08-05 % 55 B ARHEEHRERS - HEK

Bifurcation theory of a square lattice
economy: Racetrack economy analogy in an
economic geography model

Kiyohiro lkeda!, Mikihisa Ond&?, Yuki Takayama’, Minoru Osawéf

IMember of JSCE, Professor, Dept. of Civil and Eng., Tohoku University (Acba, Sendai 980-8579, Japan)
E-mail: kiyohiro.ikeda.b4@tohoku.ac.jp
2Member of JSCE, Student, Dept. of Civil and Eng., Tohoku University (Sendai 980-8579, Japan)
E-mail: mikihisa.onda.p8@dc.tohoku.ac.jp
3Member of JSCE, Associate Professor, Institute of Science and Eng., Kanazawa University, (Kakuma, Kanazawa 920-1192, Japan)
E-mail: ytakayama@se.kanazawa-u.ac.jp
“Member of JSCE, Assistant Professor, Dept. of Civil and Eng., Tohoku University (Sendai 980-8579, Japan)

E-mail: minoru.osawa.a5@tohoku.ac.jp

Bifurcation theory for an economic agglomeration in a square lattice economy is presented comparatively with that
in a racetrack economy. Existence of a series of equilibria with characteristic geometrical patterns is elucidated. A
spatial period doubling bifurcation cascade between these equilibria is advanced as a common mechanism to engender
fewer and larger agglomerations in both economies. Analytical formulas for a break point, at which the uniformity is
broken under reduced transport costs, are proposed for an economic geography model by synthetically encompassing
both economies.
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1. Introduction tion” that leads to alternating core and periphery patterns
shown in Fig. 1(a) (see the related studies in Section 2.).
Square lattice economy is often employed as a two-
dimensional spatial platforrhThe spatial period doubling
pattern exists also in the lattice economy (Fig. 1(b)). Such
coexistence of this pattern implies that the racetrack econ-
omy can be interpreted as an idealized one-dimensional
counterpart of the agglomerations in two dimensions.
This paper aims to elucidate the mechanism of economic
agglomeration in a square lattice, which turns out to be
(a) Racetrack economy (b) Square lattice economy quite complicated (Section 8.). In order to tackle such
Fig.1 'clj'\évlj)b(;(rzlonomic space models in the state of spatial perio%omplexity, a racetrack economy analogy is proposed. The
& racetrack economy is endowed with a simpler spatial struc-
ture that is easier to be treated analytically than the lattice
A proper setting of spatial economy is vital in the inves-economy. In particular, we would like to answer the fol-
tigation of spatial economic agglomerations. A racetrackowing question: “To what qualitative or quantitative ex-
economy (Fig. 1(a)), which represents a series of placel§nt can the racetrack economy serve as a platform for the
on a circle, is believed to be capable of representing som@dglomerations in two dimensions?” While a qualitative
important agglomeration properties although this economgspect of these agglomerations is described in a general
is essentially one-dimensional. This economy undergoeSetting by bifurcation theory, a qualitative measure of the
bifurcations to engender fewer and larger agglomerations 1 several studies of spatial agglomeration have been conducted on a
(e.g., Krugman, 19930))_ The most characteristic behav- square lattice; see, e.g., Clarke and Wilson (1@83Weid|ich and

; ) ) ) ] ) Haag (1987)32), Munz and Weidlich (1990)23), Brakman et al.
ior that drew eyes is the “spatial period doubling bifurca-  (1999)¥), and Stelder (2005}
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agglomerations is presented for an economic geographstudy on three places (e.g., Commendatorea et al., 2014
model. ).

For a qualitative aspect, the progress of agglomeration Racetrack economy was used to show the evolution of
by repeated bifurcations are studied comparatively in botla regular lattice by Krugman (19939 and Fuijita, Krug-
economies. As a novel contribution of this paper, a bifur- man, and Venables (199%Y. Krugman (1996, p.913Y
cation theory in the square hexagonal lattice is developerkgarded the racetrack economy as one-dimensional and
and the existence of cascades of spatial period doublingferred its extendibility to a two-dimensional economy
bifurcations leading to fewer and larger agglomerations iso engender hexagonal distributions. Tabuchi and Thisse
elucidated. (2011) 3V examined the racetrack economy for a muilti-

For a quantitative aspect,tmeak point is investigated industry model to show the emergence of central places,
comparatively for the two economies. When investment invhich denotes a spatial alternation of a core place with a
transportation infrastructure is committed, the break pointarge population and a peripheral place with a small pop-
indexes the functioning of this investment. Formulas forulation. This economy undergoes a sequence of recurrent
the square lattice are newly developed and a strong linkadgfurcations, called the “spatial period doubling cascade,”
with a tensor structure is found between the racetrack angthich was observed ubiquitously for NEG modéls.
the lattice economies. A break pointof the transport cost was introduced for

Whereas real economic activities accommodate modelhie two-place economy (Fujita, Krugman, and Venables,
of various kinds, we refer to a specific economic geog-19991). The importance of the break point has come
raphy model, i.e., that of Forslid and Ottaviano (2083) to acknowledged and its formulas have been derived for
in favor of its analytical tractability. There are unskilled several spatial economy models in several spatial plat-
workers who are immobile and equally distributed alongforms: a class of footloose-entrepreneur modeldigeit
places, and skilled ones who are footloose entrepreneussid Sidekum, 2008%7), the Pfliger model (2004f®
maximize wages. By numerical comparative static analyin the racetrack economy for logit dynamics (Akamatsu,
ses for both economies, progress of agglomeration throughakayama, and lkeda, 20#), an analytically solvable
successive emergence of spatial period doubling pattermsodel (Forslid and Ottaviano, 2083 in the racetrack
is observed, thereby ensuring the validity of the racetraclkeconomy for the replicator dynamics (Ikeda et al., 2017a
economy analogy. 16)) and the same model in the<s6 hexagonal lattice for

This paper is organized as follows. Related studies arthe logit dynamics (Ikeda, Murota, and Takayama, 2017b
presented in Section 2.. Modeling of a spatial economy fot®).
an analytically solvable economic geography model model Bifurcation mechanism of the square lattice treated in
is presented in Section 3.. Symmetry of racetrack and lathis paper is based that for the hexagonal lattice (Ikeda et
tice economies is described in Section 4.. A theory ofal., 2012, 201491} |keda and Murota, 2014%). In
replicator dynamics is developed in Section 5.. Bifurcat-comparison with previous studies on the racetrack econ-
ing agglomeration patterns are predicted theoretically iromy, this paper treats this economy as a one-dimensional
Section 6.. Formulas for break points are advanced in Secounterpart of two-dimensional agglomerations. Synthetic
tion 7.. Numerical examples are presented in Section 8.. formulas that can encompass both the racetrack and the

square lattice economies are proposed, while such formu-
2. Related studies las for these two economies were derived up to now some-
what independently.

