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Several Real-Time Crash Prediction models have been built as a tool to augment road safety. Hence arises 

the question of the quality and the dissemination of the available traffic data obtained from traffic detectors. 

Traffic state estimations and predictions are often inaccurate due to inaccurate detector locations. Several 

studies have shown the influence of detector locations on traffic state estimation. The motivation for this 

research is to find a way to deploy finite resources and generate an efficient traffic detection system. In this 

study, we selected a 1.40 km long segment with a three-legged junction of Route 3 Shibuya Line of Tokyo 

Metropolitan Expressway to show how the evolution of traffic flows can be predicted over time based on 

simple macroscopic model. This segment is modelled by a set of cells which tracks traffic state over time 

with generalized Cell Transmission Model (CTM) which is consistent with kinematic wave theory of traffic 

flow. Traffic data generated from both fixed detectors and CTMs were used to build Real-time Crash Pre-

diction models (RTCP) based on Bayesian Network- a probabilistic method. Performance of both methods 

are compared. The results demonstrate that the proposed CTM method can predict traffic conditions with 

an accuracy of 90% when the traffic data is collected from 300 meters up and downstream of the crash 

location. This accuracy can be improved further by introducing more traffic flow parameters like velocity 

and using more traffic data.  
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1. INTRODUCTION 
 

Over the last decade, the idea of predicting crash 

in real-time as part of active traffic management 

(ATM) has attracted substantial attention among re-

searchers in the field of road safety. The concept of 

real time crash prediction is based on the hypothesis 

that the probability of a crash on a specific road sec-

tion can be predicted for a very short time window 

using the instantaneous traffic flow data3,4,5,6,7,8). Sub-

stantial effort has been put in improving the Real-

time Crash Prediction models (RTCP) 1,2). Hence, data 

collection system plays a significant role in the perfor-

mance of the RTCP models11,12). 

Moreover, with the advancement of Intelligent 

Transportation System (ITS) and development of ad-

vanced transportation information systems (ATIS), 

numerous traffic data collection systems have 

arised13,14,15). Accurate and reliable estimate of real-

time traffic data is essential for optimizing network 

performance during unpredictable traffic incident.  

Traditionally, traffic flow models have been used 

to predict traffic state on segments of freeway or ur-

ban networks. Increase in number of traffic sensors 

and availability of real-time traffic measurements 

have facilitated utilization of measured traffic varia-

bles to improve overall estimate of traffic state. In-

spite of that, these sensors still do not cover every part 

of the network and cannot provide a complete picture 

of existing traffic state with higher spatial resolution. 

Moreover, there are several situations in reality 

where the fixed sensors are installed far away from 

each other with variable spacings. This could result  

in different outputs from various traffic models. 
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Furthermore, it becomes difficult to compare the traf-

fic models due to a variety of detector layout for in-

dividual cases or road segments. In traffic state esti-

mation prediction from traffic flow models, which 

can be of higher spatial resolution is combined with 

real-time measurements to get a final estimate with 

higher spatial and temporal resolution.Thus, real-

time traffic state estimation refers to estimation of 

traffic flow variables (traffic flow, density) for a seg-

ment of road or network with an adequate time and 

space resolution based on limited available measure-

ments from traffic sensors16). 

