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Bifurcation theory for an economic agglomeration in a square lattice economy is presented comparatively with that
in a racetrack economy. Existence of a series of equilibria with characteristic geometrical patterns is elucidated. A
spatial period doubling bifurcation cascade between these equilibria is advanced as a common mechanism to engender
fewer and larger agglomerations in both economies. Analytical formulas for a break point, at which the uniformity is
broken under reduced transport costs, are proposed for an economic geography model by synthetically encompassing
both economies.
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1. Introduction
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(a) Racetrack economy (b) Square lattice economy
Fig.1 Two economic space models in the state of spatial period

doubling.

A proper setting of spatial economy is vital in the inves-

tigation of spatial economic agglomerations. A racetrack

economy (Fig. 1(a)), which represents a series of places

on a circle, is believed to be capable of representing some

important agglomeration properties although this economy

is essentially one-dimensional. This economy undergoes

bifurcations to engender fewer and larger agglomerations

(e.g., Krugman, 199320)). The most characteristic behav-

ior that drew eyes is the “spatial period doubling bifurca-

tion” that leads to alternating core and periphery patterns

shown in Fig. 1(a) (see the related studies in Section 2.).

Square lattice economy is often employed as a two-

dimensional spatial platform.1 The spatial period doubling

pattern exists also in the lattice economy (Fig. 1(b)). Such

coexistence of this pattern implies that the racetrack econ-

omy can be interpreted as an idealized one-dimensional

counterpart of the agglomerations in two dimensions.

This paper aims to elucidate the mechanism of economic

agglomeration in a square lattice, which turns out to be

quite complicated (Section 8.). In order to tackle such

complexity, a racetrack economy analogy is proposed. The

racetrack economy is endowed with a simpler spatial struc-

ture that is easier to be treated analytically than the lattice

economy. In particular, we would like to answer the fol-

lowing question: “To what qualitative or quantitative ex-

tent can the racetrack economy serve as a platform for the

agglomerations in two dimensions?” While a qualitative

aspect of these agglomerations is described in a general

setting by bifurcation theory, a qualitative measure of the

1 Several studies of spatial agglomeration have been conducted on a
square lattice; see, e.g., Clarke and Wilson (1983)6), Weidlich and
Haag (1987)32), Munz and Weidlich (1990)23), Brakman et al.
(1999)4)), and Stelder (2005)30).
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agglomerations is presented for an economic geography

model.

For a qualitative aspect, the progress of agglomeration

by repeated bifurcations are studied comparatively in both

economies.2 As a novel contribution of this paper, a bifur-

cation theory in the square hexagonal lattice is developed

and the existence of cascades of spatial period doubling

bifurcations leading to fewer and larger agglomerations is

elucidated.

For a quantitative aspect, abreak point3 is investigated

comparatively for the two economies. When investment in

transportation infrastructure is committed, the break point

indexes the functioning of this investment. Formulas for

the square lattice are newly developed and a strong linkage

with a tensor structure is found between the racetrack and

the lattice economies.

Whereas real economic activities accommodate models

of various kinds, we refer to a specific economic geog-

raphy model, i.e., that of Forslid and Ottaviano (2003)9)

in favor of its analytical tractability. There are unskilled

workers who are immobile and equally distributed along

places, and skilled ones who are footloose entrepreneurs

maximize wages. By numerical comparative static analy-

ses for both economies, progress of agglomeration through

successive emergence of spatial period doubling patterns

is observed, thereby ensuring the validity of the racetrack

economy analogy.

This paper is organized as follows. Related studies are

presented in Section 2.. Modeling of a spatial economy for

an analytically solvable economic geography model model

is presented in Section 3.. Symmetry of racetrack and lat-

tice economies is described in Section 4.. A theory of

replicator dynamics is developed in Section 5.. Bifurcat-

ing agglomeration patterns are predicted theoretically in

Section 6.. Formulas for break points are advanced in Sec-

tion 7.. Numerical examples are presented in Section 8..

2. Related studies

There are spatial platforms for economic activities of

various kinds. The two-place economy has long been em-

ployed extensively (e.g., Krugman, 199119); Fujita, Krug-

man, and Venables, 199911); Baldwin et al., 20033);

Oyama, 200925); Fujishima, 201310)). There are a few

2 The mechanism of bifurcations in a racetrack economy was eluci-
dated by the group-theoretic bifurcation analysis (Ikeda, Murota,
and Akamatsu, 201213)).

3 Thebreak pointof the transport cost that produces a core–periphery
pattern in a two-place economy was highlighted as a key concept
(Fujita, Krugman, and Venables, 199911)).

study on three places (e.g., Commendatorea et al., 2014
7)).

Racetrack economy was used to show the evolution of

a regular lattice by Krugman (1993)20) and Fujita, Krug-

man, and Venables (1999)11). Krugman (1996, p.91)21)

regarded the racetrack economy as one-dimensional and

inferred its extendibility to a two-dimensional economy

to engender hexagonal distributions. Tabuchi and Thisse

(2011) 31) examined the racetrack economy for a multi-

industry model to show the emergence of central places,

which denotes a spatial alternation of a core place with a

large population and a peripheral place with a small pop-

ulation. This economy undergoes a sequence of recurrent

bifurcations, called the “spatial period doubling cascade,”

which was observed ubiquitously for NEG models.4

A break pointof the transport cost was introduced for

the two-place economy (Fujita, Krugman, and Venables,

1999 11)). The importance of the break point has come

to acknowledged and its formulas have been derived for

several spatial economy models in several spatial plat-

forms: a class of footloose-entrepreneur models (Pflüger

and S̈udekum, 200827)), the Pfl̈uger model (2004)26)

in the racetrack economy for logit dynamics (Akamatsu,

Takayama, and Ikeda, 20122)), an analytically solvable

model (Forslid and Ottaviano, 20039)) in the racetrack

economy for the replicator dynamics (Ikeda et al., 2017a
16)), and the same model in the 6× 6 hexagonal lattice for

the logit dynamics (Ikeda, Murota, and Takayama, 2017b
18)).

Bifurcation mechanism of the square lattice treated in

this paper is based that for the hexagonal lattice (Ikeda et

al., 2012, 201415),17); Ikeda and Murota, 201414)). In

comparison with previous studies on the racetrack econ-

omy, this paper treats this economy as a one-dimensional

counterpart of two-dimensional agglomerations. Synthetic

formulas that can encompass both the racetrack and the

square lattice economies are proposed, while such formu-

las for these two economies were derived up to now some-

what independently.

3. Modeling of the spatial economy

Modeling of the spatial economy is presented in this

section. As a representative of spatial economy models,

an analytically solvable core–periphery model by Forslid

4 See, e.g., Picard and Tabuchi (2010)28), Ikeda, Akamatsu, and
Kono (2012)13), Akamatsu, Takayama, and Ikeda (2012)2), Aka-
matsu, Mori, and Takayama (2016)1), and Osawa, Akamatsu, and
Takayama (2017)24).
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and Ottaviano (2003)9) is used. The fundamental logic

and governing equation of a multi-regional version of the

model are presented based on work of Akamatsu, Mori,

and Takayama (2016)1), while details are given in AP-

PENDIX I.

(1) Basic assumptions

The economy of this model comprisesK places (labeled

i = 1, . . . ,K), two factors of production (skilled and un-

skilled labor), and two sectors (manufacturing, M, and

agriculture, A). BothH skilled andL unskilled workers

consume final goods of two types: manufacturing sector

goods and agricultural sector goods. Workers supply one

unit of each type of labor inelastically. Skilled workers are

mobile among places, and the number of skilled workers in

placei is denoted byλi (
∑K

i=1 λi = H). The total numberH

of skilled workers is normalized asH = 1. Unskilled work-

ers are immobile and distributed equally across all places

with unit density (i.e.,L = 1× K).