There are spatial platforms for economic activities of
various kinds. The two-place economy has long been emy Modeling of the spatial economy
ployed extensively (e.g., Krugman, 19%1; Fujita, Krug-
man, and Venables, 1999); Baldwin et al., 2003%; Modeling of the spatial economy is presented in this
Oyama, 2009%; Fujishima, 2013'%). There are a few section. As a representative of spatial economy models,

2 The mechanism of bifurcations in a racetrack economy was elucian analytically solvable core—periphery model by Forslid
dated by the group-theoretic bifurcation analysis (Ikeda, Murota,
and Akamatsu, 201%3)). 4 See, e.g., Picard and Tabuchi (2088), Ikeda, Akamatsu, and

8 Thebreak pointof the transport cost that produces a core—periphery Kono (2012)13), Akamatsu, Takayama, and lkeda (Zofk)Aka-
pattern in a two-place economy was highlighted as a key concept  matsu, Mori, and Takayama (201@), and Osawa, Akamatsu, and
(Fujita, Krugman, and Venables, 1989). Takayama (20173%).
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and Ottaviano (2003} is used. The fundamental logic between placegandi represents a distance decaying fric-
and governing equation of a multi-regional version of thetion. With the use of
model are presented based on work of Akamatsu, Mori,

r = expl-7(o - 1)] (5)
and Takayama (2016Y, while details are given in AP-
PENDIX I. (0 <r < 1fort > 0) expressing trade freeness, the spatial
discounting factod;; = Tillff’ in (4) is expressed &g =

(1) Basic assumptions p ma.j)

The economy of this model compriséslaces (labeled
i = 1,...,K), two factors of production (skilled and un- (3) Market equilibrium
skilled labor), and two sectors (manufacturing, M, and As worked out in APPENDIX I, the market equilibrium
agriculture, A). BothH skilled andL unskilled workers ~Wwage vectow is obtained as
consume final .goods of two types: manufacturing sector we K (I K DA‘lA)_l DA-11 ©)
goods and agricultural sector goods. Workers supply one o o
unit of each type of labor inelastically. Skilled workers areWith the notation

mobile among places, and the number of skilled workersin | w=(w;), D =(djj), A=diags,...,Ak),
placei is denoted by (ZiK=1 Ai = H). The total numbeH { A =diag1,..., k), 1=(1,...,1)". %
of skilled workers is normalized &$ = 1. Unskilled work-  The indirect utilityv; is expressed in terms of andA; =
ers are immobile and distributed equally across all placeilrs=1 Ohidx as
with unit density (i.e.L = 1 x K). U

Preferenced over the M- and A-sector goods are iden- Vi= o7 InAi +Inwi. (8)

tical across individuals. The utility of an individual in
placei is

UECM,CA) =puInCM+(1-)InCA O <pu<1), (1)

(4) Spatial equilibrium

We introduce the spatial equilibrium, for which high
skilled workers are allowed to migrate among places. A
wherey is a constant parameter expressing the E”‘pend'liustomary way to define such an equilibrium is to consider

ture share of manufacturing sector goodé, stands for the following problem: Find{, 9) satisfying
the consumption of the A-sector product in plaedeiM

represents the manufacturing aggregate in plawhich is { vi-94=0 4720 v-v<0 (i=L....K)

K * _
defined as Zia A =1
K n o/(c-1) (9)
o= (Zf i a (5)((7-—1)/<rd€] ) ) For the solution of this problemy Serves as the highest
j=1 0 (indirect) utility. When the system is in spatial equilib-

whereqj; (¢) is the consumption in pladeof a varietyf €  rium, no individual can improve hiser utility by changing

[0, n;] produced in placg, n; is the number of produced hig/her location unilaterally.

varieties at placg, ando- > 1 is the constant elasticity of  As guaranteed in Sandholm (201%), it is possible to

substitution between any two varieties. replace the problem to obtain a set of stable spatial equi-
libria by another problem to find a set of stable stationary

(2) Iceberg form of transport cost points of the replicator dynamics:

The transportation costs for M-sector goods are assumed da

to take the iceberg form. That is, for each unit of M-sector dat F(4.7), (10)

goods transported from placéo placej (# i), only afrac- whereF(4,7) = (Fi(4,7)|i=1,...,K), and

tion 1/Ti; < 1 actually arrivesT; = 1). It is assumed

thatT;; = T;j(7) is a function in a transport cost parameter
r>0as Here,v = YK, Aivi is the average utility. Stationary points

T, = expl m(, j) 0) 3) (rest points\1*(r) of the replicator dynamics (10) are de-

. . . , fined as those points which satisfy the static governing
wherem(i, j) is an integer expressing the shortest link be-

. . ~ . . .. equation
tween placesand j andL is the distance unit. The spatial
discounting factor

F(A7) = V1) - VA A, (i=1....K). (11)

F(1",7) = 0. (12)

dji = lei‘” (4)  We classify stability using the eigenvalues of the Jacobian
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to those on the opposite border to cover an infinite space
(Fig. 2(b)). Places of economic activities are located on the
nodes, which are connected by roads of the same ldngth
forming a square mesh. The symmetry of the lattice is ex-
pressed by the grouf, s, p;, p2), which is generated by
the following four elements:r: counterclockwise rotation
about the origin at an angle af 2, s. reflectiony — -y,
p.: x-directional periodic translation at the unit lendth
andp,: y-directional one.

The symmetry of the governing equation is formulated
as the so-called equivariance condifion

T(QF@.7) = F(T(9)1.7). geG (13)

in terms of aK x K orthogonal matrix representatiom of
the groupG. Then the Jacobian matrix satisfies the sym-
metry condition

T(@)J=JT(g), geG. (14)

The flat earth equilibrium (uniform distribution) with
(b) Periodically repeated 4 4 square lattice A = %(1, ...,1)T exists in both the racetrack and lattice
economies. This equilibrium is invariant@= D, in the

Fig.2 A system of places on thexd4 square lattice with periodic  rgcetrack economy and ® = (r, s, p1, p2) in the lattice
boundary conditions.

economy.
matrix J(A*, 7) = dF /0A(1*, 1) as 5. Bifurcation theory of replicator dynam-
linearly stable: ICS

every eigenvalue has negative real part,
linearly unstable:
at least one eigenvalue has positive real part.

We introduce a bifurcation theory on the replicator dy-
namics, which is endowed with a characteristic bifurcation

. o . mechanism due to its product form (11). After introducing
A stationary point is asymptotically stable or unstable ac- s . .
, o classifications of stationary points, we formulate a sym-
cording to whether it is linearly stable or unstable.

metry condition for the existence of trivial solutions and
investigate stability and sustainability of trivial solutions

4. Symmetry of racetrack and lattice as novel contributions of this paper.

economies

. _ . ) . (1) Classification of stationary points
In investigation of bifurcating patterns of a symmetric

system, we refer to a group that labels its symmetry.
For the racetrack economy, a seriesko= n places (la- ) ) ) T
. . . mechanism. First, these points are classified intinga
beledi = 1,...,n) is spread equally on the circumference _ ) - N _
. rior solution, for which all cities have positive population,
of the circle and these places are connected by roads of the ] i N
~ . and acorner solutionfor which some cities have zero pop-
same length.. The symmetry of this economy located at

Stationary points A, r) of the replicator dynamics are
classified in preparation for the description its bifurcation

- . . ulation.
the origin of thexy-plane is labeled by the dihedral group
D, = (s r), wheresis the reflectiory — -y, r is an 2r/n 5 The elements, s, py, andpy 1 = 521 = (rs)? = ;" = p" =&

. . . .. . = , T = r,r = p;°r, s = S, S = pP5°S,
anticlockwise rotation around the origin, agglis a group \[,th%ree igltﬁé id‘;;my‘;?emgﬁt PLTy SPL= Pas SBe =
generated by the elements therein. 6 This condition was proven for the racetrack economy in Ikeda, Aka-

. . o . matsu, and Kono (20129). The proof for the lattice economy can
An n x n square lattice with periodic boundary condi- be achieved similarly.