Previous studies employed comprehensive meth-

odology of estimating traffic state using real-time 

traffic data from sensors and prediction of traffic state 

from a second order traffic flow model. In this esti-

mation model, parameters of second order traffic 

flow models such as free-flow speed and critical den-

sity were converted into stochastic variables by using 

random-walk equations and estimated for each time-

step17,18). Another study proposed a framework that 

utilized particle filtering algorithm with second order 

traffic flow model and unscented Kalman filter algo-

rithm with macroscopic traffic flow model to esti-

mate traffic for a freeway section19,20,21). In addition, 

a Cell Transmission Model (CTM) based Switch 

Mode Model (SMM) was derived based on five dif-

ferent traffic modes to avoid non-linearity caused due 

to nature of fundamental traffic flow diagram in CTM 

22,23). Later on, a study showed effect of sensor loca-

tion when there are constrains on the number of sen-

sors which can be installed over a network12). They 

used CTM with ensemble Kalman filter (EnKF) to 

study the impact of various sensor location configu-

rations on estimation of travel speed and concluded 

that sensors located at large distances from each other 

without location optimization lead to overestimation 

of travel speed, whereas sensor numbers can be re-

duced if their locations are optimal to achieve a better 

estimate of travel speed. Many other studies have fo-

cused on optimization of sensor location to find the 

minimum number of traffic sensors to cover a road 

network 13,14,24,25). Thus, it is evident from previous 

studies that location of traffic sensors or detectors in-

fluences the estimationof traffic state hence estima-

tion of traffic flow data leading to influencing the per-

formance of the RTCP models. Crashes occurring on 

freeways/expressways are considered to relate 

closely to immediate traffic conditions occurred be-

fore the crash, which are time-varying. 
 In this study, sensors or detectors are located approx-

imately 250 meters apart from each other in Tokyo Met-

ropolitan Expressway’s Route 3 Shibuya Line. A gen-

eral CTM model was produced for the most crash prone 

location of the route. The objective of this study is to 

investigate the performance of the RTCM based on 

Bayesian Network (BN) while the traffic data is col-

lected from uniformly and densely distributed sensors 

Fig.1  Route 3 Shibuya Line, Tokyo Metropolitan Expressway, Japan 

Source: Official Website of Tokyo Metropolitan Expressway Company Limited 
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or detector9,10,26,27). 

 The paper is organized in five sections. This sec-

tion has already addressed the problems with the pre-

sent crash prediction models and the necessity of de-

tector locations. In the second section, the data col-

lection is discussed. The third section discusses the 

methodology of this study and the forth section deals  

with the model building and validation. Lastly, the 

fifth section draws conclusion and future scope of 

this study. 

 

 

2. DATA  

 
(1) Study Area 

  Since the suitable study area for this study re-

quires to have sufficient crash cases and closely 

spaced detectors, Route 3 Shibuya Line of the Tokyo 

Metropolitan Expressway was selected. It is about 

11.9km long and one of the busiest expressways in 

Japan. It is connected with the Tomei Expressway 

starting at the point on the boundary of the Tokyo 

Metropolitan Ward Area as shown in Fig. 1. It sus-

tains a large number of crashes throughout the year 

as well. It is a radial route connected with the inner 

circular loop of Tokyo Metropolitan Expressway, 

widely known as C1, which serves the central part of 

Tokyo. The expressway has two lanes in each direc-

tions with 48 detectors in the inbound direction and 

46 detectors in the outbound direction (about 250 me-

ters apart). A total of 310 crash cases were reported 

for the route out of which 100 crash cases were found 

to be executable for modeling purpose after eliminat-

ing the errorneous and missing data.. For this study 

we chose a 1.40 km long segment between kilopost 

4.6km and 6.0km in the outbound direction since it is 

the most crash prone (thirteen crash cases in sixe 

months) location. The distribution of crashes in this 

segment of the route is shown in Fig. 1 and the list of 

crash cases are shown in Table 1.  

 

 

(2) Data Collection and Processing 

The study investigates the crash mechanism with 

real-time traffic data. Hence, the traffic flow database 

has been collected from loop detector data between 

March and August 2014.The detectors in the study 

area store data of speed, vehicle count, occupancy 

and number of heavy vehicles for 24 hours a day, 365 

days a year. Six months detector data and crash data 

were extracted. Detector data consists of detector lo-

cation (kilo post), speed (1min average speed in 

km/hr), flow (1 min aggregated in veh/min) and oc-

cupancy (%). Crash data contained information about 

date, time (in minutes), location (to nearest 10 me-

ters), crash lane, type of crash and vehicle involve-

ment. 

 For the selection of high performance detectors, we 

investigated the accuracy of detectors based on miss-

ing or errorneous data. The accuracy of the detectors 

of the study segment are listed in Table 2. Traffic 

data were divided into two categories- (a) crash data 

and (b) normal data for the models. For example, if a 

crash occurred on 3rd March, Wednesday at 15:00, 

then the crash and normal data were collected in the 

manner shown in Table 3.To avoid misleading data,  

we removed all normal condition data where a crash 

took place on the same date before or after 1 hour of 

the selected time period. Also, crash data with any 

Date of crash Time 

of 

Crash 

Lo-

cat-

ion 

of 

crash 

(km) 

