08), volume 5369 of Lecture Notes in Com-
puter Science, pages 813824. Springer, December.

11) Delling, D. and Wagner, D. (2009). Time-dependent
route planning. Robust and online large-scale opti-
mization, 207-230.

12) Dijkstra, E. W. (1959). A note on two problems in con-
nexion with graphs. Numerische Mathematik, 1:269-
271.

13) Dreyfus, S. E. (1969). An appraisal of some shortest-
path algorithms. Operations Research, 17(3):395-412.

14) Fuchs, F. (2010). On Preprocessing the ALT Al-
gorithm. Master’s thesis, University of the State of
Baden-Wuerttemberg and National Laboratory of the
Helmholtz Association, Institute for Theoretical Infor-
matics.

15) Goldberg, A. V. and Harrelson, C. (2005). Comput-
ing the shortest path: A search meets graph theory. In
SODA 2005, pp. 156-165. SIAM.

16) Goldberg, A. V. and Werneck, R.F. (2005). Computing
point-to-point shortest paths from external memory. In
Proceedings of the 7th Workshop on Algorithm Engi-
neering and Experiments (ALENEX’05), pages 26-40.
SIAM.

17) Halpern, H. J. (1977). Shortest route with time depen-
dent length of edges and limited delay possibilities in
nodes. Operations Research, 21:117-124.

18) Hart, P. E., Nilsson, N. J. and Raphael, B. (1968). A
Formal Basis for the Heuristic Determination of Min-
imum Cost Paths. IEEE Transactions on Systems Sci-

10

第 55 回土木計画学研究発表会・講演集

ence and Cybernetics SSC4, 4 (2): 100-107.
19) Ikeda, T., Hsu, M., Imai, H., Nishimura, S., Shi-

moura, H., Hashimoto, T., Tenmoku, K., and Mitoh,
K. (1994). A Fast Algorithm for Finding Better Routes
by AI Search Techniques. In Proc. Vehicle Navigation
and Information Systems Conference, IEEE.

20) Kaufman, D. E. and Smith, R. L. (1993). Fastest paths
in time-dependent networks for intelligent vehicle-
highway systems application. Journal of Intelligent
Transportation Systems, 1(1):1-11.

21) Lee, D., Choi, J., Noh, S. H., Min, S. L., Cho, Y., and
Kim, C. S. (1999). On the Existence of a Spectrum of
Policies that Subsumes the Least Recently Used (LRU)
and Least Frequently Used (LFU) Policies. In Pro-
ceedings of the 1999 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems,
pages 134-143.

22) Luby, M. and Ragde, P. (1989). A bidirectional
shortest-path algorithm with good average-case behav-
ior. Algorithmica, 4(4):551-567.

23) Megiddo, N. and Modha, D. S. (2003). ARC: A Self-
Tuning, Low Overhead Replacement Cache. In Pro-
ceedings of the 2003 File and Storage Technologies
(FAST), pp. 115-130.

24) Nannicini, G., Delling, D., Liberti, L., Schultes, D.
(2008). Bidirectional A* Search for Time-Dependent
Fast Paths. In: McGeoch, C.C. (ed.) WEA 2008, LNCS,
vol. 5038, pp. 334-346. Springer, Heidelberg.

25) Ohshima, T.，Nagamochi, H，and Zhao, L. (2008).
A Landmark Algorithm for the Time-Dependent Short-
est Path Problem. Master’s thesis, Kyoto University,
Graduate School of Informatics, Department of Ap-
plied Mathematics and Physics.

26) Orda, A. and Rom, R. (1990). Shortest-path and
minimum-delay algorithms in networks with time-
dependent edge-length. Journal of the ACM, 37 (3), pp.
607-625.

27) Sherali, H. D., Ozbay, K. and Subramanian, S. (1998).
Time-dependent shortest pair of disjoint paths prob-
lem: Complexity, models, and algorithms. Networks,
31(4):259-272.

28) Zhao, L., Ohshima, T., and Nagamochi, H. (2008).
A* algorithm for the time-dependent shortest path
problem. The 11th Japan-Korea Joint Workshop on
Algorithms and Computation (WAAC08), July 19-20,
Fukuoka, Japan, pp. 36-43.

(Received April 28, 2017)

11

第 55 回土木計画学研究発表会・講演集

