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We aim to explore travelers’ route choice behavior in the context of driving comfort and route travel 

time. The driving comfort can be estimated from physiological signal such as heart rate. And route travel 

time can be collected by GPS trip records. The research framework includes three steps. First, we collect 

the heart rate during driving from a real-world driving experiment. The driving operation is recorded by 

CAN data when the test driver faces various traffic events. The driving comfort model related to the heart 

rate can be developed according to the driving operation such acceleration and braking. Then the heat map 

of network-wide driving comfort can be obtained for route choice analysis. Second, we generate the route 

choice set using an experiential road network because local commuters usually choose a route from a lim-

ited route set rather than a full route set. We propose to generate k-shortest paths using an experiential road 

network incorporating link usage frequency. Third, the random regret minimization (RRM) model is ap-

plied to estimate the route choice preference. Different from the random utility maximization (RUM) 

model, RRM model is built on the psychological notion that travelers are regret minimizers selecting the 

route that makes them less regretful of not having chosen an alternative route. To investigate the impact of 

individual heterogeneity and journey attributes on route choice preference, we group the OD pairs by 

gender, age, departure time, and OD Euclidean distance, and then estimate the route choice models re-

spectively. 
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1. Introduction 
 

Route choice modeling is one of the crucial issues 

in urban transportation system, which plays a core 

role in both traffic assignment and network simula-

tion. The route choice is a reflection of potential 

preferences for each available route and we usually 

assume that traveler chooses the best route by 

maximizing their utility. There are often multiple 

routes between an origin-destination (OD) pair. The 

utility of each route depends on route attributes and 

individual heterogeneity1-3). Generally, the route 

choice probability can be estimated based on random 

utility maximization (RUM) theory4). And many 

studies have explored the effect of route attributes 

such as travel time, distance and cost on the route 

choice behavior by using discrete choice model 

based on RUM theory5). With the development of 

regret theory, the interest in random regret minimi-

zation (RRM) as an alternative paradigm to RUM has 

grown in recent years6, 7).  The discrete choice para-

digm of RRM has been applied to various choice 

contexts such as travel mode, parking route choice, 

automobile fuel choice ,vehicle type, shopping des-

tination, etc. 6-8). In contrast with RUM, the criterion 

of RRM aims to obtain a solution minimizing a us-
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er’s regret. It is plausible to describe the route choice 

behavior with the assumption that drivers are regret 

minimizer who might prefer the route with minimum 

regret compared with others, rather than choose the 

route with maximum utility9).  

However, only limited studies have applied RRM 

to route choice analysis and comparison between 

RRM and RUM10). Furthermore, few studies based 

on RRM theory incorporated the individual hetero-

geneity due to the difficulty in data collection, though 

it is widely accepted that individuals have varying 

tastes for specific attributes. In this study, we aim to 

model travelers’ route choice behavior in the context 

of average travel time and driving comfort based on 

RRM. There are two contributions in contrast with 

previous research. First, we incorporate the individ-

ual heterogeneity to the Path-size RRM model, in 

which the OD pair specific heterogeneity, personal 

specific heterogeneity, and time specific heteroge-

neity are considered. Second, the driving comfort 

represented by heart rate is explicitly incorporated 

into the route attributes. Previous studies usually 

regarded driving comfort as an unobserved attribute 

since it was not easy to capture, even though it should 

be regarded as an important factor to route choice. 

We try to fill this gap by modeling the driving com-

fort that related to driving environment and driving 

operation in the data collection process. 

 

 

2. Methodology 
 

In this section, we start with the introduction of the 

classical RRM model and Path-size RRM model. 

Next, we formulate the RRM based route choice 

model that allows for the representation of observed 

heterogeneity. 

 

 (1) The classical RRM model 
The concept of anticipated regret is an important 

determinant of choice behaviour. Regret is what one 

experiences when a non-chosen alternative performs 

better than the chosen one, and regret-based choice 

theories11) and models are developed on the notion 

that individuals aim to minimize their perceived re-

gret when making choices. Following the regret 

theory, random regret minimization (RRM) models 6, 

7, 10) postulate that decision makers try to minimize 

their regret when choosing alternatives. The level of 

perceived regret is associated with the considered 

alternative i. The regret of alternative i is described 

by the sum of binary regrets where alternative i is 

compared to other alternatives on each attribute in 

the personal choice set. This attribute-level regret can 

be formulated as follows. 