PreferencesU over the M- and A-sector goods are iden-

tical across individuals. The utility of an individual in

placei is

U(CM
i ,C

A
i ) = µ ln CM

i +(1−µ) ln CA
i (0 < µ < 1), (1)

whereµ is a constant parameter expressing the expendi-

ture share of manufacturing sector goods,CA
i stands for

the consumption of the A-sector product in placei andCM
i

represents the manufacturing aggregate in placei, which is

defined as

CM
i ≡

 K∑
j=1

∫ n j

0
q ji (ℓ)

(σ−1)/σdℓ


σ/(σ−1)

, (2)

whereq ji (ℓ) is the consumption in placei of a varietyℓ ∈
[0,n j ] produced in placej, n j is the number of produced

varieties at placej, andσ > 1 is the constant elasticity of

substitution between any two varieties.

(2) Iceberg form of transport cost

The transportation costs for M-sector goods are assumed

to take the iceberg form. That is, for each unit of M-sector

goods transported from placei to placej (, i), only a frac-

tion 1/Ti j < 1 actually arrives (Tii = 1). It is assumed

thatTi j = Ti j (τ) is a function in a transport cost parameter

τ > 0 as

Ti j = exp(τm(i, j) L̃), (3)

wherem(i, j) is an integer expressing the shortest link be-

tween placesi and j andL̃ is the distance unit. The spatial

discounting factor

d ji = T1−σ
ji (4)

between placesj andi represents a distance decaying fric-

tion. With the use of

r = exp[− τ(σ − 1)L̃] (5)

(0 < r < 1 for τ > 0) expressing trade freeness, the spatial

discounting factordi j = T1−σ
i j in (4) is expressed asdi j =

r m(i, j).

(3) Market equilibrium

As worked out in APPENDIX I, the market equilibrium

wage vectorw is obtained as

w =
µ

σ

(
I − µ
σ

D∆−1Λ

)−1
D∆−11 (6)

with the notation w = (wi), D = (di j ), ∆ = diag(∆1, . . . ,∆K),

Λ = diag(λ1, . . . , λK), 1 = (1, . . . ,1)⊤.
(7)

The indirect utilityvi is expressed in terms ofwi and∆i =∑K
k=1 dkiλk as

vi =
µ

σ − 1
ln∆i + ln wi . (8)

(4) Spatial equilibrium

We introduce the spatial equilibrium, for which high

skilled workers are allowed to migrate among places. A

customary way to define such an equilibrium is to consider

the following problem: Find (λ∗, v̂) satisfying (vi − v̂)λ∗i = 0, λ∗i ≥ 0, vi − v̂ ≤ 0, (i = 1, . . . ,K),∑K
i=1 λ

∗
i = 1.

(9)

For the solution of this problem, ˆv serves as the highest

(indirect) utility. When the system is in aspatial equilib-

rium, no individual can improve his/her utility by changing

his/her location unilaterally.

As guaranteed in Sandholm (2010)29), it is possible to

replace the problem to obtain a set of stable spatial equi-

libria by another problem to find a set of stable stationary

points of the replicator dynamics:

dλ
dt
= F(λ, τ), (10)

whereF(λ, τ) = (Fi(λ, τ) | i = 1, . . . ,K), and

Fi(λ, τ) = (vi(λ, τ) − v̄(λ, τ))λi , (i = 1, . . . ,K). (11)

Here,v̄ =
∑K

i=1 λivi is the average utility. Stationary points

(rest points)λ∗(τ) of the replicator dynamics (10) are de-

fined as those points which satisfy the static governing

equation

F(λ∗, τ) = 0. (12)

We classify stability using the eigenvalues of the Jacobian
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(a) 4× 4 square lattice
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(b) Periodically repeated 4× 4 square lattice

Fig.2 A system of places on the 4×4 square lattice with periodic
boundary conditions.

matrix J(λ∗, τ) = ∂F/∂λ(λ∗, τ) as
linearly stable:

every eigenvalue has negative real part,

linearly unstable:

at least one eigenvalue has positive real part.

A stationary point is asymptotically stable or unstable ac-

cording to whether it is linearly stable or unstable.

4. Symmetry of racetrack and lattice

economies

In investigation of bifurcating patterns of a symmetric

system, we refer to a groupG that labels its symmetry.

For the racetrack economy, a series ofK = n places (la-

beledi = 1, . . . ,n) is spread equally on the circumference

of the circle and these places are connected by roads of the

same length̃L. The symmetry of this economy located at

the origin of thexy-plane is labeled by the dihedral group

Dn = ⟨s, r⟩, wheres is the reflectiony 7→ −y, r is an 2π/n

anticlockwise rotation around the origin, and⟨·⟩ is a group

generated by the elements therein.

An n × n square lattice with periodic boundary condi-

tions is introduced as a two-dimensional spatial platform.

Nodes at a border of this lattice are connected periodically

to those on the opposite border to cover an infinite space

(Fig. 2(b)). Places of economic activities are located on the

nodes, which are connected by roads of the same lengthL̃

forming a square mesh. The symmetry of the lattice is ex-

pressed by the group⟨r, s, p1, p2⟩, which is generated by

the following four elements:5 r: counterclockwise rotation

about the origin at an angle ofπ/2, s: reflectiony 7→ −y,

p1: x-directional periodic translation at the unit lengthL̃,

andp2: y-directional one.

The symmetry of the governing equation is formulated

as the so-called equivariance condition6

T(g)F(λ, τ) = F(T(g)λ, τ), g ∈ G (13)

in terms of aK ×K orthogonal matrix representation7 T of

the groupG. Then the Jacobian matrix satisfies the sym-

metry condition

T(g)J = JT(g), g ∈ G. (14)

The flat earth equilibrium (uniform distribution) with

λ∗ = 1
K (1, . . . ,1)⊤ exists in both the racetrack and lattice

economies. This equilibrium is invariant toG = Dn in the

racetrack economy and toG = ⟨r, s, p1, p2⟩ in the lattice

economy.

5. Bifurcation theory of replicator dynam-

ics

We introduce a bifurcation theory on the replicator dy-

namics, which is endowed with a characteristic bifurcation

mechanism due to its product form (11). After introducing

classifications of stationary points, we formulate a sym-

metry condition for the existence of trivial solutions and

investigate stability and sustainability of trivial solutions

as novel contributions of this paper.

(1) Classification of stationary points

Stationary points (λ, τ) of the replicator dynamics are

classified in preparation for the description its bifurcation

mechanism. First, these points are classified into aninte-

rior solution, for which all cities have positive population,

and acorner solution, for which some cities have zero pop-

ulation.

5 The elementsr, s, p1, and p2 r4 = s2 = (rs)2 = p1
n = p2

n = e,
p2p1 = p1p2, rp1 = p2r, rp2 = p−1

1 r, sp1 = p1s, sp2 = p−1
2 s,

wheree is the identity element.
6 This condition was proven for the racetrack economy in Ikeda, Aka-

matsu, and Kono (2012)13). The proof for the lattice economy can
be achieved similarly.

7 Matrix representation means that (i) for each elementg ∈ G, T(g)
is a K × K matrix with T(g)⊤T(g) = I (identity matrix), and (ii)
T(g)T(h) = T(gh) for all g,h ∈ G.
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A solution can be expressed, without loss of generality,

by appropriately rearranging the order of independent vari-

ablesλ as

λ̂ =

λ+
λ0

 (15)

with λ+ = {λi > 0 | i = 1, . . . ,m} andλ0 = 0. Note that

λ0 is absent for an interior solution. The static governing

equation (12) can be rearranged accordingly as

F̂ =

F+(λ+, λ0, τ)

F0(λ+, λ0, τ)

 (16)

with the rearranged Jacobian matrix

Ĵ =

J+ J+0

O J0

 , (17)

where

J+ = diag(λ1, . . . , λm) {∂(vi − v̄)/∂λ j | i, j = 1, . . . ,m},

J+0 = diag(λ1, . . . , λm)

{∂(vi − v̄)/∂λ j | i = 1, . . . ,m; j = m+ 1, . . . ,K},
J0 = diag(vm+1 − v̄, . . . , vK − v̄).