Up-

stream 

detector 

Down-

stream 

detector 

2014-03-05 14:34 5.1 03-02-23 03-02-24 

2014-03-07 12:48 5.4 03-02-23 03-02-24 

2014-03-07 21:55 5 03-02-22 03-02-23 

2014-03-13 18:17 4.9 03-02-22 03-02-23 

2014-04-02 08:40 5 03-02-23 03-02-24 

2014-04-13 11:02 5.7 03-02-24 03-02-26 

2014-04-22 17:35 5.4 03-02-23 03-02-24 

2014-05-04 17:22 5.6 03-02-24 03-02-26 

2014-05-16 20:31 5.8 03-02-24 03-02-26 

2014-07-18 10:59 4.8 03-02-22 03-02-23 

2014-08-02 07:07 5.4 03-02-23 03-02-24 

2014-08-17 22:18 5.2 03-02-23 03-02-24 

2014-08-19 13:52 5.6 03-02-24 03-02-26 

Detector 

Number 

Accuracy 

(%) 

Detector 

Number 

Accuracy 

(%) 

03-02-22-1 97.2 03-02-22-2 97.7 

03-02-23-1 99.3 03-02-23-2 99.2 

03-02-24-1 99.4 03-02-24-2 99.4 

03-02-25-1 99.3 03-02-25-2 99.3 

03-02-26-1 99.4 03-02-26-2 99.4 

Table-1: List of crashes in the segment of study 

Table-2: List of detectors in segment of study 
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missing data was ignored. After all these screening, 

for this study a total of 13 numbers of crash and 312 

numbers of normal data left for model building. Out 

of 13 crash cases, 8 cases and corresponding 192 nor-

mal cases were used for model validation (Fig. 3). In 

order to develop a real-time crash prediction model  

Pairs of detectors- nearest upstream and nearest 

downstream of the crash location was considered for 

the entire route of the expressway8). The data collec-

tion arrangement is as illustrated in Fig. 2.  

For cell transmission model (CTM), data is pre-

pared separately. There are three basic parameters for 

constructing a CTM, i.e. maximum flow or, capacity 

(veh/hr), jam density (veh/km) and free-flow speed 

(km/hr). All these three parameters are calculated 

from the fundamental diagram (FD) of traffic flow. 

An example is given in Fig. 4. The entire segment is 

divided into four arcs (0 to 3) and five nodes (0 to 4) 

as shown in Fig. 5. The FDs were produced for each 

arc and for every single day (335 days in total). The 

methodology of BN and CTM are explained in the 

next section. 

 

 

3. METHODOLOGY 
 

(1) Bayesian Network Model 

There are two types of variables in Bayesian Net-

work- information variable and hypothesis variable. 

Information variables are those, the values of which 

are to be expected to be obtained to calculate the 

probability of the hypothesis variable. For the pur-

pose of model building, four absolute values: up-

stream flow(u_q), downstream flow(d_q), upstream 

occupancy(u_o), downstream occupancy(d_o) along 

with two relative values of traffic variables i.e. up-

stream and downstream difference of flow (diff_q) 

and occupancy (diff_o) were used as information var-

iables. Since we have employed the generalized 

CTM, velocity data were not used for this study. 

Bayesian Network, is a probabilistic graphical 

modeling method where we represent a system with 

a graph and a joint probability distribution compacted 

with the notion of conditional independence. Later, 

we can use this model of system to understand the 

dynamics within the system and also to predict the 

state of variables in lights of the evidence on any one 

or more variables. 

Crash Oc-

currence 

Time 

Crash Data Normal Data 

3rd March, 

Wednesday 

at 15:00 

3rd March, 

14:45 to 15:00 

All other Wednes-

days in March, 14:45 

to 15:00 
Fig. 2  Layout of expressway and data collection procedure. 

 

Table 3 Crash data and Normal data collection procedure. 

Fig. 3 Data management for RTCP model 

 Fig. 4 Fundamental traffic flow-density diagram 

Node 

Cell 

Detector 

𝑞1 𝑞2 𝑞𝑛………𝑞3 

Fig. 5 Layout of the segment for cell transmission model 
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Fig. 6 presents a simple BN involving four variables. 