𝑅𝑖→𝑗
𝑚 = 𝑙𝑛 (1 + 𝑒𝑥𝑝 (𝛽𝑚(𝑥𝑗,𝑚 − 𝑥𝑖,𝑚)))      (1) 

where 

𝑅𝑖→𝑗
𝑚

: the random regret associated with the con-

sidered alternative i that is compared to alternative j 

on attribute m. 

𝛽𝑚: the estimated parameter associated with at-

tribute 𝑥𝑚. 

𝑥𝑖,𝑚, 𝑥𝑗,𝑚: the values associated with attribute 𝑥𝑚 

for, respectively, the considered alternative i and 

another alternative j. 

This formulation implies that regret is close to zero 

when alternative j performs worse than i in terms of 

attribute m, and that it grows as an approximately 

linear function 𝛽𝑚(𝑥𝑗,𝑚 − 𝑥𝑖,𝑚) of the difference in 

attribute values in the case when i performs worse 

than j in terms of attribute m. Hence, the RRM based 

model postulates that when a decision maker con-

siders alternative i as compared to alternative j he or 

she experiences almost no regret with regard to at-

tribute m when the attribute m of alternative i per-

forms considerably better12, 13).  

The overall regret is conceived to be the sum of all 

binary regrets associated with the binary compari-

sons between a considered alternative i and its 

competitor alternatives j for all attributes m.  

𝑅𝑖 = ∑ ∑ 𝑙𝑛{1 + 𝑒𝑥𝑝[𝛽𝑚(𝑥𝑗,𝑚 − 𝑥𝑖,𝑚)]}𝑚𝑗≠𝑖   (2) 

where 

𝑅𝑖: the observed regret associated with alternative 

i. 

Similar to the RUM based framework, the func-

tional form of the choice probabilities changes as 

different assumptions on the random error term 𝜀𝑖 are 

imposed. When the negative of the errors is assumed 

to be I.I.D. Type I Extreme Value, the choice prob-

ability can be derived using a classical MNL-form 

formulated as follows. 

𝑃𝑛,𝑖 =
𝑒𝑥𝑝(−𝑅𝑖)

∑ 𝑒𝑥𝑝(−𝑅𝑖)𝑗∈𝐶𝑛
                  (3) 

where 

𝑃𝑛,𝑖: the probability of selecting route 𝑖 for indi-

vidual n; 

𝐶𝑛: the choice set for individual 𝑛. 

 

(2) The Path-size RRM 
Because of the partial overlap of alternative routes 

in a route choice situation, the classical RRM model 

is not appropriate for route choice analysis. Prato 

(2014) expanded the paradigm of classical RRM in 

the route choice context considering similarities 

across alternatives9). Three approaches are proposed: 

(1) adding utility-based corrections; (2) adding a 

regret-based term that compares the degree of simi-

larity of a route with other alternatives; (3) adding a 

regret-based term that adjusts for the correlation of 
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each route with any other alternatives. Empirical 

studies showed that the second and the third ap-

proaches performed slightly better than the first ap-

proach. Therefore, we follow the second approach to 

overcome the overlapping problem because of its 

simple formulation. In the second approach, a path 

size correction term14) is added to the regret function, 

which expresses the pairwise comparison of the de-

gree of independence of alternatives. The Path-size 

RRM (PS-RRM) can be formulated as follows. 

𝑃𝑛,𝑖 =
𝑒𝑥𝑝(− ∑ ∑ 𝑙𝑛(1+𝑒𝑥𝑝(𝛽𝑚(𝑥𝑗,𝑚−𝑥𝑖,𝑚)))𝑚𝑗≠𝑖 −∑ 𝑙𝑛(1+𝑒𝑥𝑝(𝛽𝑝𝑠(𝑃𝑆𝑗−𝑃𝑆𝑖)))𝑗≠𝑖 )

∑ 𝑒𝑥𝑝(− ∑ ∑ 𝑙𝑛(1+𝑒𝑥𝑝(𝛽𝑚(𝑥𝑘,𝑚−𝑥𝑖,𝑚)))𝑚𝑘≠𝑗 −∑ 𝑙𝑛(1+𝑒𝑥𝑝(𝛽𝑝𝑠(𝑃𝑆𝑘−𝑃𝑆𝑗)))𝑘≠𝑗 )𝑗∈𝐶𝑛
 (4) 