A stable spatial equilibrium is given by a stable stationary

solution, for which all eigenvalues of̂J are negative. Such

stability condition is decomposed into two conditions:
Stability condition forλ+:

all eigenvalues ofJ+ are negative.

Sustainability condition forλ0:

all diagonal entries ofJ0 are negative.

(18)

Next, critical points8 are classified into abreak bifur-

cation point9 with singularJ+ and anon-break pointwith

vi − v̄ = 0 for some placei (i = m+ 1, . . . ,K); a sustain

point is a special kind of non-break point. A bifurcating so-

lution with reduced symmetry branches from a break point,

whereas population of some places vanishes at a non-break

(sustain) point. A break points is either asimple bifurca-

tion point, adouble bifurcation point, and so on, according

to whether the number of zero eigenvalue(s) of the Jaco-

bian matrix Ĵ is equal to one, two, and so on. A simple

bifurcation is eithertomahawkor pitchfork. Bifurcating

solutions are unstable for the tomahawk and stable for the

pitchfork.

Last, stationary points are classified into atrivial solu-

tion (λ, τ) with a constantλ that exists for anyτ ∈ (0,∞)

and anon-trivial solution(λ, τ) for which λ changes with

τ. Existence of trivial solutions of various kinds is a special

feature of the replicator dynamics.
8 Critical points are those which have one or more zero eigenvalue(s)

of the Jacobian matrix̂J.
9 There is another critical point, a limit point ofτ, also with singular

J+ (Ikeda and Murota, 201414)). Yet this kind of point does not
play an important role in the discussion in this paper.

Proposition 1. The flat earth equilibrium λ∗ =
1
K (1, . . . ,1)⊤ is a trivial equilibrium.

Proof. Because we havev1 = · · · = vK = v̄ for this equilib-

rium, the conditions (9) for a spatial equilibrium is satisfied

for anyτ. □

(2) Symmetry condition of a corner solution

A corner solution withm identical agglomerated places,

i.e.,

λ̂ =

λ+
λ0

 =  1
m1

0

 (19)

is paid a special attention in this paper. This is a core–

periphery pattern with a two-level hierarchy: Population

is agglomerated tom core places with identical popula-

tion, while other peripheral places have no population. An

atomic monocenter form = 1 in Fig. 3(a) and twin places

for m = 2 in (b) serve as simple examples of such a solu-

tion.

Assumption 1. The corner solution withm identical ag-

glomerated places in(19) is invariant to a groupG and

there is a set of permutation matricesT+(g) (g ∈ G) that

permutes any two entries ofλ+.

Under this assumption, the reduced systemF+(λ+,0, τ)

in (16) is endowed with the symmetry conditions:

T+(g)F+(λ+,0, τ) = F+(T+(g)λ+,0, τ),

T+(g)J+ = J+T+(g), g ∈ G. (20)

Trivial solutions have several characteristics as expounded

in the following Proposition and Corollary (see AP-

PENDIX II for the proof).

Proposition 2. A corner solution(λ+, λ0, τ) = ( 1
m1,0, τ)

satisfying Assumption 1 is a trivial solution.

Corollary 1. An atomic monocenter(m = 1) and twin

places(m= 2) are trivial solutions.

The corner solutions withm identical agglomerated

places in (19) are not always trivial solutions. For exam-

ple, the spatial patterns shown in Fig. 3(c) are not trivial

solutions and there is no guarantee that they are solutions

(APPENDIX II).

(3) Stability and sustainability of trivial solutions

Prior to the description of stability and sustainability of

trivial solutions, we first refer to those of two places (Fu-

jita, Krugman, and Venables, 199911)): A trivial solution

with λ = (1/2,1/2)⊤ is stable forτ > τB, whereτB is a
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(a) Atomic monocenter (trivial)

(b) Twin places (trivial)

1

2

3

(c) Non-trivial corner solutions

Fig.3 Trivial and non-trivial corner solutions.

break point. On the other hand, the core–periphery pattern

λ = (1,0)⊤ is sustainable forτ < τS, whereτS is a sustain

point.

In general, a trivial equilibrium possibly has a few non-

break points (Section 8.); accordingly, a sustain point is

defined as the non-break point with the smallestτ value,

which is set asτS. We introduce the following assump-

tion, which is in line with the agglomeration behavior (Sec-

tion 8.) of the economic geography model (Section 3.).

Assumption 2. For a trivial equilibrium other than the flat

earth equilibrium and the atomic monocenter, there areτB
andτS such that the stability condition of the core places in

(18) is satisfied forτ > τB and the sustainability condition

of the periphery places in(18) is satisfied forτ < τS.

Then we can consider the following classification: Well-posed trivial solution: τB < τS,

Ill-posed trivial solution: τB > τS.
(21)

Proposition 3. A well-posed trivial solution is a stable

spatial equilibrium in the rangeτB < τ < τS, while an

ill-posed trivial solution is not a stable spatial equilibrium

for anyτ.

Corollary 2. Under Assumption 2, the flat earth equilib-

rium is stable forτ > τB.

Proof. This is apparent since there is no sustain point on

this equilibrium. □

6. Bifurcation mechanism of spatial pe-

riod doubling cascades

Spatial period doubling cascades of the racetrack and

the lattice economies are investigated in this section, while

these cascades are demonstrated in Section 8. to be pre-

dominant in the progress of agglomeration in the economic

geography model (Section 3.). It is ensured that spatial pe-

riod doubling patterns of these economies are always triv-

ial solutions. A bifurcation mechanism of the emergence

of these patterns in the lattice economy is newly presented

and is meshed consistently with the previous results in the

racetrack economy (Ikeda, Akamatsu, and Kono, 201213)).

We are interested in repeated occurrence ofspatial pe-

riod doubling engenderingspatial period doubling pat-

terns(Figs. 4(a) and (b)). These patterns are shown to be

trivial solutions10 in the remainder of this section.

(1) Racetrack economy: spatial period doubling

Bifurcation rules for spatial period doubling cascade

starting from the flat earth equilibriumλ∗ = 1
n(1, . . . , 1)⊤

en route to an atomic monocenter are presented. Whenn

is even, at a simple break bifurcation point on the flat earth

equilibrium, a solution curve bifurcates in the direction of

an eigenvector

ηRa = (1,−1, . . . ,1,−1)⊤ (22)

of the Jacobian matrixJ. A bifurcating state has a popula-

tion distribution of the form:

λ = (1/n+ a,1/n− a, . . . ,1/n+ a,1/n− a)⊤,

−1/n ≤ a ≤ 1/n. (23)

This represents a state in which concentrating places and

extinguishing places alternate along the circle and, in turn,

to form a chain of spatially repeated core–periphery pat-

ternsa la Christaller (1933)5) and L̈osch (1940)22).

We consider a case where the concentrating and the ex-

tinguishing proceed until reaching a non-break (sustain)

point with a spatial period doubling pattern:

λRa = (2/n,0, . . . , 2/n, 0)⊤,

i.e., λ̂ = (2/n, . . . ,2/n; 0, . . . ,0)⊤ =

 2
n1

0

 , (24)

which is invariant to a group Dn/2.