Here, each variable is represented with a node and the 

influence of one variable on others is demonstrated 

with directed edges (may or may not represent causal-

ity). We would like to mention here that these graphs 

are acyclic in nature and are called acyclic directed 

graph (DAG).Hence, the BBN in Fig. 6 can be written 

as: 
P(crash,u_q,diff_q,d_o,diff_o)=P(diff_o).P(d_o|diff_o

).P(diff_q|d_o,diff_o).P(u_q|diff_q,d_o,diff_o).P(crash
| u_q,diff_q,d_o,diff_o)     (1) 

 

The task of EM-Algorithm (expectation maximi-

zation) in BBN is to deter-mine the conditional 

probability tables (CPTs) for nodes based on prior 

probabilities and availability of new N number of 

records. The algorithm has two steps – calculating 

the expected sufficient statistics and then maximiz-

ing its likelihood. To elaborate more, if no probabil-

ity is assigned to a variable for which we are esti-

mating the parameters, a uniform distribution is as-

sumed. Then, with presence of a batch of data, the 

new parameter is estimated in such way that first, 

the expected sufficient statistics under that parame-

ter is calculated and then the log-likelihood of that 

parameter under the expected sufficient statistics is 

maximized. This is an iterative process and it stops 

when one of these two criteria are satisfied – i) the 

maximum number of iteration specified by the user 

has exceeded, or, ii) the relative log-likelihood be-

tween two succes-sive iterations is smaller than the 

preset minimum dif-ference value. Here, it is im-

portant to mention that the EM-algorithm does not 

need data on each of the vari-ables to update the 

model. The adaptation algorithm is similar to the 

EM-algorithm with the exception that here the evi-

dence from each record is propagated throughout the 

network and the parameters for each of the variables 

are updated accordingly. 

The BN based RTCP model has been built and 

evaluated in three interlinked stages. While the first 

stage selects variables, second stage constructs the 

model by finalizing the directed acyclic graph (DAG) 

and then generates the conditional probability tables 

for each variable. The last stage evaluates the model 

performance using a separate dataset which lays out 

a strategy for implementing the model in real-life sit-

uations. 

 

(2) Cell Transmission Model 

In Daganzo26,27,29) it is shown that if the relation-

ship between traffic flow (q) and density (k) is of the 

form depicted in Fig. 7: 

 

q = min { vk , 𝑞𝑚𝑎𝑥, w (𝑘𝑗-k) }, for 0≤ k ≤ 𝑘𝑗, (2) 

then the LWR equations for a single highway link can 

be approximated by a set of difference equations 

where current conditions (the state of the system) are 

updated with the tick of a clock. In the above expres-

sion v, qmax, w and kj are constants denoting respec-

tively: the free-flow speed, the maximum flow (or ca-

pacity), the speed with which disturbances propagate 

backward when traffic is congested (the backward 

wave speed), and the maximum (or jam) density. 

The method assumes that the road has been di-

vided into homogeneous sections (cells), i, whose 

lengths equal the distance traveled by free-flowing 

traffic in one clock interval. (Although a closer ap-

proximation to the LWR results is obtained with short 

cell lengths (e.g. 100 meters) the procedure can be 

applied with cells of any length.) The state of the sys-

tem at instant t is then given by the number of vehi-

cles contained in each cell, ni(t). The following pa-

rameters are defined for each cell: 

 

Ni(t), the maximum number of vehicles that can be 

present in cell i at time t,and 

 

Qi(t), the maximum number of vehicles that can flow 

into cell i when the clock advances from t to t+1. 

 

These constants can vary with time (e.g. as per 

the occurrence of transient traffic incidents) but this 

dependence will be ignored in this paper for simplic-

ity of notation. The first constant is defined to be the 

product of the cell’s length and its jam density, and 

Fig. 6 Structure of a sampleModel built with Bayesian Net-

work Fig. 7 The equation of state of the cell transmission model 
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the second one the product of the clock interval and 

the cell’s capacity. If cells are numbered consecu-

tively starting with the upstream end of the road from 

i = 1 to I, the recursive relationship of the cell-trans-

mission model can be expressed as: 

 

𝑛𝑖(t+1) = 𝑛𝑖 (t) +𝑦𝑖 (t) - 𝑦𝑖+1 (t)                 (3) 

 

where 𝑦𝑖 (t) is the inflow to cell i in the time interval 

(t,t+1), given by: 

 

𝑦𝑖 (t) = min { 𝑛𝑖−1(t) , 𝑄𝑖 (t) , d [𝑁𝑖 (t)- 𝑛𝑖 (t)] }  (4) 

 

where d= w/v.  Note the similarity of (2) and (4). 