𝑃𝑆𝑖 = ∑
𝐿𝑎

𝐿𝑖
𝑎∈𝛤𝑖

1

𝑀𝑎,𝐶𝑛
                           (5) 

where 

𝛤𝑖: the set of links in route 𝑖; 
𝛽𝑝𝑠: the estimated parameter associated with path 

size; 

𝐿𝑎: the length of link 𝑎; 

𝐿𝑖: the length of route 𝑖; 
𝑀𝑎,𝐶𝑛

: the number of paths in 𝐶𝑛 using link 𝑎; 

Intuitively, the expected sign of the parameter 𝛽𝑝𝑠 

is positive to indicate that the regret for the consid-

ered route decreases if this route is more independent 

than the alternative ones, and increases when this 

route is less distinct than the alternative ones. 

 

(3) The PS-RRM with heterogeneity 
Individual’s responsiveness or taste to route at-

tributes affects her or his route choice for a trip. This 

responsiveness will, in general, vary across individ-

uals based on individual characteristics. The regret 

an individual associates with a chosen route can be 

viewed as comprising two components from the 

perspective of an analyst. The first component can be 

viewed as the intrinsic bias of the individual toward 

the route due to individual heterogeneity (e.g., age, 

gender, trip purpose, departure time). The second 

component can be viewed as the regret that the indi-

vidual derived from perceived or observed attributes 

of route (e.g., travel time, distance, the number of 

signalized intersection, cost, and driving comfort). 

Therefore, we should obtain individual heterogeneity 

for the regret evaluation on route attributes. 

In the PS-RRM model, we assumed that individ-

uals are homogeneous and tastes 𝛽𝑚 are fixed coef-

ficients. To incorporate individual heterogeneity, as 

applied by Bhat (2000) 15) and Li et al. (2016) 3) in 

RUM based models, 𝛽𝑚 are assumed to have a linear 

relationship between individual characteristics and 

route attribute coefficients. Therefore, 𝛽𝑚  in the 

PS-RRM model can be reformulated as follows. 

𝛽𝑛,𝑚 = ∑ 𝛼𝑝𝑦𝑛,𝑚,𝑝𝑝 + 𝛾𝑚                           (6) 

where  

𝑦𝑛,𝑚,𝑝: the observed variable 𝑝 that related to in-

dividual n’s tastes on route attribute m;  

𝛼𝑝: the estimated parameter associated with het-

erogeneity;  

𝛾𝑚: the estimated parameter associated with the 

constant term on route attribute m. 

For route choice analysis, the individual hetero-

geneity can be divided to three categories: person-

al-specific (e.g. age and gender), OD pair specific 

(e.g. OD distance) and time specific (e.g. peak/off 

peak hours and day of week). We discuss the effect 

of heterogeneity on route attributes in section 4. 

 

 

3. Data 
 

The GPS and OBD data used in this study was 

collected from private vehicles. In recent years, 

benefiting from the popularity of vehicle navigation 

system, GPS data has become an important resource 

and has been used in route choice analysis and 

route-finding problems 16-18). The data is collected 

from 150 private cars in Toyota city, Japan in 2011 as 

a part of the Green Mobility project supported by 

Toyota Motor Corporation. On-board equipment 

(e.g., OBD device) installed in their private cars 

recorded the GPS trajectory as well as the driving 

behaviour such as brake and acceleration operation 

second by second. The data are uploaded to the in-

ternet server by the participants every week. In this 

study, the GPS data can be used for travel time es-

timation and the driving behaviour data recorded by 

OBD can be used for driving comfort estimation. 

 

(1) Road network 

A road network with 4072 nodes and 12,877 links 

in Toyota city, Japan, is used to analyse the route 

choice behaviour. This is a dense network. It covers 

an area of about 320 km2. 