; [P i ; ; 7 Matrix representation means that (i) for each elengsrt G, T(g)
tions is introduced as a two-dimensional spatial platform. is aK x K matrix with T(@TT(q) = | (identity matrix), and (i)

Nodes at a border of this lattice are connected periodically  T(g)T(h) = T(gh forallg,h e G.
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A solution can be expressed, without loss of generalityProposition 1. The flat earth equilibrium2* =
by appropriately rearranging the order of independent vari%(l, ..., 1) is a trivial equilibrium.
ablest as

1 Proof. Because we hawg = - -- = v = Vv for this equilib-
= l;} (15)  rium, the conditions (9) for a spatial equilibrium is satisfied
° for anyr. ]

withd, = {4 >0]i=1,...,m andAg = 0. Note that
Ag is absent for an interior solution. The static governing

. . (2) Symmetry condition of a corner solution
equation (12) can be rearranged accordingly as . o i
A corner solution withmidentical agglomerated places,

2 _ F.(2:,20,7) 16) e,
FO(/]'-%—’ /107 T) /l 1 1
with the rearranged Jacobian matrix A= [/{} = [“(") } (29)
0

J= [‘:; Jio , (17) is paid a special attention in this paper. This is a core—
% periphery pattern with a two-level hierarchy: Population

where is agglomerated tan core places with identical popula-
J, =diagQy, . .., Am) 0(vi = V)/04; |1, ] =1,...,m}, tion, while other peripheral places have no population. An

J.o =diag@ly, ..., Am) atomic monocenter fam = 1 in Fig. 3(a) and twin places
O —V)/oa; li=1....mj=m+1,.. . K for m = 2 in (b) serve as simple examples of such a solu-

. — tion.
Jo =diaglmir — V,...,Vk — V).

A stable spatial equilibrium is given by a stable stationaryAssumption 1. The corner solution wittm identical ag-
solution, for which all eigenvalues dfare negative. Such glomerated places iif19) is invariant to a groupG and

stability condition is decomposed into two conditions: ~ there is a set of permutation matric&s(g) (g € G) that

Stability condition ford,: permutes any two entries af.

all eigenvalues of, are negative.
Sustainability condition foR:
all diagonal entries ofy are negative.

(18) Under this assumption, the reduced syster(i,, 0, 7)
in (16) is endowed with the symmetry conditions:

T.(QF.(1:,0,7) = F(T+(9)1+,0,7),

Next, critical point§ are classified into d@reak bifur- +@F. (4 ) (T )
cation poin? with singularJ, and anon-break poinwith T@d = J:T(g). geG. (20)
Vi — V = 0 for some placé (i = m+ 1,...,K); a sustain Trivial solutions have several characteristics as expounded
point is a special kind of non-break point. A bifurcating so-in the following Proposition and Corollary (see AP-
lution with reduced symmetry branches from a break pointPENDIX 11 for the proof).

hereas population of some places vanishes at a non-break - .
W ) P F_)u ! _p _ _V I_ _ Broposmon 2. A corner solution(d,, g, 7) = (%1, 0,7)
(sustain) point. A break points is eitheisanple bifurca- o . . o .
) ) ] ) ) ] satisfying Assumption 1 is a trivial solution.
tion point adouble bifurcation pointand so on, according
to whether the number of zero eigenvalue(s) of the JaccCorollary 1. An atomic monocentgfm = 1) and twin
bian matrixJ is equal to one, two, and so on. A simple places(m = 2) are trivial solutions.
bifurcation is eithetomahawkor pitchfork Bifurcating

solutions are unstable for the tomahawk and stable for the The .corner solutions witm .|d.ent|cal lagglomerated
pitchfork places in (19) are not always trivial solutions. For exam-

Last, stationary points are classified intdriaial solu- pIeI, t_he spagalhpattc_arns shown in F'gh' 3((;) are not t|r|v_|al
tion (A, 7) with a constantl that exists for any € (0, o) solutions and there is no guarantee that they are solutions

and anon-trivial solution(2, 7) for which A changes with (APPENDIX).
7. Existence of trivial solutions of various kinds is a special

feature of the replicator dynamics (3) Stability and sustainability of trivial solutions

— : _ , Prior to the description of stability and sustainability of
8 Critical points are those which have one or more zero eigenvalue(s) _ . .
of the Jacobian matrid. trivial solutions, we first refer to those of two places (Fu-

9 There is another critical point, a limit point of also with singular . i -
J; (Ikeda and Murota, 20144)). Yet this kind of point does not Jita, Krugman, and Venables, 1999)' A trivial solution

play an important role in the discussion in this paper. with 4 = (1/2,1/2)" is stable forr > 7, whererg is a
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6. Bifurcation mechanism of spatial pe-
riod doubling cascades

’ Spatial period doubling cascades of the racetrack and

(a) Atomic monocenter (trivial) the lattice economies are investigated in this section, while
these cascades are demonstrated in Section 8. to be pre-
dominant in the progress of agglomeration in the economic

, geography model (Section 3.). Itis ensured that spatial pe-

riod doubling patterns of these economies are always triv-
ial solutions. A bifurcation mechanism of the emergence
(b) Twin places (trivial) of these patterns in the lattice economy is newly presented
3 and is meshed consistently with the previous results in the
racetrack economy (lkeda, Akamatsu, and Kono, 28)2

1 We are interested in repeated occurrencspatial pe-

riod doubling engenderingspatial period doubling pat-
terns(Figs. 4(a) and (b)). These patterns are shown to be

(c) Non-trivial corner solutions trivial solutiond? in the remainder of this section.

Fig.3 Trivial and non-trivial corner solutions.
(1) Racetrack economy: spatial period doubling

Bifurcation rules for spatial period doubling cascade
break point. On the other hand, the core—periphery pattergtarting from the flat earth equilibriunt = £(1,...,1)"
A= (1,0)7 is sustainable for < rs, wherers is a sustain €N route to an atomic monocenter are presented. \When
point. is even, at a simple break bifurcation point on the flat earth

In general, a trivial equilibrium possibly has a few non- equilibrium, a solution curve bifurcates in the direction of

break points (Section 8.); accordingly, a sustain point igth €igenvector
defined as the non-break point with the smallestlue, MRa=(L-1...,1,-1)" (22)
which is set ags. We introduce the following assump-
tion, which is in line with the agglomeration behavior (Sec-
tion 8.) of the economic geography model (Section 3.).

of the Jacobian matrid. A bifurcating state has a popula-
tion distribution of the form:

— _ _ T
Assumption 2. For a trivial equilibrium other than the flat A=@/n+al/n-a....1/n+al/in-a,

earth equilibrium and the atomic monocenter, there age -I/n<a<l/n. (23)
andrs such that the stability condition of the core places inp;g represents a state in which concentrating places and
(18)is satisfied for > 7 and the sustainability condition - gytinguishing places alternate along the circle and, in turn,
of the periphery places i(18) s satisfied forr < 7s. to form a chain of spatially repeated core—periphery pat-
ternsa la Christaller (1933§) and Lissch (1940%2.

We consider a case where the concentrating and the ex-
(21)  tinguishing proceed until reaching a non-break (sustain)

point with a spatial period doubling pattern:

Then we can consider the following classification:

Well-posed trivial solution: 75 < g,
lll-posed trivial solution: 75 > 7s.