For n = 2k (k = 2,3, . . .) places, at a simple break bifur-

cation point, a secondary bifurcating solution branches in

10 There are trivial solutions other than spatial period doubling ones as
depicted in Fig. 4(c).
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T̃ = 1, D16 T̃ = 2, D8 T̃ = 4, D4 T̃ = 8, D2 T̃ = 16, D1

(a) Spatial period doubling trivial solutions: racetrack economy (n = 16; T̃ = T/L̃)

T̃xy = 1 T̃xy = 2 T̃xy = 2 T̃xy = 4 T̃xy = 4
T̃dia =

√
2 T̃dia =

√
2 T̃dia = 2

√
2 T̃dia = 2

√
2 T̃dia = 4

√
2

⟨r, s, p1, p2⟩ ⟨r, s, p1p2, p−1
1 p2⟩ ⟨r, s, p2

1, p
2
2⟩ ⟨r, s, p2

1p2
2, p

−2
1 p2

2⟩ ⟨r, s⟩ = D2

(b) Spatial period doubling trivial solutions: lattice economy
(n = 4; T̃xy = Txy/L̃, T̃dia = Tdia/L̃)

D2 D1 D1 ⟨r2, s, p1⟩ ⟨r2, s⟩
(c) Non-doubling trivial solutions

Fig.4 Spatial period doubling and non-doubling trivial solutions.

the direction of an eigenvector

ηRb = (1,0,−1,0; . . . ; 1, 0,−1,0)⊤,

i.e., η̂ = (1,−1, . . . ,1,−1; 0,0, . . . ,0,0)⊤. (25)

Thereafter, a simple break point and a non-break (sus-

tain) point can occur alternatively until reaching an atomic

monocenter. There is a series of spatial period doubling

patterns associated with a set of groups

Dn → Dn/2 → · · · → D1, (26)

where (→) denotes an occurrence of spatial period dou-

bling at a simple break bifurcation.

For example, Figure 4(a) depicts spatial period doubling

patterns forn = 16 places. There are 16, 8, 4, 2, and 1 core

(agglomerated) places shown by (⃝). The agglomerated

places are located equidistantly and the spatial periodT

between these places is doubled repeatedly.

Proposition 4. The spatial period doubling patterns of the

racetrack economy are trivial solutions.

Proof. For these patterns, the groupG in Proposition 2 is

chosen as one of these groups in (26) to ensure the exis-

tence of a group permuting any two places with none-zero

and identical population. This ensures Assumption 1, and,

in turn, Proposition 2, thereby proving that the patterns are

trivial solutions. □

(2) Lattice economy I: half spatial period doubling

A bifurcation rule of a spatial period doubling cascade

of the lattice economy is presented below, while details

of group-theoretic analysis are given in APPENDIX III.

Whenn is even, at a simple break bifurcation point on the

flat earth equilibrium, a bifurcating solution with the sym-

metry of⟨r, s, p1p2, p−1
1 p2⟩ branches in the direction of an

eigenvector

ηLa = {cos(π(n1 − n2)) | n1,n2 = 1, . . . ,n} = ηRa⊗ ηRa(27)

of the Jacobian matrixJ (see (2) for the proof), whereηR

is the spatial period doubling eigenvector of the racetrack

economy in (22). This patternηLa represents period dou-

bling in the horizontal and the vertical directions. The lat-

tice economy is linked to the racetrack economy via the

tensor product structure in (27). Such a linkage is called

第 55 回土木計画学研究発表会・講演集

 7



herein asquared tensor product linkage.

We consider a case where the concentrating and the ex-

tinguishing proceed until reaching a non-break (sustain)

point with a spatial period doubling pattern

λLa = λRa⊗ λRa

= (2/n,0, . . . , 2/n,0)⊗ (2/n,0, . . . , 2/n,0), (28)

which is invariant to a group⟨r, s, p1p2, p−1
1 p2⟩.

When n = 2m (m = 2,3, . . .), from the spatial period

doubling pattern in (28), another doubling pattern branches

in the direction:

ηLb = ηRb ⊗ ηRb

= (1,0,−1,0; . . . ; 1,0,−1,0)

⊗(1, 0,−1,0; . . . ; 1,0,−1,0), (29)

which is invariant to a group⟨r, s, p2
1, p

2
2⟩ (see (2)). In this

manner, a series of spatial period doubling trivial solutions

is engendered. This, for example, is shown in Fig. 4(b)

(n = 4), which have 16, 8, 4, 2, and 1 core (agglomerated)

places. There is a series of spatial period doubling patterns

associated with a set of groups

⟨r, s, p1, p2⟩ → ⟨r, s, p1p2, p
−1
1 p2⟩

→ ⟨r, s, p2
1, p

2
2⟩ → · · · → D2. (30)

Proposition 5. The spatial period doubling patterns of the

lattice economy are trivial solutions.

Proof. For these patterns, the groupG in Lemma 2 is cho-

sen as one of these groups in (30) to ensure the existence

of a group permuting any two places with none-zero and

identical population. This proves that the patterns are triv-

ial solutions. □

This lattice economy has a spatial periodTxy in the x-

andy-directions andTdia in the two diagonal directions.11

In the spatial period doubling cascade in (30), the spatial

period doubling ofTxy and that ofTdia take place alterna-

tively. This kind of spatial period doubling is called herein

half spatial period doublingas half of the periods are dou-

bled each time (see, e.g., Fig. 4(b)).

(3) Lattice economy: full spatial period doubling

There are other kinds of bifurcation cascades. When

n = 2m (m = 2,3, . . .), from a double bifurcation point

on the flat earth equilibrium, a bifurcating solution curve

branches in the direction of the eigenvector in (29) ((3)):

ηLb = ηRb ⊗ ηRb. (31)

11 The diagonal distance is not measured by the road distance but by
the Euclidean distance.

There are two series of spatial period doubling bifurca-

tion cascades associated with a series of groups

⟨r, s, p1, p2⟩ ⇒ ⟨r, s, p2
1, p

2
2⟩

⇒ ⟨r, s, p4
1, p

4
2⟩ ⇒ · · · ⇒ D2,(32)

⟨r, s, p1p2, p
−1
1 p2⟩ ⇒ ⟨r, s, (p1p2)2, (p−1

1 p2)2⟩ ⇒ · · ·
⇒ ⟨r, s, (p1p2)n/2, (p−1

1 p2)n/2⟩, (33)

where (⇒) indicates an occurrence of spatial period dou-

bling. This is calledfull spatial period doublingas spatial

periods in all four directions are doubled.

Figure 5 depicts mixed occurrence of half and full dou-

bling for n = 4. Twice repeated occurrence of half dou-

bling corresponds to single occurrence of full doubling.

Such a mixture of half doubling and full doubling makes

the progress of agglomeration of the lattice economy more

complex than that of the racetrack economy.

In this connection, spatial period doubling patterns are

classified intofoursquare patternsandoblique patternsas

illustrated in Fig. 6. In foursquare patterns for a sufficiently

largen, each first-level center is surrounded by four closest

first-level centers located (see the red circle surrounded by

four white circles in Fig. 6(a)). In oblique ones, each first-

level center is surrounded by as many as eight first-level

centers at the same transport distance (Fig. 6(b)). In this

sense, the first-level centers of the oblique ones are more

densely packed in comparison with those of the foursquare

ones, thereby realizing a more favorable environment for

inter-place trade. The first cascade in (32) occurs between

foursquare ones, while the second cascade in (33) occurs

between oblique ones. This classification is vital in the

discussion of well-posedness of these patterns for the eco-

nomic geography model (Section 8.).

7. Break point initiating spatial agglomer-

ation

Formulas for break points for the analytically solvable

model (Section 3.) are developed in this section. A break

point is defined as the value ofτ for the occurrence of a

bifurcation that breaks uniformity. When investment in

transportation infrastructure is committed, the break point

indexes the functioning of this investment. Formulas for

the lattice economy are newly developed and are presented

in a synthetic manner to encompass the previous result for

the racetrack economy (Ikeda, Akamatsu, and Kono, 2012
13)).

The sizen of the economy is chosen as 2 and 4m (m =

1,2, . . .). The total lengthL of the road on the racetrack
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⇒ ⇒

↘ ↗
⇒

↘ ↗

Fig.5 Spatial period doubling cascades for a lattice economy (n = 4); (⇒): full doubling; (↘) and (↗): half doubling.

(a) Foursquare patterns (b) Oblique patterns

Fig.6 Foursquare and oblique spatial period doubling patterns.

is chosen asL = 1, the spatial period of the lattice is also

chosen asL = 1, and neighboring places are connected by

an inter-place road of the length̃L = 1/n.