 

(2) Observations 

The 150 drivers who made trips every day in the 

period March to December of 2011 are selected as 

the subjects for this study. Because the data set is 

large-scale, we only select 4312 OD pairs in March 

for this empirical analysis. As shown in Fig. 1, the 

OD pairs with only one trip account for 69.29% of 

the total trips, while the OD pairs with 2-3 trips, 4-5 

trips, 6-10 trips and 11 above trips only account for 

14.49%,  5.59%,  2.94%,  7.70%, respectively. For 

the OD pairs with large number of trips (e.g., more 

than 10 trips), it is possible to extract the experienced 

routes to generate the choice set from the trip record 

if the driver used more than one routes. However, it is 

difficult to obtain the route choice set for most of the 

OD pairs with sparse trips. To fill this gap, it is nec-

essary to generate the route choice set for each OD 

pair. 
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Because the travel time and driving comfort are 

considered in our route choice model, we need to 

estimate the route travel time and quantify the driv-

ing comfort for each candidate route. The average 

route travel time can be obtained by using GPS data 

after map-matching process19), and the driving 

comfort is quantified by heart rate increase which is 

estimated by easy-to-measured variables such as 

driving condition and driving operation collected by 

GPS and OBD. 

 

(3) Driving comfort estimation 

Travel time, distance, cost, value of time, the 

number of signalized intersection were usually re-

garded as the important route attributes in route 

choice analysis. However, driving comfort has not 

been explicitly considered due to the difficulty in 

data collection, although it is an important influence 

factor when drivers choose the best routes. Some 

drivers may wish only to minimize travel time. Oth-

ers may feel uncomfortable making difficult ma-

neuvers, and therefore avoid lane changes, freeways, 

heavily-congested roads or left turns (right turn traf-

fic) at intersections without protected signals20). El-

der drivers might be more insensitive to travel time 

and distance, given the comfort and better driving 

conditions that they enjoy. Some studies have shown 

that driving comfort or stress can be indicated by 

physiological signals such as heart rate, respiration, 

muscle activity, and skin conductance21, 22, 18). As 

shown in Fig. 2, drivers adjust their operation to 

accommodate the change of driving environment. 

And the driving environment and operation will 

cause the change of driving comfort; meanwhile the 

driving comfort also reacts on the driving operation. 

Heterogeneous drivers are assumed to choose the 

best routes based on their feeling of driving comfort 

and travel time in the past driving experience. In this 

study, we use heart rate increase as an indicator for 

driver comfort because it is convenient to collect by 

portable device such as Polar monitor23, 24). Driving 

comfort can be quantified by the heart rate increase 

compared with the heart rate in calm down situation. 

Large heart rate increase usually indicates nervous 

and stressful mental state when the driver needs to 

deal with complex situation. As shown in Fig. 3, the 

link-based driving comfort was detected in a ring 

route18). Totally 21 variables related to driving en-

vironment and driving operation, such as speed, ac-

celeration, brake, vehicle confliction, pedestrian 

confliction, lane change, are collected for driving 

comfort analysis. Our previous study18) has applied 

machine learning approach such as Random Forest to 

estimate the driving comfort and found that the top 

four easy-to-measured variables, i.e., average link 

speed, standard deviation of link speed, average 

brake frequency and average acceleration frequency, 

make a contribution of 72% to the driving comfort. 

Therefore, it is possible to estimate the link-based 

driving comfort based on these four variables. One of 

the significant advantages is that these four variables 

can be easily collected by the in-vehicle devices such 

as OBD and GPS. Since these four variables can 

represent most of the traffic condition and driver 

operation, it is not necessary to install the camera and 

physiological devices to capture the traffic condition 

and driving comfort in a large-scale data collection 

procedure. Following our previous study, we apply 

the machine learning approach to estimate the 

link-based driving comfort in the whole network. 

And the route-based driving comfort can be repre-

sented by the sum of the link-based driving comfort 

 
Fig. 1 The distribution of the number of trip for each OD pair 

 

 
Fig. 2 Influence factors related to driving comfort and route 

choice 

 

 
Fig. 3 A ring route for driving comfort modeling 
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after calculating the average link speed, standard 

deviation of link speed, average brake frequency and 

average acceleration frequency for each link. 

 

(4) Route choice set generation 

Since the road network used in this study is a rel-

atively large-scale network, the population of avail-

able routes for an OD pair (the universal set) is very 

large and mostly not known. The identification of 

distinct relevant route alternatives in such a network 

is not straightforward and requires model-based ap-

proaches such as repeated shortest path search25). 