Proposition 3. A well-posed trivial solution is a stable

_ T
spatial equilibrium in the ranges < 7 < 15, while an Ara=(2/n.0.....2/n.0) .

ill-posed trivial solution is not a stable spatial equilibrium ie. A=(n... .2/m0....0) = {n (24
for anyr. 0

Corollary 2. Under Assumption 2, the flat earth equilib- which is invariant to a group B.

fium is stable forr > 7g. Forn=2¢(k = 2,3,...) places, at a simple break bifur-

cation point, a secondary bifurcating solution branches in
Proof. This is apparent since there is no sustain point on
. . 10 There are trivial solutions other than spatial period doubling ones as
this equilibrium. ] depicted in Fig. 4(c).
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DoOOD

T=1 D T=2 Dg T=4 D, T=8 D, T=16 D,
(a) Spatial period doubling trivial solutions: racetrack economs (6; T = T/L)

O

Ty=1 Ty = Ty=2 Ty=4 Ty=4
Toa= V2 Toa= V2 Toa=2V2 lea =22 Taia=4V2
(s puP2) (LS PPz PP (LS PLps)  (LSPIP5 PP (s =D

(b) Spatial period doubling trivial solutions: lattice economy
(n - ; Txy = Txy/l— lea = lea/l-)

DI

(r*,s po) (r’,s)
(c) Non-doubling trivial solutions

Fig.4 Spatial period doubling and non-doubling trivial solutions.

the direction of an eigenvector tence of a group permuting any two places with none-zero
o = (1,0,-1,0;...;1,0,-1,0)", and identical population. This ensures Assumption 1, and,
in turn, Proposition 2, thereby proving that the patterns are

e, 7=(1-1,...,1,-1;00,...,0,0)". (25) o i
trivial solutions. O
Thereafter, a simple break point and a non-break (sus-
tain) point can occur alternatively until reaching an atomic
)P . . y . g . (2) Lattice economy I: half spatial period doubling
monocenter. There is a series of spatial period doubling

patterns associated with a set of groups

Dhn — Dpp2 — -+ — Dy, (26)

A bifurcation rule of a spatial period doubling cascade
of the lattice economy is presented below, while details
of group-theoretic analysis are given in APPENDIX lIl.
where () denotes an occurrence of spatial period dou\whenn is even, at a simple break bifurcation point on the
bling at a simple break bifurcation. flat earth equilibrium, a bifurcating solution with the sym-

For example, Figure 4(a) depicts spatial period doublingm_‘,try of(r, S, p1pe, pll p2) branches in the direction of an
patterns fon = 16 places. There are 16, 8, 4, 2, and 1 corejgenvector

(agglomerated) places shown k) The agglomerated

places are located equidistantly and the spatial pefiod T2~ {cos@@(ny — 1)) [ M.z = L. N} = jra ® NREZT)
between these places is doubled repeatedly. of the Jacobian matrid (see (2) for the proof), whengs

is the spatial period doubling eigenvector of the racetrack
economy in (22). This patterp 5 represents period dou-
bling in the horizontal and the vertical directions. The lat-
Proof. For these patterns, the gro@in Proposition 2 is  tice economy is linked to the racetrack economy via the
chosen as one of these groups in (26) to ensure the exitensor product structure in (27). Such a linkage is called

Proposition 4. The spatial period doubling patterns of the
racetrack economy are trivial solutions.
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herein asquared tensor product linkage There are two series of spatial period doubling bifurca-

We consider a case where the concentrating and the eion cascades associated with a series of groups
tinguishing proceed until reaching a non-break (sustain)
point with a spatial period doubling pattern

(1,81, P2y = (1,S P%, ph)
= (LsplLpd = - = DyA32)
(r,s pip2, Py P2) = (.S (P1p2)> (P1MP2)?) = -+
= (s (pp)"2 (PP (33)

L . 1
which is invariant to a grougr, s, pipe, Py pz)- ) ) where &) indicates an occurrence of spatial period dou-
Whenn = 2" (m = 2,3,...), from the spatial period . o . . . .

) _ ) bling. This is calledull spatial period doublingas spatial
ijL;lblmlg paFtern in (28), another doubling pattern branCheBeriods in all four directions are doubled.
inthe direction: Figure 5 depicts mixed occurrence of half and full dou-

b = NRb ® 7IRb bling for n = 4. Twice repeated occurrence of half dou-
=(1,0,-1,0;...;1,0,-1,0) bling corresponds to single occurrence of full doubling.
®(1,0,-1,0;...:1,0,-1,0), (29) Such a mixture of half doubling and full doubling makes

hich is | iant t > M. In thi the progress of agglomeration of the lattice economy more
which is invariant to a groufr, , see . In this
group. s, . Py) (see (2) complex than that of the racetrack economy.

manner, a series of spatial period doubling trivial solutions ) ) ) , )
In this connection, spatial period doubling patterns are

is engendered. This, for example, is shown in Fig. 4(b) e _
. classified intdoursquare patternandoblique patternsas
(n = 4), which have 16, 8, 4, 2, and 1 core (agglomerated? . ]
llustrated in Fig. 6. In foursquare patterns for &iently

laces. There is a series of spatial period doubling patterns
P ) , P P garp r]argen, each first-level center is surrounded by four closest
associated with a set of groups , ,
first-level centers located (see the red circle surrounded by
—1
(r, S, P1, P2) — (I, S, P1P2, Py P2) four white circles in Fig. 6(a)). In oblique ones, each first-
— (s, pf, pg) - -+ — Dy (30) level center is surrounded by as many as eight first-level
centers at the same transport distance (Fig. 6(b)). In this
sense, the first-level centers of the oblique ones are more
densely packed in comparison with those of the foursquare

/lLa = /lRa® /lRa
=(2/n,0,...,2/n,0)® (2/n,0,...,2/n,0), (28)

Proposition 5. The spatial period doubling patterns of the
lattice economy are trivial solutions.

Proof. For these patterns, the groGuin Lemma 2 is cho-  ON€s, thereby realizing a more favorable environment for
sen as one of these groups in (30) to ensure the existenbger-place trade. The first cascade in (32) occurs between
of a group permuting any two places with none-zero andoursquare ones, while the second cascade in (33) occurs

identical population. This proves that the patterns are trivPetween oblique ones. This classification is vital in the
ial solutions. g  discussion of well-posedness of these patterns for the eco-

nomic geography model (Section 8.).
This lattice economy has a spatial peridg, in the x-
andy-directions andl g, in the two diagonal directions. 7. Break point initiating spatial agglomer-
In the spatial period doubling cascade in (30), the spatial
period doubling ofT,y, and that ofT;, take place alterna-

tively. This kind of spatial period doubling is called herein  Formulas for break points for the analytically solvable
half spatial period doublings half of the periods are dou- model (Section 3.) are developed in this section. A break

ation

bled each time (see, e.g., Fig. 4(b)). point is defined as the value offor the occurrence of a
bifurcation that breaks uniformity. When investment in
(3) Lattice economy: full spatial period doubling transportation infrastructure is committed, the break point

There are other kinds of bifurcation cascades. Wheindexes the functioning of this investment. Formulas for
n=2"(m= 23,...), from a double bifurcation point the lattice economy are newly developed and are presented
on the flat earth equilibrium, a bifurcating solution curvein a synthetic manner to encompass the previous result for

branches in the direction of the eigenvector in (29) ((3)): the racetrack economy (lkeda, Akamatsu, and Kono, 2012

13)
1Lb = 1Rb ® TJRD- (31) )-

11 The diagonal distance is not measured by the road distance but by The sizen of the economy is chosen as 2 ard ¢n =
the Euclidean distance. 1,2,...). The total lengthL of the road on the racetrack
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is chosen ag = 1, the spatial period of the lattice is also Lemma 1. The matrices)(1*), V(2*), andD have the com-
chosen ag = 1, and neighboring places are connected bymon eigenvector

an inter-place road of the length= 1/n. IRain (22) for the racetrack economy

n=1 pain(27) for the lattice economy (half doubling)
np in (31) for the lattice economy (full doubling)
(37)

(1) Fundamentals for deriving the formulas for
break point
Breaking uniformity by bifurcation at the flat earth equi-
librium A* is given by a zero eigenvalue of the JacobianLemma 2. The eigenvalueg, y, and e of the matrices
matrix J(2*). As worked out in (1.14)—(1.16)J(2") is re-  J(2"), V(2"), and D, respectively, for the common eigen-
lated to another Jacobian matki¥a*) = (0vi/04;) (") as  vectoryin (37)are related as

aw) = (%I - %m)vw) SREFARNNCY 7= Kierld- ka)j(;gi—l;i]}, (38)
with B="Y(e) = . ) (39)
Ke