(1) Fundamentals for deriving the formulas for

break point

Breaking uniformity by bifurcation at the flat earth equi-

librium λ∗ is given by a zero eigenvalue of the Jacobian

matrix J(λ∗). As worked out in (I.14)–(I.16),J(λ∗) is re-

lated to another Jacobian matrixV(λ∗) =
(
∂vi/∂λ j

)
(λ∗) as

J(λ∗) =

(
1
K

I − 1
K2

11⊤
)
V(λ∗) − v̄

K
11⊤ (34)

with

V(λ∗) = K
[
κ′D̂ +

(
I − κD̂

)−1 · D̂
(
κI − D̂

)]
, (35)

whereκ = µ
σ

, κ′ = µ
σ−1, andD̂ = D/d is the normalized

spatial discounting matrix. HereD = (di j ) is defined by

(4) andd = d(r) =
∑K

j=1 d1 j with r being the trade freeness

parameter introduced in (5). The spatial discounting ma-

trices for the racetrack and the lattice economies are called

DR andDL , respectively, and are given, for example, for

n = 2 as

DR =

[
1 r
r 1

]
, DL = DR ⊗ DR =


1 r r r 2

r 1 r2 r
r r 2 1 r
r2 r r 1

 .
(36)

We have the relationDL = DR ⊗ DR that connects the two

economies, while the matricesDR for n = 2m (m= 2,3,4),

for example, are given in (1).

We present the following lemmas for the eigenproblems

for the matricesJ(λ∗), V(λ∗), andD̂ (see (2) for the proof).

Lemma 1. The matricesJ(λ∗), V(λ∗), andD̂ have the com-

mon eigenvector

η =


ηRa in (22) for the racetrack economy,

ηLa in (27) for the lattice economy (half doubling),

ηLb in (31) for the lattice economy (full doubling).

(37)

Lemma 2. The eigenvaluesβ, γ, and ϵ of the matrices

J(λ∗), V(λ∗), and D̂, respectively, for the common eigen-

vectorη in (37)are related as

γ = K[κ′ϵ + (1− κϵ)−1 · ϵ(κ − ϵ)], (38)

β = Ψ(ϵ) =
ϵ{κ + κ′ − (κκ′ + 1)ϵ}

1− κϵ . (39)

The break pointτ∗ can be determined as follows. First,

ϵ = ϵ∗ for the break point12 satisfying (β =)Ψ(ϵ∗) = 0

is given byϵ∗ = (κ + κ′)/(κκ′ + 1) and is rewritten using

κ = µ
σ

andκ′ = µ
σ−1 as13

ϵ∗ =
µ(2σ − 1)
σ(σ − 1)+ µ2

. (40)

Next, as shown in the sequel, the parameter for the remote-

nessr in (5) for the break point is given as a function ofϵ∗

asr∗ = Φ(ϵ∗) with some functionΦ. Last, the break point

τ∗ corresponding tor = r∗ can be determined from (5).

Remark 1. The variableϵ∗ can be interpreted as an index

for agglomeration asϵ∗ increases in association with an

12 From (39),β = 0 is satisfied also byϵ = 0, which represents redis-
persion. This case, however, is not a major interest of this paper, and
is excluded hereafter.

13 We have a no-black-hole conditionµσ−1 < 1 (Forslid and Ottaviano,

20039)) from (40) and 0< ϵ < 1, which arises from (41) and (45)
with 0 < r < 1.
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increase inµ or with a decrease ofσ, both of which index

a few large agglomerations.

(2) Formulas for break point: n = 2

As an illustration of basic ideas, formulas for break

points are obtained forn = 2.14 For the racetrack (two-

place) economy withD = DR in (36), we have

D̂η =
D
d
η =

1
1+ r

[
1 r
r 1

] [
1−1

]
=

1− r
1+ r

[
1−1

]
= ϵη

with the eigenvalueϵ = (1− r)/(1+ r) and the eigenvector

η = ηR = (1,−1)⊤ for the spatial period doubling. Like-

wise, for the lattice economy, we haveϵ = (1− r)2/(1+ r)2

andη = ηR ⊗ ηR = (1,−1,−1,1)⊤. The relation betweenϵ

andr for the two economies can be expressed in a synthetic

manner as

ϵ =

(
1− r
1+ r

)p

, i.e., r =
1− ϵ1/p
1+ ϵ1/p

(41)

using a variablep expressing the squared tensor product

linkage as

p =


1 for the racetrack economy

and the lattice economy (full doubling),

2 for the lattice economy (half doubling).
(42)

The break point forn = 2 is expressed as

τ∗ =
2

L(σ − 1)
log

(
1+ (ϵ∗)1/p

1− (ϵ∗)1/p

)
(43)

which gives the break pointτ∗ corresponding tor = r∗ with

(5) and (41). Under a moderate assumptionσ ≫ 1, τ∗ can

be approximated as

τ∗ =
2

L(σ − 1)
log

(
1+ ϵ∗

1− ϵ∗

)
≈ 2
L(σ − 1)

2ϵ∗ ≈ 8µ
L(σ − 1)2

.

(44)

(3) Formulas for break point: n = 4m (m= 1,2, . . .)

Forn = 4m (m= 1,2, . . .), similarly to the case ofn = 2,

we can advance the relation betweenϵ andr as

ϵ =

(
1− r
1+ r

)2p

, (45)

which encompasses both economies via the squared tensor

product linkage (42).

Proposition 6. The break point of the racetrack and the

lattice economies forn = 4m (m= 1,2, . . .) can be formu-

lated in a synthetic manner as

τ∗ =
n

L(σ − 1)
log

(
1+ (ϵ∗)1/2p

1− (ϵ∗)1/2p

)
. (46)

Proof. The relation (45) is solved forr as r = {1 +
(ϵ∗)1/2p}/{1 − (ϵ∗)1/2p} and is substituted into (5) to arrive

at (46). □
14 The lattice economy withn = 2 is identical with the racetrack econ-

omy withn = 4.

Proposition 7. Asτ decreases from a large value for the

lattice economy, the economic agglomeration is realized

earlier for the half spatial doubling than for the full spatial

doubling(τ∗Lb < τ
∗
La).

Proof. For a givenϵ∗, (46) gives a largerτ∗ for p = 1 than

that for p = 2, which showsτ∗R = τ
∗
Lb < τ

∗
La. □

Although the synthetic formula (46) is endowed with

much desired independency on economic modeling, the

influence of the parameter valuesσ andµ is contained im-

plicitly in ϵ∗ and is not transparent (Remark 1). As a rem-

edy of this, we propose the following approximate formu-

las which make transparent the influence of the values of

these parameters on the break pointτ∗.

Proposition 8. Under an assumptionσ ≫ 1, the break

pointτ∗ for n = 4m (m= 1,2, . . .) are approximated by

τ∗R = τ
∗
Lb ≈ 23/2 n

L
µ1/2

(σ − 1)3/2
,

τ∗La ≈ 25/4 n
L

µ1/4

(σ − 1)5/4
. (47)

Proof. The proof of these formulas is similar to the proof

of (44) forn = 2. □

Remark 2. The formulas forn = 2 presented in(43)have

different forms than the formulas(46) for n ≥ 4. Such a

difference, which may be attributable to the influence of

far places forn ≥ 4, demonstrates an insufficiency of the

two-place economy as a two-dimensional spatial platform

for economic activities.

8. Comparative static analysis for the

emergence of agglomeration

Spatial period doubling cascade of the two economies

are studied in this section by comparative static analysis

with respect to the transport cost of the economic geogra-

phy model (Section 3.). The results of this analysis are ex-

amined in detail based on an ensemble of theoretical results

in the previous sections: the theory of replicator dynamics

(Section 5.), the bifurcation mechanism of spatial period

doubling (Section 6.), and the formulas for the break point

(Section 7.).