 For finite roads, boundary conditions can be 

specified by means of input and output cells. The out-

put cell, a sink for all exiting traffic, should have in-

finite size (𝑁𝑖+1 = ∞) and a suitable, possibly time-

varying, capacity. Input flows can be modeled by a 

cell pair. A “source” cell numbered “00” with an in-

finite number of vehicles (𝑛00  (0) = ∞) that dis-

charges into an empty “gate” cell “0” of infinite size, 

𝑁0 (t) = ∞. The inflow capacity 𝑄0 (t) of the gate cell 

should then be set equal to the desired link input flow 

for the corresponding time interval. The gate cell then 

acts as a metering device that releases traffic at the 

desired rate while holding (as a parking lot would) 

any flow that is unable to enter the link. (Although it 

may be possible to eliminate gate cells in an efficient 

computer implementation, the program logic should 

preserve their effects. Gate cells ensure that any time 

dependent O-D table can be handled; i.e. that the 

LWR problem is well-posed for all O-D tables.) 

 

Network representation 

 A general transportation network is usually de-

scribed by a directed graph of nodes and arcs, includ-

ing some physical data for each arc. An arc’s physical 

data includes its length and the parameters defining a 

q-k relation for a steady state of traffic of the type 

shown in Fig. 7. 

 It should be clear that each arc of a network 

must have an appropriate boundary conditions at both 

of its ends have been defined. Thus, we assume that 

each arc of the graph has been subdivided into cells, 

as explained above. There are three kinds of cells- 1) 

ordinary, 2) diverge and, 3) merge cell as shown in 

Fig. 8. And the cells are organized inside the arcs. A 

road section can be divided into several arcs for CTM 

(Fig. 9). 

The general procedure for networks involves 

two steps for each tick of the clock: 

(i) Determine the flow on each link with the 

equivalent of equation (4). 

(ii) Update the cell occupancies by transferring 

the flows of step (i) from the beginning-cell to the 

end-cell of each link. 

 

 

4. MODEL BUILDING AND VALIDATION 

Arc Nos. U/s node D/s node Arc length, 

km 

Free-flow 

speed, 𝑣𝑓𝑓  (
𝑘𝑚

ℎ𝑟
) 

Maximum 

flow, 𝑞𝑚𝑎𝑥  (veh/hr) 

Jam density, 

𝑘𝑗,(veh/km) 

,Arc 0 0 2 0.40 159 2100 413.77 

Arc 1 1 3 0.20 196 2900 272 

Arc 2 2 3 0.70 171 2800 203 

Arc 3 3 4 0.30 188 3100 192 

Models Information variables 

Model-1 d_o, diff_o, diff_q, u_q 

Model-2 u_o, diff_o, diff_q, d_q 

Model-3 d_o, diff_o, diff_q, d_q 

Model-4 u_o, diff_o, diff_q, u_q 

Fig. 8 Cell type specifications Fig. 9 Merge and diverge cells in a junction 

Table 4 RTCP models and corresponding information variables 

Table 5 Arc information for CTM 
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(3)  Model Building 
 For BN based RTCP model building, six information 

variables were  chosen: upstream flow(u_q), down-

stream flow(d_q), upstream occupancy(u_o), down-

stream occupancy(d_o), upstream and downstream 

difference of flow (diff_q) and occupancy (diff_o). 

Using different combinations of these six information 

variables four BN models were generated (Table 4). 

Since the study segment is not long enough, 15 

minutes before the crash data were employed. Data 

 was collected from the nearest upstream and down 

 stream detectors as mentioned earlier (Fig. 2). All 

the BN models were created with Hugin Expert A/S 

8.2 software. And the CTM was produced using 

NETCELL software. 

   On the otherhand, in case of CTM, the entire 

length of the segment was divided into 4 arcs with 

varying lengths (Table 5) with a merging point at 

node 3 (Fig. 5). Each arc has its own traffic parame-

ters i.e. 𝑞𝑚𝑎𝑥, 𝑣𝑓𝑓, 𝑘𝑗 for every day under this study. 

An example data is shown in Table 5 for one day. 