V(") = K [Klf) +(1 - ;<I5)_1 D (xl - 5)] (35) The break point* can be determined as follows. First,
€ = ¢ for the break poirf satisfying g =)¥(¢*) = 0

is given bye* = (k +«')/(k«’ + 1) and is rewritten using
Landx = £ as?

wherex = £, ¢ = -, andD = D/d is the normalized
spatial discounting matrix. He® = (d;;) is defined by
(4) andd = d(r) = £, dyj with r being the trade freeness “ =
parameter introduced in (5). The spatial discounting ma- . H2o-1) (40)

= - 5.
trices for the racetrack and the lattice economies are called . olo-1)+pu

Dr and Dy, respectively, and are given, for example, forNext, as shown in the sequel, the parameter for the remote-
ness in (5) for the break point is given as a functionesf

n=2as
1 r r r2 asr* = ®(e*) with some functiond. Last, the break point
11 _ r rZor 7* corresponding to = r* can be determined from (5).
DR_[r 1}’ Do =Dr®Dr = r r2 1 r
reror 1 36 Remark 1. The variables* can be interpreted as an index
) (36) for agglomeration as* increases in association with an
We have the relatio®D = Dr ® Dg that connects the two
economies, while the matric& for n = 2™ (m =23 4) 12 From (39),8 = 0 is satisfied also by = 0, which represents redis-
' - Tomh persion. This case, however, is not a major interest of this paper, and
for example, are given in (1). is excluded hereafter.

We present the following lemmas for the eigenproblems 13 We have a no-black-hole conditigff; < 1 (Forslid and Ottaviano,
P 9 genp 20039)) from (40) and O< € < 1, which arises from (41) and (45)

for the matrices)(1*), V(1*), andD (see (2) for the proof). with0 <r < 1.



increase inu or with a decrease af, both of which index
a few large agglomerations.

(2) Formulas for break point: n=2

As an illustration of basic ideas, formulas for break

points are obtained fon = 2.1* For the racetrack (two-
place) economy witld = Dg in (36), we have

SR

A D

D = — = — =
LR A | 1+r

with the eigenvalue = (1 -r)/(1 + r) and the eigenvector

17 = ngr = (1,-1)" for the spatial period doubling. Like-

wise, for the lattice economy, we hawe= (1—r)%/(1+r)?

andp = gr ® nr = (1, -1, -1,1)". The relation betweea
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Proposition 7. Ast decreases from a large value for the
lattice economy, the economic agglomeration is realized
earlier for the half spatial doubling than for the full spatial
doubling(r{,, < 77,)-

Proof. For a givere*, (46) gives a larger* for p = 1 than
that for p = 2, which showsy = 7/, < {,. O
Although the synthetic formula (46) is endowed with
much desired independency on economic modeling, the

influence of the parameter valuesandu is contained im-
plicitly in €* and is not transparent (Remark 1). As a rem-
edy of this, we propose the following approximate formu-

andr for the two economies can be expressed in a syntheti@s which make transparent the influence of the values of

manner as

1-r\? 1-€l/p
—, i€, r=—+—
(1 + r) 1+¢€l/p
using a variablep expressing the squared tensaogiuct

linkage as

(41)

1 for the racetrack economy
and the lattice economy (full doubling)
2 for the lattice economy (half doubling)

p

(42)
The break point fon = 2 is expressed as
. 2 1+ ()P
"I 09(1— (e")vp (43)

which gives the break point corresponding to = r* with
(5) and (41). Under a moderate assumptios- 1, 7* can
be approximated as

_ 2 o 1+¢€ 2
VA G R b=
(3) Formulas for break point:

\ 8u
* T - 1)26

T Le-1
(44)

%

T

n=4m(m=1212,...)
Forn=4m(m=1,2,...), similarly to the case af = 2,
we can advance the relation betweesndr as

e

1+r

(45)

these parameters on the break paint

Proposition 8. Under an assumptionr > 1, the break
point7* forn =4m(m= 1, 2,...) are approximated by

SR 23/22 ut?
R~ ‘Lb ™~ £(0'—1)3/2’
n ”1/4
« __ o5/4
T Q™ 2 z —(a' — 1)5/4. 47

Proof. The proof of these formulas is similar to the proof
of (44) forn = 2. O
Remark 2. The formulas fon = 2 presented ir{43) have
different forms than the formulg@6) for n > 4. Such a
difference, which may be attributable to the influence of
far places forn > 4, demonstrates an inficiency of the
two-place economy as a two-dimensional spatial platform
for economic activities.

8. Comparative static analysis for the
emergence of agglomeration

Spatial period doubling cascade of the two economies
are studied in this section by comparative static analysis

which encompasses both economies via the squared tensgiip, respect to the transport cost of the economic geogra-

product linkage (42).

Proposition 6. The break point of the racetrack and the
lattice economies fon =4m(m=1,2,...) can be formu-
lated in a synthetic manner as

. n 1+ (er)Y/?p

* = . 46

T Ie-D 09(1— ()77 49
Proof. The relation (45) is solved for asr = {1 +

(€)Y?P}/{1 - (¢*)¥?P} and is substituted into (5) to arrive
at (46).

14 The lattice economy with = 2 is identical with the racetrack econ-
omy withn = 4.

O

phy model (Section 3.). The results of this analysis are ex-
amined in detail based on an ensemble of theoretical results
in the previous sections: the theory of replicator dynamics
(Section 5.), the bifurcation mechanism of spatial period
doubling (Section 6.), and the formulas for the break point
(Section 7.).

The size of the economies was chosemas 2™ (m =
1,2, 3,4); note that the lattice economy with= 2 is iden-
tical with the racetrack economy with = 4. Parameter
values were set ag = 1.0 and ¢, 1) = (10.0,0.4), which
satisfy the no-black hole condition (Footnote 13).
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Fig.7 Curves of equilibria for the racetrack economy witk= 2, 4, 8, and 16 (solid lines denote stable equilibia and dashed curves
does unstable oness)( a simple break bifurcation points). a sustain pointimax = max., 4;).

(1) Racetrack economy to a stable atomic monocenter (state C starting from a sus-

Curves of equilibria were computed for the racetracki@in point ¢). Fom = 8 and 16, there are cascades with
economy (Fig. 7). The horizontal lines A to E denote spa/more trivial equilibria. Asr decreases, stable equilibria
tial period doubling trivial equilibria, while non-horizontal Shift to fewer and larger agglomerations. Thus the race-
curves denote bifurcating equilibria. Stable equilibria ardrack economy fier us with an idealistic agglomeration
shown by solid lines, and unstable ones by dashed linebehavior that has been predicted theoretically (Section 6.).
Every trivial solution was well-posed satisfying < s Normalized break points*/n of the flat earth equilib-
in (18) and it was possible to find a range of stable spatialium A are listed in Table 1(a). Their numerically com-
equilibria ofrg < 7 < 75, which starts from a sustain point puted values are in complete agreement with the theoret-
and ends with a break point aslecreases. ical ones by (43) or (46) and in good agreement with the

For example, fon = 4 (Fig. 7(b)), a spatial period dou- approximate ones by (44) or or (47). Such an agreement is

bling cascade between stable equilibria took place as fofISC seen (Table 1(b)) for the lattice economy (Section (2)).
This sufices to show the validity of the formulas presented

in this paper.

lows. There was a stable flat earth equilibrium faos *
(state A). At the break bifurcation point aat r* shown
by (o), there emerged an unstable transient state AB with

two large places and two small places that connect th€) Lattice economy

break point a and the sustain point b. This state regained Curves of equilibria for the lattice economy (Fig. 9) dis-
stability at the point b in the state B of two concentratedplayed spatial period doubling cascade between the trivial
places and two extinguished places. Thereafter, at thequilibria A to I. Ast decreases, stable equilibria shifted
break point b, a stable transient state BC emerges en routé fewer and larger agglomerations.
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Tablel Comparison of numerical, theoretical, and approximate break points (underlined values are approximate ones).