Some studies used the Monte Carlo simulation for 

searching the shortest path with distance as criterion 

where link distances were repeatedly randomized 

using a normal distribution3, 26, 27). However, a driver 

would not recognize the difference among the similar 

routes with highly partial overlap. Generally, the 

universal route set will not be known by the driver 

due to the large number of potential paths and his or 

her limited cognitive abilities. The driver cognition is 

usually associated with his or her travel experiences 

in this network and his or her manner of acquiring 

information. Therefore, we propose to generate the 

route choice set on the experienced road network but 

not on the whole network. As shown in Fig. 4, we 

extract the links that the driver experienced in the 

past one month to build the individual network for 

generating the route choice set. This procedure can 

greatly reduce the number of possible routes and 

guarantee that all the routes in the experienced net-

work can be cognized by the driver. Then, the route 

choice set is generated by using a link penalty 

method which is similar to Chen et al. (2007) 28). As 

shown in Algorithm 1, we first generate the shortest 

route based on the average travel time, then the se-

lected links are given a penalized weight and the next 

shortest route based on the penalty network will be 

generated. We iteratively penalty the selected links 

and generate k routes until the travel time of the last 

route exceed 1.5 times of the first shortest route. 

Finally, we add the observed route into the choice set 

if the observed route is not included. Fig. 5 gives an 

Algorithm 1. Route choice set generation 

1 Step 1: Initialization 

2 Set 𝑆𝑛= “empty” for all OD pairs n; 

3 Set 𝐾𝑛 = 1; 

4 Find the least travel time route 𝑃𝑛,𝐾𝑛
 for all OD pairs with 

A-star algorithm; 

5 Compute the route travel time 𝑇𝑛,𝐾𝑛
; 

6 Save 𝑃𝑛,𝐾𝑛
 to 𝑆𝑛; 

7 Step 2: Iteration 

8 For each OD pair n, set iteration number m = 0; 

9 Step 2.1: Link weight penalty 

10         For each link on a path in 𝑆𝑛, their weights were 

penalized by 𝑤𝑖, where  

11         𝑤𝑖 = 𝛼𝑚𝑊𝑖 with 0 < 𝛼 < 1, and 𝑊𝑖 is the original 

weight of link i; 

12         𝐾𝑛: = 𝐾𝑛 + 1; 

13         𝑚: = 𝑚 + 1; 

14         Step 2.2: Find the candidate paths 

15         Calculate the shortest path 𝑃𝑛,𝐾𝑛
 based on 𝛼𝑚𝑊𝑖 +

𝑊𝑖; 

16         Step 2.3: Path checking 

17         Compute the path travel time 𝑇𝑛,𝐾𝑛
 based on the sum 

of 𝑊𝑖 in the path 𝑃𝑛,𝐾𝑛
 

18         If 𝑇𝑛,𝐾𝑛
< 1.5𝑇𝑛,1 and 𝑃𝑛,𝐾𝑛

∉ 𝑆𝑛 

19                Save 𝑃𝑛,𝐾𝑛
 to 𝑆𝑛; 

20         Else 

21                 𝐾𝑛: = 𝐾𝑛 − 1 

22         Step 2.4: Termination 

23         If 𝐾𝑛 < 𝑁, where N is the upper number of candi-

date path 

24                Go to Step 2.1; 

25         Else 

26              Add the observed path into 𝑆𝑛 

27                 End; 

 

 
Fig. 4 The whole network and personally experienced network 

 

 
Fig. 5 The route choice set based on personally experi-

enced network 
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example of the individual route choice set. 

 

 

4. Empirical results 
 

(1) Model specification 

Two route attributes, average travel time and 

driving comfort are included into the regret function. 

Travel time and distance are two highly similar and 

correlated attributes, so only one of them would be 

sufficient to the regret function. The cost is not con-

sidered because almost all of the roads are free in the 

urban road network. Since driving comfort should be 

highly correlated with the number of intersections, 

signal control and road grade, these variables are not 

considered. To illustrate the performance of the 

PS-RRM model with heterogeneity (PS-RRMH), 

three other models, i.e., Path-size logit (PSL), 

Path-size logit with heterogeneity (PSLH), and 

PS-RRM, are also estimated in this analysis. A 

summary of the different structures is shown in Table 

1. The systematic part of the regret with observed 

heterogeneity in Eq. (6) is given as: 
𝛽𝑛,𝑚 = 𝛼1𝐷𝑎𝑦𝑂𝑓𝑊𝑒𝑒𝑘𝑛,𝑚 + 𝛼2𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑇𝑖𝑚𝑒𝑛,𝑚 +

𝛼3𝑌𝑜𝑢𝑛𝑔𝑛,𝑚 + 𝛼4𝑂𝑙𝑑𝑛,𝑚 + 𝛼5𝐺𝑒𝑛𝑑𝑒𝑟𝑛,𝑚 +

𝛼6𝐿𝑛(𝑂𝐷_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) + 𝛾𝑚                                                     
(7)  

The PSL model is given as follows. 