The size of the economies was chosen asn = 2m (m =

1,2,3, 4); note that the lattice economy withn = 2 is iden-

tical with the racetrack economy withn = 4. Parameter

values were set asα = 1.0 and (σ, µ) = (10.0,0.4), which

satisfy the no-black hole condition (Footnote 13).
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Fig.7 Curves of equilibria for the racetrack economy withn = 2, 4, 8, and 16 (solid lines denote stable equilibia and dashed curves
does unstable ones; (◦): a simple break bifurcation point; (•): a sustain point;λmax = maxn

i=1 λi).

(1) Racetrack economy

Curves of equilibria were computed for the racetrack

economy (Fig. 7). The horizontal lines A to E denote spa-

tial period doubling trivial equilibria, while non-horizontal

curves denote bifurcating equilibria. Stable equilibria are

shown by solid lines, and unstable ones by dashed lines.

Every trivial solution was well-posed satisfyingτB < τS
in (18) and it was possible to find a range of stable spatial

equilibria ofτB < τ < τS, which starts from a sustain point

and ends with a break point asτ decreases.

For example, forn = 4 (Fig. 7(b)), a spatial period dou-

bling cascade between stable equilibria took place as fol-

lows. There was a stable flat earth equilibrium forτ > τ∗

(state A). At the break bifurcation point a atτ = τ∗ shown

by (◦), there emerged an unstable transient state AB with

two large places and two small places that connect the

break point a and the sustain point b. This state regained

stability at the point b in the state B of two concentrated

places and two extinguished places. Thereafter, at the

break point b′, a stable transient state BC emerges en route

to a stable atomic monocenter (state C starting from a sus-

tain point c). Forn = 8 and 16, there are cascades with

more trivial equilibria. Asτ decreases, stable equilibria

shift to fewer and larger agglomerations. Thus the race-

track economy offer us with an idealistic agglomeration

behavior that has been predicted theoretically (Section 6.).

Normalized break pointsτ∗/n of the flat earth equilib-

rium A are listed in Table 1(a). Their numerically com-

puted values are in complete agreement with the theoret-

ical ones by (43) or (46) and in good agreement with the

approximate ones by (44) or or (47). Such an agreement is

also seen (Table 1(b)) for the lattice economy (Section (2)).

This suffices to show the validity of the formulas presented

in this paper.

(2) Lattice economy

Curves of equilibria for the lattice economy (Fig. 9) dis-

played spatial period doubling cascade between the trivial

equilibria A to I. Asτ decreases, stable equilibria shifted

to fewer and larger agglomerations.
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Table1 Comparison of numerical, theoretical, and approximate break points (underlined values are approximate ones).

(a) Racetrack economy

Numbern of places 2 4 8 16
Numerically computed 0.019 0.066 0.066 0.066

τ∗/n Theoretical formula (43) or (46) 0.019 0.066 0.066 0.066
Approximate formula (44) or (47) 0.020 0.066 0.066 0.066

(b) Lattice economy

Numbern of places 2 4 8 16
Numerically computed 0.066 0.134 0.134 0.134

τ∗/n Theoretical formula (43) or (46) 0.066 0.134 0.134 0.134
Approximate formula (44) or (47) 0.066 0.121 0.121 0.121
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Fig.8 Durations of stable states forn = 8.

Yet, unlike the racetrack economy, not all trivial equi-

libria were stable. There were several ill-posed solutions,

such as C forn = 4, 8 and 16 and E forn = 16, while

most of the solutions were well-posed satisfyingτB < τS
in (18). All these ill-posed ones were foursquare patterns

(cf., Fig. 6(a)), whereas all oblique patterns (cf., Fig. 6(b))

were well-posed. Even well-posed foursquare ones, such

as E forn = 8 and G forn = 16, had very short durations

of stable equilibria.

It is possible to classify the progress of agglomeration

into three stages:dawn stage, intermediate stage, andma-

ture stage.15 In the dawn stage, half spatial period dou-

bling between two stable equilibria A and B took place for

all cases (n = 4, 8, 16). At this stage, the underlying

predominance of the market-crowding effect is weakened

by an increase in the market-access effect that enlarges the

agglomeration force. This reorganizes firms into locations

with greater competition, thereby engendering the oblique

pattern B. This pattern may be interpreted as a square lat-

15 This classification was introduced for the hexagonal lattice economy
(Ikeda, Murota, and Takayama, 2017b18))

tice counterpart of a hexagonal in central place theory.

In the intermediate stage, in which the market-crowding

effect gradually decreases, whereas the market-access ef-

fect increases, we found that the equilibrium C was ill-

posed and there were no stable equilibria for all cases. Full

doubling16 B⇒D took place bypassing C and connecting

stable equilibria of B and D. The equilibrium E was also

ill-posed for n = 16 and full doubling D⇒F took place

bypassing E and connecting stable equilibria of D and F.

In the mature stage, in which the market-access effect

greatly decreases and the dispersion force arising from the

taste heterogeneity of workers prevails, stability was re-

gained for all cases and spatial period doubling cascade

proceeded stably as
D→ E for n = 4,

D→ E→ F→ G for n = 8,

D→ E→ F→ G→ H→ I for n = 16.

Thus a largern has entailed more repeated occurrence of

16 For n = 4, a break bifurcation in B led directly to D. Forn = 8 and
16, a break bifurcation in B, followed by a non-break bifurcation,
led to D.
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Fig.9 Curves of equilibria for the lattice economy withn = 4, 8, and 16 (solid lines denote stable solutions and dashed ones does
unstable ones; (◦): a simple break bifurcation point; (•): a sustain point; (△): a double bifurcation point; (▽): a triple bifurcation
point;×: a non-break point;λmax = maxK

i=1 λi).

stable half doubling that is quite similar to the spatial pe-

riod doubling cascade of the racetrack economy. Such

similarity ensures the usefulness of the racetrack economy

analogy proposed in this paper.

There were several ranges ofτ in which stable equlib-

ria are absent in the intermediate stage forn = 8 and

16. To supplement such absence, the durations of stable

states were investigated forn = 8 with also reference to

other (non-doubling) equilibria that were obtained based

on Proposition 2. Figure 8 depicts these durations compar-

atively for those of the spatial period doubling equilibria A

to G. In the dawn stage, A and B were only stable equilib-

ria. In the intermediate stage and at the beginning of the

mature stage, we encountered various kinds of stable triv-

ial equilibria17 c, d, d′, and e with stripe-like patterns, as

well as the spatial period doubling ones D and E. In the

last stage of the mature stage, a few and large agglomer-

ations, such as F, G, and e were predominant. Thus we

17 Such emergence of various kinds of equilibria was observed also for
a hexagonal lattice (Ikeda, Murota, and Takayama, 201718)).

have arrived at a more complete transition of stable equi-

libria engendering a fewer and larger agglomerations asτ

decreases.

9. Conclusion

A racetrack economy analogy was proposed by high-

lighting this economy as a one-dimensional counterpart of

the two-dimensional economic agglomerations. As a novel

contribution of this paper, qualitative aspects of these ag-

glomerations in a lattice economy were described in a gen-

eral setting by bifurcation theory.

A symmetry condition for the existence of trivial solu-

tions in replicator dynamics was formulated and in turn

to advance spatial patterns of various kinds. In particular,

spatial period doubling patterns were set forth as impor-

tant trivial solutions for both economies. Spatial period

doubling cascade between these patterns was advanced as

a theoretically possible course of the progress of agglom-

eration and was demonstrated to exist in both economies
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for an economic geography model. That theory was vi-

tal in the understanding of the complicated agglomeration

behavior of the lattice economy.

A progress of stable equilibria in association with de-

creasing transport costτ in the lattice economy was ob-

served for the economic geography model. In the dawn

stage with largeτ and in the mature stage with smallτ,

spatial period doubling cascade was quite predominant,

thereby demonstrating the validity and usefulness of the

racetrack economy analogy proposed in this paper. In the

intermediate stage, however, equilibria of various kinds

with stripe-like patterns were fund to be stable.