For data collection, three methods were followed- 1) 

data collected from the upstream and downstream 

cells nearest to the crash location, 2) data collected 

from the upstream and downstream cells which are 

2nd nearest to the crash location, and 3) data col-

lected from the upstream and downstream cells 

which are 3rd nearest to the crash location. For exam-

ple, in Fig. 5, for a crash that took place at 5.4 km 

Model- 1 

(average 24%) 

BN BN (CTM) 

Actual Actual 

crash no 

crash 

crash no 

crash 

Pre-

dicted 

crash 14 80 10 113 

no 

crash 

16 462 20 429 

overall accu-

racy, % 

83.22 76.75 

Model- 2 

(average 29%) 

BN BN (CTM) 

Actual Actual 

crash no 

crash 

crash no 

crash 

Pre-

dicted 

crash 
6 119 5 180 

no 

crash 
69 1771 70 1710 

overall accu-

racy, % 

90.4 87.3 

Model- 3 

(average 27%) 

BN BN (CTM) 

Actual Actual 

crash no 

crash 

crash no 

crash 

Pre-

dicted 

crash 
6 113 5 195 

no 

crash 
69 1777 70 1695 

overall accu-

racy, % 

90.7 86.5 

Model- 4 

(average 25%) 

BN BN (CTM) 

Actual Actual 

crash no 

crash 

crash no 

crash 

Pre-

dicted 

crash 
7 66 9 111 

no 

crash 
68 1824 66 1779 

overall accu-

racy, % 

93.2 91.0 

Table 6 confusion matrix for model-1 (method-1)  

Fig. 11 Comparison of overall preformances of for BN and 

CTM models using three types of detector arrangements  

Table 7 confusion matrix for model-2 (method-1)  

Table 8 confusion matrix for model-3 (method-1)  Table 9 confusion matrix for model-4 (method-1)  
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location, then for method 1, data will be collected 

from cell 11 and 12, for method 2, cell 10 and 13; for 

method 3, cell 9 and 14. 

  
 

  (2) Model Validation 

  As mentioned earlier, 8 crash cases and corre-

sponding 196 normal cases were separated randomly 

for model validation. The success of the model depen  

d on its combined performance to predict crash and 

normal traffic conditions. After building BN models, 

validation data of crash and normal cases was entered 

individually in the models. Their associated probabil-

ities to belong to crash prone traffic condition have 

been calculated based on the prior probabilities. If no 

new evidence is entered into the BN then the average 

probability of a traffic condition being associated 

with crash is 10.7% (BN model-1). This value has 

been used as the minimum threshold for evaluating 

the performance of the model. Also, a false alarm rate 

6.9% is considered to check the prediction capability 

of the BN models. Threshold value higher than the 

average probability is also checked for comparison 

purpose. The confusion matrices are  s hown in Table 

6 to 9 for comparison. 

The equations employed for the calculations are: 

 

 Crash= (Calculated probability over thresh-

old/Crash sample size)*100    (5)

    

 

Normal= (Calculated probability below thresh-

old/Normal sample size)*100  (6) 

 

 Overall= (Total correct classification/Total 

sample size)*100    (7) 

It is understandable from the traffic flow phe-

nomena, that a that a sudden change in flow i.e. in-

crease or decrease in flow could be a vital factor to 

explain crash likelihood. Sudden increase in flow 

could happen due to quick dissipation of queues caus-

ing a backward shock wave. On the contrary, a dis-

ruption in the downstream that propagates a shock 

wave to the upstream might be responsible for a sud-

den decrease of flow. There have been many cases 

where a lower upstream flow followed by a higher 

downstream flow resulting in a hazardous situation. 

Specially, during a situation when there is a sudden 

Fig. 10 Flow distribution within cells for a crash case (5th March, 2014; 14:34pm) and corresponding one no crash 

case using CTM  
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increase of upstream flow and a sudden decrease of 

downstream flow.  

The crash prediction and overall prediction per-

formance under method 2 and 3 are shown in Fig. 11. 