𝑃𝑛,𝑖 =
𝑒𝑥𝑝(∑ 𝛽𝑚𝑥𝑖,𝑚𝑚 +𝛽𝑝𝑠ln (𝑃𝑆𝑖))

∑ 𝑒𝑥𝑝(∑ 𝛽𝑚𝑥𝑗,𝑚𝑚 +𝛽𝑝𝑠ln (𝑃𝑆𝑗))𝑗∈𝐶𝑛
   (8) 

Accordingly, the PSLH model is given as follows.  

𝑃𝑛,𝑖 =
𝑒𝑥𝑝(∑ 𝛽𝑛,𝑚

′ 𝑥𝑖,𝑚𝑚 +𝛽𝑝𝑠ln (𝑃𝑆𝑖))

∑ 𝑒𝑥𝑝(∑ 𝛽𝑛,𝑚
′ 𝑥𝑗,𝑚𝑚 +𝛽𝑝𝑠ln (𝑃𝑆𝑗))𝑗∈𝐶𝑛

    (9) 

where 𝛽𝑛,𝑚
′ = 𝛽𝑛,𝑚. 

 

(1) Estimation result 

The estimation results and goodness of fit of 

the four models are shown in Table 1. The Con-

stant_T, Constant_C and Constant_P are fixed 

parts of the tastes on route attributes. The Con-

stant_C and Constant_P have a negative sign as 

expected. However, Constant_T has a positive 

sign, which would be expected to have a negative 

sign because longer travel time should reduce the 

utility or increase the regret. To further explain 

the unusual estimation result, we estimate two 

PS-RRM models by considering travel time and 

driving comfort separately. As shown in Table 2,  

all of the parameters have expected signs. Inter-

estingly, it is found that the likelihood of 

PS-RRM only considering driving comfort and 

path size is greatly better than the likelihood of 

PS-RRM only considering travel time and path 

size. That means the effect of driving comfort is 

much stronger than the effect of travel time on 

the model fitness. Therefore, we guess the un-

expected sign of Constant_T is caused by the 

dominated effect of driving comfort.  

Then, we look at the performance of the 

four models. As expected, the PSLH model and 

PS-RRMH model are better than their original 

form without considering the observed hetero-

geneity. The PS-RRMH model is better than the 

PSLH model, which confirms our assumption 

that drivers are more likely to choose routes by 

minimizing their anticipated regret instead of 

maximizing their utility. 

The OD pair specific heterogeneity is re-

flected by the logarithm of OD distance. The 

negative sign and t-statistic suggest that OD dis-

tance will affect the taste for average travel time 

and driving comfort significantly. Drivers are 

more sensitive to average travel time and driving 

comfort when they need to drive longer distanc-

es. It is reasonable because drivers usually need 

to make a travel time schedule for a long distance 

trip on one hand and they prefer to comfortable 

driving that prevents fatigue on the other hand. 

The personal specific heterogeneity is rep-

resented by age and gender. All of these variables 

are significant. It is found that young drivers 

(age<=35) are less sensitive to travel time and 

driving comfort; while elder drivers (age>60) are 

less sensitive to travel time but they are more 

sensitive to driving comfort. It also indicates that 

the middle age drivers are more sensitive to 

travel time than the young and elder drivers, 

while they are less sensitive to driving comfort 

than elder drivers.  

The time specific heterogeneity is repre-

sented by departure time (depart at peak/off-peak 

hours) and day of week (weekend/weekday). The 

negative sign of departure time indicates that 

drivers are more sensitive to travel time and 

driving comfort at peak hours, because the travel 

time may be unstable and the congestion and 

frequent traffic conflict may cause uncomforta-

ble driving at peak hours. It is also found that 

people are more sensitive to travel time when 

they depart at weekend, while they are less sen-

sitive to driving comfort.  

The positive sign and t-statistic for the path size 

indicates that the regret will reduce and the utility 

will increase if the route has less overlap than the 

alternative ones. 