As a quantitative measure of spatial agglomerations, an-

alytical formulas for the break point were proposed for the

economic geography model. In particular, those for the lat-

tice economy were newly developed. The break points of

both economies were expressed in a synthetic manner with

the aid of the squared tensor product linkage. The validity

of all these formulas has been ensured by the comparative

static analyses (Section 8.).
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APPENDIX I Details of the modeling of

spatial economy

The budget constraint is given as

pA
i CA

i +

K∑
j=1

∫ n j

0
p ji (ℓ)q ji (ℓ)dℓ = Yi , (I.1)

wherepA
i is the price of A-sector goods in placei, p ji (ℓ) is

the price of a varietyℓ in placei produced in placej, and

Yi is the income of an individual in placei. The incomes

(wages) of skilled workers and unskilled workers are rep-

resented, respectively, bywi andwL
i .

An individual in placei maximizes the utility in (1) sub-

ject to the budget constraint in (I.1). This yields the fol-

lowing demand functions of

CA
i = (1− µ) Yi

pA
i

, CM
i = µ

Yi

ρi
, q ji (ℓ) = µ

ρσ−1
i Yi

p ji (ℓ)σ
, (I.2)

whereρi denotes the price index of the differentiated prod-

ucts in placei, which is

ρi =

 K∑
j=1

∫ n j

0
p ji (ℓ)

1−σdℓ


1/(1−σ)

. (I.3)

Because the total income in placei is wiλi + wL
i , the total

demandQ ji (ℓ) in placei for a varietyℓ produced in place

j is given as

Q ji (ℓ) = µ
ρσ−1

i

p ji (ℓ)σ
(wiλi + wL

i ). (I.4)

The A-sector is perfectly competitive and produces ho-

mogeneous goods under constant-returns-to-scale technol-

ogy, which requires one unit of unskilled labor per unit

output. A-sector goods are transported without transporta-

tion cost and are chosen as the numéraire. In equilibrium,

we havepA
i = wL

i = 1 for eachi.

The M-sector output is produced under increasing-

returns-to-scale technology and Dixit-Stiglitz monopolis-

tic competition. A firm incurs a fixed input requirement of

α units of skilled labor and a marginal input requirement

of β units of unskilled labor. An M-sector firm located in

placei chooses (pi j (ℓ) | j = 1, . . . ,K) that maximizes its

profit

Πi(ℓ) =
K∑

j=1

pi j (ℓ)Qi j (ℓ) − (αwi + βxi(ℓ)) , (I.5)

wherexi(ℓ) denotes the total supply of varietyℓ produced

in placei and(αwi + βxi(ℓ)) signifies the cost function in-

troduced by Flam and Helpman (1987).

With the use of the iceberg form of the transport cost,

we have

xi(ℓ) =
K∑

j=1

Ti j Qi j (ℓ). (I.6)

Then the profit function of an M-sector firm in placei,

given in (I.5) above, can be rewritten as

Πi(ℓ) =
K∑

j=1

pi j (ℓ)Qi j (ℓ) −
αwi + β

K∑
j=1

Ti j Qi j (ℓ)

 , (I.7)

which is maximized by the firm. The first-order condition

for this profit maximization yields

pi j (ℓ) =
σβ

σ − 1
Ti j . (I.8)

This implies thatpi j (ℓ), Qi j (ℓ), andxi(ℓ) are independent

of ℓ. Therefore, argumentℓ is suppressed in the sequel.

(1) Market equilibrium

In the short run, skilled workers are immobile between

places, i.e., their spatial distributionλ = (λ1, . . . , λK) is as-

sumed to be given. The market equilibrium conditions con-

sist of three conditions: the M-sector goods market clear-

ing condition, the zero-profit condition attributable to the

free entry and exit of firms, and the skilled labor market

clearing condition. The first condition is written as (I.6)

above. The second requires that the operating profit of a

firm, given in (I.5), be absorbed entirely by the wage bill

of its skilled workers. This gives

wi =
1
α


K∑

j=1

pi j Qi j − βxi

 . (I.9)

The third condition is expressed asαni = λi and the price

indexρi in (I.3) can be rewritten using (I.8) as

ρi =
σβ

σ − 1

 1
α

K∑
j=1

λ jd ji


1/(1−σ)

. (I.10)

The market equilibrium wagewi in (I.9) can be repre-

sented as

wi =
µ

σ

K∑
j=1

di j

∆ j
(w jλ j + 1) (I.11)

using (4), (I.4), (I.6), (I.8), and (I.10). Here,∆ j =∑K
k=1 dk jλk. Equation (I.11) is solvable forwi as follows.

With the notation (7), (I.11) can be written as

w =
µ

σ
D∆−1(Λw+ 1), (I.12)

which is solved forw as

w =
µ

σ

(
I − µ
σ

D∆−1Λ

)−1
D∆−11. (I.13)

From the equilibrium equationF in (12) with (11), we
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have

∂Fi

∂λ j
=

vi −
K∑

k=1

λkvk

 δi j
+ λi

 ∂vi

∂λ j
− v j −

K∑
k=1

λk
∂vk

∂λ j

 , (I.14)

whereδi j is the Kronecker delta. This shows that the Jaco-

bian matricesJ(λ) = ∂F/∂λ andV(λ) = ∂v/∂λ are related

as

J(λ) = diag(v1−v̄, . . . , vK−v̄)+(Λ−λλ⊤)V(λ)−λv⊤, (I.15)

where v̄ =
∑K

i=1 λivi , Λ = diag(λ1, . . . , λK), and v =

v(λ, τ) = (v1(λ, τ), . . . , vK(λ, τ))⊤.

At the flat earth equilibrium withv1 = · · · = vK = v̄,

(I.15) gives

J(λ∗) =

(
1
K

I − 1
K2

11⊤
)
V(λ∗) − v̄

K
11⊤. (I.16)

APPENDIX II Details associated with triv-

ial solutions in Section 5.

We present details of trivial solutions. First, the proof

of Proposition 2 is given as follows: Since them places

belonging toλ+ are permuted each other byT+(g) (g ∈
G), we havevi = v̄ (i = 1, . . . ,m), thereby satisfying

F+( 1
m1,0, τ) = 0. For K − m places with no population,

we haveλ j = 0, thereby satisfyingF0( 1
m1,0, τ) = 0. This

shows that (λ+, λ0, τ) = ( 1
m1,0, τ) serves as a trivial solu-

tion.

Next, the proof of Corollary 1 reads: For an atomic

monocenter form= 1, Assumption 1 is satisfied by a group

G = ⟨e⟩ andT+(e) = 1. Then Proposition 2 guarantees that

the corner solution of an atomic monocenter is a trivial so-

lution. For twin places form= 2, Assumption 1 is satisfied

by a groupG = ⟨h⟩ and

T+(h) =

0 1

1 0

 ,
whereh denotes an exchange symmetry, i.e., 1↔ 2. Then

Proposition 2 guarantees that the corner solution for twin

places is a trivial solution.

Last, the pattern in the left of Fig. 3(c), for example, is

invariant to D1 = ⟨s⟩, i.e., the reflectiony 7→ −y. This

invariance is expressed by the representation matrix

T+(s) =


1 0 0

0 0 1

0 1 0

 ,
which permutes the places 2 and 3 but retains the place

1 unchanged. Since there is no exchange symmetry be-

tween place 1 and other places, Assumption 1 is not satis-

fied. Hence that pattern is not a trivial solution in Proposi-

tion 2. The existence of a stationary point with this pattern

is conditional on the value ofτ.

APPENDIX III Bifurcation of the lattice

economy

After a brief introduction of group-theoretic bifurcation

theory, bifurcation of the lattice economy is described.

(1) Outline of group-theoretic bifurcation theory

Consider a critical point (λ∗, τc) on the flat earth equi-

librium curve, which is said to have multiplicityM (≥ 1)

if the Jacobian matrixJ = ∂F/∂λ of F at (λ∗, τc) hasM

zero eigenvalues. Let (ηi | i = 1, . . . ,K) be an orthonormal

basis ofRK such that

Jηi = 0, i = 1, . . . ,M. (III.1)

We express the variableλ asλ = λ∗ +
∑M

i=1 ξiηi andτ as

τ = τc + τ̃, whereτ̃ denotes an increment ofτ.