(a) Racetrack economy

Numbern of places 2 4 8 16
Numerically computed 0.019 0.066 0.066 0.066
7*/n | Theoretical formula (43) or (46) | 0.019 0.066 0.066 0.066
Approximate formula (44) or (47) 0.020 0.066 0.066 0.066

(b) Lattice economy

Numbern of places 2 4 8 16
Numerically computed 0.066 0.134 0.134 0.134
7"/n | Theoretical formula (43) or (46) | 0.066 0.134 0.134 0.134
Approximate formula (44) or (47) 0.066 0.121 0.121 0.121
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Transport cost parameter 7/n
Fig.8 Durations of stable states far= 8.

Yet, unlike the racetrack economy, not all trivial equi- tice counterpart of a hexagonal in central place theory.
libria were stable. There were several ill-posed solutions, In the intermediate stage, in which the market-crowding
such as C fom = 4, 8 and 16 and E fon = 16, while  effect gradually decreases, whereas the market-access ef-
most of the solutions were well-posed satisfying< rs  fect increases, we found that the equilibrium C was ill-
in (18). All these ill-posed ones were foursquare patternposed and there were no stable equilibria for all cases. Full
(cf., Fig. 6(a)), whereas all oblique patterns (cf., Fig. 6(b))doubling®® B=D took place bypassing C and connecting
were well-posed. Even well-posed foursquare ones, sudtable equilibria of B and D. The equilibrium E was also
as E forn = 8 and G fom = 16, had very short durations ill-posed forn = 16 and full doubling B>F took place
of stable equilibria. bypassing E and connecting stable equilibria of D and F.

It is possible to classify the progress of agglomeration In the mature stage, in which the market-acce$sce
into three stagesiawn stageintermediate stageandma-  greatly decreases and the dispersion force arising from the
ture stage’® In the dawn stage, half spatial period dou-taste heterogeneity of workers prevails, stability was re-
bling between two stable equilibria A and B took place forgained for all cases and spatial period doubling cascade
all casestt = 4, 8, 16). At this stage, the underlying proceeded stably as

predominance of the market-crowdinffext is weakened DoE forn=4
by an increase in the market-accefiget that enlarges the DoEsEoG forn=8
agglomeration force. This reorganizes firms into locations DoEsEosGoH-ol forn=16

with greater competition, thereby engendering the oblique )

. . Thus a largen has entailed more repeated occurrence of

pattern B. This pattern may be interpreted as a square lat-

16 Forn = 4, a break bifurcation in B led directly to D. Far= 8 and

15 This classification was introduced for the hexagonal lattice economy 16, a break bifurcation in B, followed by a non-break bifurcation,
(Ikeda, Murota, and Takayama, 201]733) led to D.
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Fig.9 Curves of equilibria for the lattice economy with= 4, 8, and 16 (solid lines denote stable solutions and dashed ones does
unstable onesp{: a simple break bifurcation pointe): a sustain point;4): a double bifurcation point;{): a triple bifurcation
point; x: a non-break pointimax = ma>{<:1 Ap).

stable half doubling that is quite similar to the spatial pe-have arrived at a more complete transition of stable equi-
riod doubling cascade of the racetrack economy. Suchibria engendering a fewer and larger agglomerations as
similarity ensures the usefulness of the racetrack econongjecreases.

analogy proposed in this paper.

There were several ranges ofn which stable equlib-
ria are absent in the intermediate stage rfio= 8 and
16. To supplement such absence, the durations of stableA racetrack economy analogy was proposed by high-
states were investigated for= 8 with also reference to lighting this economy as a one-dimensional counterpart of
other (non-doubling) equilibria that were obtained basedhe two-dimensional economic agglomerations. As a novel
on Proposition 2. Figure 8 depicts these durations compafontribution of this paper, qualitative aspects of these ag-
atively for those of the spatial period doubling equilibria A glomerations in a lattice economy were described in a gen-
to G. In the dawn stage, A and B were only stable equilib-€ral setting by bifurcation theory.
ria. In the intermediate stage and at the beginning of the A symmetry condition for the existence of trivial solu-
mature stage, we encountered various kinds of stable triions in replicator dynamics was formulated and in turn
ial equilibrial” c, d, d, and e with stripe-like patterns, as tO advance spatial patterns of various kinds. In particular,
well as the spatial period doubling ones D and E. In thesPatial period doubling patterns were set forth as impor-
last stage of the mature stage, a few and large agglomei@nt trivial solutions for both economies. Spatial period

ations, such as F, G, and e were predominant. Thus wéoubling cascade between these patterns was advanced as
zrsltheoretically possible course of the progress of agglom-

eration and was demonstrated to exist in both economies

9. Conclusion

17 such emergence of various kinds of equilibria was observed also fo
a hexagonal lattice (Ikeda, Murota, and Takayama, 2‘(%7
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for an economic geography model. That theory was vi-  Economy: Cities, Regions, and International TradélT
tal in the understanding of the complicated agglomeration _ Press, Cambridge, 1999. ,

. . 12) M. Golubitsky, I. Stewart, and D. G. Schéer. 1988 Singu-
behavior of the lattice economy. larities and Groups in Bifurcation Theoryol. 2, Springer-
A progress of stable equilibria in association with de-  Verlag, New York.

creasing transport costin the lattice economy was ob- 13) K. Ikeda, T. Akamatsu, and T. Kono. 2012. “Spatial period-
9 P y doubling agglomeration of a core—periphery model with a

served for the economic geography model. In the dawn  system of cities,Journal of Economic Dynamics and Con-

stage with larger and in the mature stage with smail trol, 36(5), 754-778.

. . . . . 14) K. Ikeda and K. Murota. 2014 .Bifurcation Theory
spatial period doubling cascade was quite predominant, for Hexagonal Agglomeration in Economic Geography

thereby demonstrating the validity and usefulness of the  Springer-Verlag, Tokyo.
racetrack economy analogy proposed in this paper. In théS) K. Ikeda, K. Kazuo Murota, and T. Akamatsu. 2012. “Self-

. . e . . organization of bsch’s hexagons in economic agglomer-
intermediate stage, however, equilibria of various kinds  iion for core—periphery modelsjiternational Journal of

with stripe-like patterns were fund to be stable. Bifurcation and Chaos22(8), 1230026-1-1230026-29.

As a quantitative measure of spatial agglomerations, ant®) K- 1keda, K. Murota, T. Akamatsu, and Y. Takayama. 2017a.
‘Agglomeration patterns in a long narrow economy of a new

alytical formulas for the break point were proposed forthe  economic geography model: analogy to a racetrack econ-
economic geography model. In particular, those for the lat- ~ omy,” To appear irinternational Journal of Economic The-

. . ory.
tice economy were newly developed. The break points 01‘17) K. lkeda, K. Murota, T. Akamatsu, T. Kono, and Y.

both economies were expressed in a synthetic manner with  Takayama. 2014. “Self-organization of hexagonal agglom-

the aid of the squared tensor product linkage. The validity ~ eration patterns in new economic geography modats,jt-
nal of Economic Behavia# Organization 99, 32-52.