 

 

5. Conclusion and future work 

 

This study developed a route choice model based 

on RRM approach. In contrast to RUM approach, 
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RRM enables to minimize the anticipated regret of 

not having chosen another route when making 

choices. Comparing with RUM based models, RRM 

based models show better fitness, which indicates the 

assumption that drivers choosing the best route by 

minimizing their anticipated regret are more appro-

priate, even though the assumption of maximizing 

the user utility is still reasonable. 

The first contribution of this study is the applica-

tion of PS-RRM model that explicitly captures the 

heterogeneity which includes the OD pair specific 

heterogeneity, personal specific heterogeneity, and 

time specific heterogeneity. Second, the driving 

comfort represented by heart rate increase is explic-

itly incorporated into the route attributes. Previous 

studies usually regarded driving comfort as an un-

observed attribute, even though it should be regarded 

as an important factor to route choice. We estimate 

the driving comfort by using four easy-to-measured 

variables which can be captured by OBD and GPS. 

The estimation results confirm that the incorporation 

of observed heterogeneities such as OD distance, 

age, gender, departure time and day of week enables 

to improve the performance of the RRM and RUM 

based models. The t-statistic indicates that the ob-

served heterogeneities have significant effects on 

taste of travel time and driving comfort. For example, 

drivers are more sensitive to average travel time and 

driving comfort when they need to drive longer dis-

tances. The middle age drivers are more sensitive to 

travel time than the young and elder drivers, while 

elder drivers show more sensitive to driving comfort 

Table 1 Estimation results of four models 

Parameter 
PSL PSLH PS-RRM PS-RRMH 

Est t-stat Est t-stat Est t-stat Est t-stat 

Average travel time         
Constant_T 0.0081 25.55 0.0067 3.44 0.0014 30.25 0.0096 2.49 
Day of week 
(1, weekend; 0, weekday) 

  -0.000027 -2.04   -0.00052 -5.60 

Departure time 
(1, peak hour; 0, off-peak hour) 

  -0.0024 -3.71   -0.00040 -4.59 

Young 
(1, age<=35; 0, age>35) 

  0.00020 2.02   0.00042 2.99 

Old 
(1, age<=60; 0, age>60) 

  0.0027 2.70   0.00033 2.00 

Gender  
(1, male; 0, female) 

  -0.00167 -2.07   -0.0011 -3.7 

Logarithm of OD distance   -0.00127 -2.13   -0.0018 -2.05 
Driving comfort         
Constant_C -0.26 -39.51 -0.17 -3.27 -0.075 -41.73 -0.33 -16.85 
Day of week 
(1, weekend; 0, weekday) 

  0.056 4.08   0.051 15.92 

Departure time 
(1, peak hour; 0, off-peak hour) 

  0.040 3.03   0.011 3.80 

Young 
(1, age<=35; 0, age>35) 

  0.0025 2.14   0.018 3.37 

Old 
(1, age<=60; 0, age>60) 

  -0.0027 -2.12   -0.037 -4.32 

Gender  
(1, male; 0, female) 

  0.037 2.26   0.060 4.69 

Logarithm of OD distance   -0.046 -7.42   -0.046 -10.65 
Path size         
Constant_P 14.74 20.50 14.85 15.24 1.57 21.29 1.11 16.89 
Sample size 4312 
Null LL -8482.39 
Final LL -2956.31 -2908.55 -2868.46 -2759.13 
Rho_sq 0.651 0.657 0.662 0.675 

 

Table 2 Effects of travel time and driving comfort on model fitness 

Path Attributes 
PS-RRM 

(with driving comfort and path size) 
PS-RRM 

(with travel time and path size) 
Est t-stat Est t-stat 

Travel time -- -- -0.00047 -21.33 
Driving comfort -0.057 -41.11 -- -- 
Path size 2.10 28.98 1.75 31.19 
Sample size 4312 
Null LL -8482.39 
Final LL -3461.08 -7578.29 
Rho_sq 0.592 0.107 
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than young and middle age drivers. The time specific 

heterogeneity shows that drivers are more sensitive 

to both travel time and driving comfort at peak hours 

and weekend, while they are more sensitive to travel 

time but less sensitive to driving comfort. 

In further research, the GPS and OBD data might 

be combined with questionnaire data so as to take 

into account for a greater number of behaviour terms 

such as activity schedule and travel time budget. 

Further, in this study, the unobserved heterogeneity 

is not incorporated so as not to make the model too 

complicated. However, a mixed RRM based model 

should be formulated to capture the random effects of 

the unobserved heterogeneity. 
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