From the overall performances, it can be seen that 

general BN models performs better than the BN mod-

els build with traffic data obtained using CTM for the 

most of the cases. One reason for this is very close 

proximity of the cells we choose for method-1 (im-

mediate up and down stream cell to the crash loca-

tion). The variation of flow is less between these two 

cells. During 15 minute the change of flow between 

upstream and downstream was insignificant. But 

from Fig. 11, it can be seen that for method- 3, the 

overall performance (means joint performance of 

predicting crash likelihood and no-crash likelihood) 

model-1 and model-4 for CTM based BN model 

(88% and 90%) is better than general BN models 

(84% and 89%). The reason behind this might be the 

the distance of the traffic data collection point (or 

cells) from the location where crash incident took 

place. Previous studies have shown12) that the inter-

dtector spacing more than 400 meters might result in 

a huge variation in traffic state estimation. In this 

study, the length of each cells were approximately 

100 meters. Thus for method-3, traffic data were used 

from 3rd cell upstream and downstream fromt he in-

cident location, which are about 300 meters from the 

crash location.  A sample flow distribution diagram 

produced using CTM in a space-time variable space 

for a crash occurred on 5th March, 2014 at 14:34 pm 

is shown in Fig. 10. The horizontal axis represents 

the length of the study segment of the expressway 

where the traffic flow direction is right to left. Verti-

cal axis is reflecting the 15 minute time range before 

the crash. In this figure, darker region means higher 

traffic flow and vice versa. The crash took place 

around 14:34 pm at 5.10km location and the nearest 

cells are number 4 and 7 (Fig. 10). The upper diagram 

is the record of the day of crash whereas the bottom 

diagram is for one corresponding no-crash day. From 

both diagrams, it is clear that the traffic flow has re-

duced with time and at the same time, flow has inten-

sified from cell number 14 (in Arc 3). This makes 

sense because cell 14 is the merging cell of arc 1 and 

arc 2. Other than this, a slight drop of flow can be 

perceived in cell 7 at time14:29pm which continued 

until 14:34pm. Altough, the variation is not so prom-

inent, there is a mild rise in flow in cell 4, which is 

upstream of the crash location. On the contrary, the 

diagram for no-crash day seems have no variation of 

flow along the length of the segment. Hence, the 

CTM is able to capture the traffic flow data in cells 

from the data collected from the fixed detectors. 

 

 

5. CONCLUSIONS 
 

The focus of this study was to investigate if cell 

transmission model (CTM) could be applied for pro-

ducing uniformly spaced detectors while traffic data 

from only fixed detectors are present. In addition, to 

compare the performance of the Bayesian Network 

based RTCP model generated with the data from 

fixed detectors with variable spacings and the data 

generated from CTM. And it can be seen from the 

retults that CTM can produce traffic flow data from 

the fixed detector data. Privous studies showed that 

depending on the inter-detector spacing, the quality 

of the data could vary leading to a very different traf-

fic state estimation. In this study data from three dif-

ferent detector spacings were investigated. Altough, 

the outcome of the CTMs showed no prominent evi-

dence of a better performance compared to general 

BN based models, it was observed that the CTM can 

be employed for traffic data generation. The possible 

reasons could be lack of proper traffic flow data i.e. 

velocity, congestion index etc. inaddition to the flow 

and occupancy data.   However, there are several 

scopes of improvement for these models. For better 

functioning of the models, velocity based CTM-v 

could be a better choice. Previous studies showed that 

velocity has a prominent impact on the development 

of RTCP models. This study did not use velocity as 

an information variable since generalized CTM can 

not be used for such calculation. Furthermore, a fil-

tering method such as Kalman Filter, EnKF or Parti-

cle Filter etc. methods could be applied for more re-

fined traffic state estimation. Moreover, for the ben-

efit of simplicity, only one segment of the express-

way was selected for this study which contains only 

thirteen crash cases. Performance of a real-time crash 

prediction model largely depends on the quality as 

well as the quantity of the data. Another probably rea-

son behind the uncertain results could be less study 

concluding the influence of inter-detector spacing in 

traffic flow estimate phenomena. There are several 

studies on this subject, but very studies have specific 

claims of the optimum position of the detector loca-

tions for traffic data collection or traffic state estima-

tion.  

Hence there are many scopes of improvement in 

the future. For example, introduction of velocity 

based CTM for generating more traffic flow parame-

ters. Also, to investigate how to extend this model for 

a larger segments with several inflow-outflow ramps. 

In addition, since this CTM is calculation intensive 

model, it requires a long time to analyze one small 

segment, thus  transferability of the model to other 

segments can be investigated as well. 
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