K. Ikeda, K. Murota, and Y. Takayama. 2017b. “Stable eco-

static analyses (Section 8.). nomic agglomeration patterns in two dimensions: beyond

the scope of central place theorygurnal of Regional Sci-

ence 57(1), 132-172.
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With the use of the iceberg form of the transport cost,
we have

K
X(0) = > TiiQi(0). (1)
j=1

APPENDIX | Details of the modeling of

spatial economy

Then the profit function of an M-sector firm in place
given in (1.5) above, can be rewritten as

The budget constraint is given as
K nj
'+ [ puoa(aae = v,
j=1

wherepiA is the price of A-sector goods in place;i(¢) is
the price of a variety in placei produced in place, and
Y; is the income of an individual in plade The incomes
(wages) of skilled workers and unskilled workers are rep-
resented, respectively, loy andvx/i-.

An individual in placei maximizes the utility in (1) sub-
ject to the budget constraint in (I.1). This yields the fol-
lowing demand functions of

Y
CiM =,u—",
Pi

K K
mi(6) = > pi(OQy(0) - [aWi +ﬁZTijQij(f)), (1.7)
j=1 =1
(1) \which is maximized by the firm. The first-order condition
for this profit maximization yields

pij(6) = %Tij. (1.8)

This implies thatp;;(€), Qij(¢), andx(¢) are independent
of £. Therefore, argumerdtis suppressed in the sequel.

(1) Market equilibrium

In the short run, skilled workers are immobile between
places, i.e., their spatial distributian= (14, ..., k) is as-
sumed to be given. The market equilibrium conditions con-
sist of three conditions: the M-sector goods market clear-
ing condition, the zero-profit condition attributable to the
free entry and exit of firms, and the skilled labor market
clearing condition. The first condition is written as (1.6)
above. The second requires that the operating profit of a
firm, given in (1.5), be absorbed entirely by the wage bill
demandQji(¢) in placei for a variety¢ produced in place of its skilled workers. This gives

j is given as 1 (X
B Wi = — Pij Qij —BXi ¢ -
Qji(f) = p“ (5)0 (Wl/l, + WL) (1.4) @ {; IR }

The A-sector is perfectly competitive and produces ho-The third condition is expressed as; = ; and the price
mogeneous goods under constant-returns-to-scale technildexp; in (1.3) can be rewritten using (1.8) as
ogy, which requires one unit of unskilled labor per unit K 1/(1~0)
output. A-sector goods are transported without transporta- pi = U_'i [E Z i jdji] .

g — a <
j=1
The market equilibrium wages in (1.9) can be repre-

tion cost and are chosen as the ranaire. In equilibrium,
The M-sector output is produced under increasingsented as

A _ i p:r 1
Ch = -n) o 12

wherep; denotes the price index of thefidirentiated prod-
ucts in place, which is

K o 1/(1-0)
:{Zf pji(f)l_(rdf] .
j=1v0

Because the total income in places w;4; + W:‘ the total

Qi(6) =u

(1.3)

O'

(1.9)

(1.10)

we havep® = w- = 1 for each.

returns-to-scale technology and Dixit-Stiglitz monopolis- _H K
. -~ o . ) £ Z (w,aJ +1) (1.11)
tic competition. A firm incurs a fixed input requirement of oo
a units of skilled labor and a marginal input requ|rementusing @), (1L4), (16), (18), and (1.10). Here); =

of 8 units of unskilled labor. An M-sector firm located in

acei ch 601 =1 Yk, dkjdk. Equation (I.11) is solvable fow; as follows.
placei chooses ff;; ji=1...,

K) that imi it . . .
) that maximizes its With the notation (7), (1.11) can be written as

profit
K w= X DALaw + 1), (1.12)
(0 = > pi(OQ(0) - lew +px(0).  (15) d
j=1 which is solved fomw as
. i -1
Yvherex._(f) denotes the total_ supply of varletyprod_uce_d we K (I K DA‘lA) DA-l1. (1.13)
in placei and(aw; + 8x;(¢)) signifies the cost function in- o o

troduced by Flam and Helpman (1987).

From the equilibrium equatiof in (12) with (11), we
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have fied. Hence that pattern is not a trivial solution in Proposi-
oF; _ [y z’(: s tion 2. The existence of a stationary point with this pattern
EXY )T is conditional on the value af.

Y K OV
”‘[a_z,-“’l‘;”ka_aj]’ (114) " APPENDIX Il Bifurcation of the lattice

whered;; is the Kronecker delta. This shows that the Jaco- economy
bian matrices)(1) = 0F /a4 andV(A) = dv/dA are related
as

J(A) = diag@1—V, ..., Vk =) +(A—-A2")V()-av", (1.15)

After a brief introduction of group-theoretic bifurcation
theory, bifurcation of the lattice economy is described.

wherev = 3f¢ 4vi, A = diag(ly,..., ), andv = (1) Outline of group-theoretic bifurcation theory
— T
V(. 7) = (v1(d.7)..... ’VK_(_’L T_)) o B Consider a critical pointA, 7c) on the flat earth equi-
At th? flat earth equilibrium wittvy, = -+ = Vk = V. jiprium curve, which is said to have multiplicitl (> 1)
(1.15) gives _ if the Jacobian matrix) = dF /04 of F at (1", 7¢) hasM
J) = (% - %117)V(/1*) - %111 (.16)  zeroeigenvalues. Ley(|i =1,...,K) be an orthonormal
basis ofRK such that
APPENDIX Il Details associated with triv- Ji=0, i=1... .M (1n.1)
ial solutions in Section 5. We express the variableasA = 2* + Y M, &n; andr as

T = 1 + T, wherer denotes an increment of
We present details of trivial solutions. First, the proof

of Proposition 2 is given as follows: Since theplaces
belonging toA, are permuted each other Gy (g) (g €
G), we havev; = v (i = 1,...,m), thereby satisfying
F+(nl11, 0,7) = 0. For K — m places with no population,
we havel; = 0, thereby satisfyingo(1,0,7) = 0. This  for some functionf in ¢ = (£1,....éw) € RM and7 e
shows that {,, 0,7) = (%1,0,7) serves as a trivial solu- R defined above. In this reduction process, the symmetry
tion. condition (13) of the full system is inherited by the reduced
Next, the proof of Corollary 1 reads: For an atomic system (111.2).
monocenter fom = 1, Assumption 1is satisfied by agroup  The reduced equation (111.2) is to be solved fras
G =(e)andT.(e) = 1. Then Proposition 2 guarantees thatg = £(7), which is often possible by virtue of the sym-
the corner solution of an atomic monocenter is a trivial SOmetry inherited byF. Becaused,7) = (0,0) is a singu-
lution. For twin places fom = 2, Assumption 1is satisfied |ar (critical) point of (I11.2), there can be many solutions

The full system of equation(4,7) = 0in (12) is re-
duced!® in a neighborhood of X, 7¢), to a system oM
equations (called bifurcation equations)

Fi&.79=0 (111.2)

by a groupG = ¢h) and £ = £(7) with £(0) = 0, which give rise to bifurcation.
T.(h) = 01 Each¢ uniquely determines a solutioh of the full sys-
T ol tem (12). Among the (critical) eigenvectozé‘ﬂlgmi, only

whereh denotes an exchange symmetry, i.e»2. Then those vectors which satisfy (Il.2) are related to bifurcat-

Proposition 2 guarantees that the corner solution for twinng solutions, whereas those which do not satisfy (111.2)

places is a trivial solution. are not. In this way possible bifurcating modes can be pre-
Last, the pattern in the left of Fig. 3(c), for example, is dicted using group-theoretic bifurcation analysis.

invariant to B = (s), i.e., the reflectiory — -y. This

invariance is expressed by the representation matrix (2) Half spatial period doubling

1.0 0 A simple break bifurcation point of the lattice is asso-
T.(9=[0 0 1, ciated with the one-dimensional irreducible representation
01 0 1, which exists only whem is even and is given by

which permutes the places 2 and 3 but retains the placa#(r) =1, T¢(s)=1, TH(p)=-1, TH(py) =(H13)

1 unchanged. Since there is no eXChange Sy_mmetry ?6_18 This is a standard procedure called thepunov—Schmidt reduction
tween place 1 and other places, Assumption 1 is not satis-  with symmetryGolubitsky, Stewart, and Schizer, 198812).
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that satisfy the fundamental relations (Footnote 5). We as- Let us assume that the variablke= (w;,w,)" for the
sume that the variable = w for the bifurcation equation bifurcation equation (l11.2) corresponds to the vectors

(11.2) corresponds to the column vectors of {cosn) | ni,mp = 1,...,n}, {cos@my) [ n,mo = 1,....n).

n ={cos@(n —mp)) [N, =1,...,n} (In.7)

L-1...1-1 —-11....-11: Whenn is even, bifurcating solutions from a critical
S 11 11 i.a point of multiplicity 2 associated with the irreducible rep-
b -L (1-4) resentation: exist in the direction:g; + g, with the sym-

As stated in (27), whem is even, a bifurcating so- metry of(r, s, p2, p3). The existence is shown below. Note

lution in the direction ofy with the symmetry oft = Fix“((r, s, p2, p2)) = Fix“((r)) N Fix“((s, p2, pd).

(r,s, p1p2, pll p2) arises from a critical point of multiplic-

ity 1 associated with the irreducible representajiomhe

proof of this statement is given below.

Here we have Fi(r)) = {c(1,1)" | ¢ € R}
since TH(r)(wy, w2)™ = (wp,wyp)" by (lll.6), whereas
Fix“((s, pf, p3)) = R? sinceT#(s) = T#(p]) = T#(p3) = |
by (l11.6). Therefore,
Fix“(Z) ={weRM | T#(gw=wforallgex} Fix“(2) = {c(1,1)" | ce R},

= {weR} (111.5)

The fixed-point subspace &ffor T# is given by

that is,X = X¥(wp) for wo = (1,1)". Thus the targeted
sincew = w and symmetryX is an isotropy subgroup with dim Fig) =
1. The equivariant branching lemma then guarantees the
existence of a bifurcating path with symmeRy

Secondary and further bifurcations for full spatial period
doubling can be dealt with similarly.

THNW=w, TH(sSw=w,
TH(prpw = (-1)(-1)w = w,
TH(ptp)W = (-1)(-1)w = w

by (lll.3). Thus the fixed-point subspace HZX) of the

targeted symmetr¥ is one-dimensional. The equivariant APPENDIX IV Details of derivation of for-
branching lemma then guarantees the existence of a bifur- mulas for break points

cating path with symmetr¥ (see Chapter 8 of lkeda and
Murota, 2014 for details of the equivariant branching  petails of derivation of formulas for break points in Sec-

lemma). tion 7. are presented. In regard\¢1) we recall (8):
Seco.ndary f';md further bifurcations for the lattice cgn be Vi = K in A +Inw (IV.1)
dealt with similarly. For example, for the secondary bifur- o-1
cation, if we setP; = pyipp andP, = p[lpz, we have the 2° well as (1.11): 4
relations Wi Z —'k(wk/lk +1), (IV.2)
(r,s p1p2, Pr'P2) = (. S, P1, P2), where
K
(r, s P2, p2) = (1, 8 P1P2, P*Py). M= A7) = 3 did;.

=1
Thus the bifurcation analysis on the grouss, P1,P;)  The diferentiations of (IV.1) and (1V.2) with respect g
and(r, s, P1P,, P11P2> is identical with that on the groups yield, respectively,

(r.'s, pr. p2) and(r, s, prp, Py *p2). M o_ % 1ow (V.3)
a/l, AW 6/l, '
3) Full spatial period doublin ow, :
© P . P . . g . . a—l Z [( /lk+Wk5kJ)Ak—(Wk/1k+1)C|JV4)
A double bifurcation point is associated with the two- 1 1
dimensional irreducible representatjgrwhich exists only ~ where
whennis even, and is given by K= ﬁ, W= H (IV.5)
o oc-1
We have < k < 1 and«’ > 0 becauser > 1,0< u < 1.
TH(r) = , TH(9) = , s
1 1 The matrixV(2*) in (34) can be evaluated as shown be-
-1 1 low. At A = 2*, we have
TH(py) = » TH(p2) = : K
1 -1 Aj = A, 7) Z Gl = 2
P = H ,T) = i = —.
(11L.6) o £ K



Becausay; is independent of, we may putw; = w; then
(IV.2) becomes
K
K w
w= KJZE “(— ):K(W+K),
which yields
w= <K (IV.6)
1-«

At A = 2%, (IV.4) becomes

oW K2 1w d (w

L % [(Ra—ﬂj ~wig) 2 = (% +2)|.

which in matrix form reads as

K2 d 1 w+ K
with W = (ow;/0.4;). W|th the use of (IV.6), this equation

can be rewritten as

W=

W+W|)—

D D D
(1-xg)w=kwg(a-3).
which can be further rewritten as
D\!1 D D
W = KW(I —Ka) °E(K| - E)'
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V, whereV is the sum of the entries of a column{1*)
that is identical for all the columns by the symmetry of
the system. Last, from (35), we have a commutability
T(gD = DT(g). These three commutabilities guaran-
tee the existence of the common eigenveeatorA con-
crete form ofyp can be determined uniquely by adapting
the method for the hexagonal lattice (Ikeda and Murota,
2014, Section 7.5%).

Multiplying 5 to V(4*) in (35) from the right and using
Dy = e, we obtainV(2*) - n = yp with y = K[x'e + (1 -
k€)™ - e(k — €)]. Multiplying (34) by 5 from the right and
usingl™ = 0 and1™V(A*) - = y1™p = 0, we obtain
J(A*) - p = kn. Then the eigenvalug of the Jacobian
matrix J(1*) for the eigenvectoy is expressed in terms of
e asp = ¥(e) in (39).

(Received April 28, 2017 )

Then the partial derivatives in (IV.3) can be evaluated in

matrix form as
D

'9+(I— —
Kd K

V() = K 5

o

(1) Spatial discounting matrix

)] (V)

For the racetrack economy, the spatial discounting ma-

trix D for n = 4 is given as

1 r r? r
Dr=| } A rr2 , (IV.8)
rr2 r 1
the matrix forn = 8 is given as
1 r r?2 o3 1 rt 2 8
Rs Rs o ro1 r r?| . rrto1 ot o2
DR:RB:[IQS ﬁs} with Re = 2 r 1 r| Ro=r rr2 ot et
rr2 r 1 r3 2 1o
and that fom = 16 is given as
Re Ris r"Rs RJ, ré 5 % (7
Dk = Rig = TIP e Ris ™Rsl  ith Rus = rz r;‘ rj rz
"Re  Ryg Rs Rle r< re rvr
Re rMRs R, Rs ror2 3 r4

(2) Proof of Lemmas 1 and 2

First, (14) gives a commutabilitf(g)J(1*) = J(21*)T(g)
(g € G) holds for the grougs that labels the symmetry of
each economy. Next, from (34), we have

705 - o :

which gives a commutabilityr (Q)V(1*) = V(T(g)A*) by
T(g11" = 11"T(g) = 11" and11"V(A*) = V(A")11" =

| - i11T)V(A*)—T(g)§11T = (RI - %MT)V(/{*)T(Q)—%HTT(Q),