The full system of equationsF(λ, τ) = 0 in (12) is re-

duced,18 in a neighborhood of (λ∗, τc), to a system ofM

equations (called bifurcation equations)

F̃(ξ, τ̃) = 0 (III.2)

for some functionF̃ in ξ = (ξ1, . . . , ξM) ∈ RM and τ̃ ∈
R defined above. In this reduction process, the symmetry

condition (13) of the full system is inherited by the reduced

system (III.2).

The reduced equation (III.2) is to be solved forξ as

ξ = ξ(τ̃), which is often possible by virtue of the sym-

metry inherited byF̃. Because (ξ, τ̃) = (0,0) is a singu-

lar (critical) point of (III.2), there can be many solutions

ξ = ξ(τ̃) with ξ(0) = 0, which give rise to bifurcation.

Eachξ uniquely determines a solutionλ of the full sys-

tem (12). Among the (critical) eigenvectors
∑M

i=1 ξiηi , only

those vectors which satisfy (III.2) are related to bifurcat-

ing solutions, whereas those which do not satisfy (III.2)

are not. In this way possible bifurcating modes can be pre-

dicted using group-theoretic bifurcation analysis.

(2) Half spatial period doubling

A simple break bifurcation point of the lattice is asso-

ciated with the one-dimensional irreducible representation

µ, which exists only whenn is even and is given by

Tµ(r) = 1, Tµ(s) = 1, Tµ(p1) = −1, Tµ(p2) = −1(III.3)

18 This is a standard procedure called theLiapunov–Schmidt reduction
with symmetry(Golubitsky, Stewart, and Schaeffer, 198812)).
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that satisfy the fundamental relations (Footnote 5). We as-

sume that the variablew = w for the bifurcation equation

(III.2) corresponds to the column vectors of

η = {cos(π(n1 − n2)) | n1,n2 = 1, . . . ,n}

= {1,−1, . . . ,1,−1; − 1,1, . . . ,−1,1;

. . . ; − 1,1, . . . ,−1,1}. (III.4)

As stated in (27), whenn is even, a bifurcating so-

lution in the direction ofη with the symmetry ofΣ =

⟨r, s, p1p2, p−1
1 p2⟩ arises from a critical point of multiplic-

ity 1 associated with the irreducible representationµ. The

proof of this statement is given below.

The fixed-point subspace ofΣ for Tµ is given by

Fixµ(Σ) = {w ∈ RM | Tµ(g)w = w for all g ∈ Σ}
= {w ∈ R} (III.5)

sincew = w and

Tµ(r)w = w, Tµ(s)w = w,

Tµ(p1p2)w = (−1)(−1)w = w,

Tµ(p−1
1 p2)w = (−1)(−1)w = w

by (III.3). Thus the fixed-point subspace Fixµ(Σ) of the

targeted symmetryΣ is one-dimensional. The equivariant

branching lemma then guarantees the existence of a bifur-

cating path with symmetryΣ (see Chapter 8 of Ikeda and

Murota, 201414) for details of the equivariant branching

lemma).

Secondary and further bifurcations for the lattice can be

dealt with similarly. For example, for the secondary bifur-

cation, if we setP1 = p1p2 andP2 = p−1
1 p2, we have the

relations

⟨r, s, p1p2, p
−1
1 p2⟩ = ⟨r, s,P1,P2⟩,

⟨r, s, p2
1, p

2
1⟩ = ⟨r, s,P1P2,P

−1
1 P2⟩.

Thus the bifurcation analysis on the groups⟨r, s,P1,P2⟩
and⟨r, s,P1P2,P−1

1 P2⟩ is identical with that on the groups

⟨r, s, p1, p2⟩ and⟨r, s, p1p2, p−1
1 p2⟩.

(3) Full spatial period doubling

A double bifurcation point is associated with the two-

dimensional irreducible representationµ, which exists only

whenn is even, and is given by

Tµ(r) =

 1

1

 , Tµ(s) =

 1

1

 ,
Tµ(p1) =

 −1

1

 , Tµ(p2) =

 1

−1

 .
(III.6)

Let us assume that the variablew = (w1,w2)⊤ for the

bifurcation equation (III.2) corresponds to the vectors

{cos(πn1) | n1,n2 = 1, . . . , n}, {cos(πn2) | n1,n2 = 1, . . . , n}.
(III.7)

When n is even, bifurcating solutions from a critical

point of multiplicity 2 associated with the irreducible rep-

resentationµ exist in the direction:q1 + q2 with the sym-

metry of⟨r, s, p2
1, p

2
2⟩. The existence is shown below. Note

Fixµ(⟨r, s, p2
1, p

2
2⟩) = Fixµ(⟨r⟩) ∩ Fixµ(⟨s, p2

1, p
2
2⟩).

Here we have Fixµ(⟨r⟩) = {c(1,1)⊤ | c ∈ R}
since Tµ(r)(w1,w2)⊤ = (w2,w1)⊤ by (III.6), whereas

Fixµ(⟨s, p2
1, p

2
2⟩) = R2 sinceTµ(s) = Tµ(p2

1) = Tµ(p2
2) = I

by (III.6). Therefore,

Fixµ(Σ) = {c(1,1)⊤ | c ∈ R},

that is,Σ = Σµ(w0) for w0 = (1,1)⊤. Thus the targeted

symmetryΣ is an isotropy subgroup with dim Fixµ(Σ) =

1. The equivariant branching lemma then guarantees the

existence of a bifurcating path with symmetryΣ.

Secondary and further bifurcations for full spatial period

doubling can be dealt with similarly.

APPENDIX IV Details of derivation of for-

mulas for break points

Details of derivation of formulas for break points in Sec-

tion 7. are presented. In regard toV(λ) we recall (8):

vi =
µ

σ − 1
ln∆i + ln wi (IV.1)

as well as (I.11):

wi =
µ

σ

∑
k

dik

∆k
(wkλk + 1), (IV.2)

where

∆k = ∆k(λ, τ) =
K∑

j=1

d jkλ j .

The differentiations of (IV.1) and (IV.2) with respect toλ j

yield, respectively,

∂vi

∂λ j
= κ′

d ji

∆i
+

1
wi

∂wi

∂λ j
, (IV.3)

∂wi

∂λ j
= κ

K∑
k=1

dik

∆k
2

[(
∂wk

∂λ j
λk + wkδk j

)
∆k − (wkλk + 1)d jk

]
,(IV.4)

where

κ =
µ

σ
, κ′ =

µ

σ − 1
. (IV.5)

We have 0< κ < 1 andκ′ > 0 becauseσ > 1, 0< µ < 1.

The matrixV(λ∗) in (34) can be evaluated as shown be-

low. At λ = λ∗, we have

∆ j = ∆ j(λ
∗, τ) =

K∑
k=1

dk jλk =
d
K
.
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Becausew j is independent ofj, we may putw j = w; then

(IV.2) becomes

w = κ
K∑

j=1

K
d

di j

(w
K
+ 1

)
= κ (w+ K) ,

which yields

w =
κK

1− κ . (IV.6)

At λ = λ∗, (IV.4) becomes

∂wi

∂λ j
= κ

K∑
k=1

K2

d2
dik

[(
1
K
∂wk

∂λ j
+ wδk j

)
d
K
−

(w
K
+ 1

)
d jk

]
,

which in matrix form reads as

W = κ
K2

d2
D

[
d
K

(
1
K

W+ wI

)
− w+ K

K
D

]
with W = (∂wi/∂λ j). With the use of (IV.6), this equation

can be rewritten as(
I − κD

d

)
W = Kw

D
d

(
κI − D

d

)
,

which can be further rewritten as

W = Kw
(
I − κD

d

)−1

· D
d

(
κI − D

d

)
.

Then the partial derivatives in (IV.3) can be evaluated in

matrix form as

V(λ∗) = K

[
κ′

D
d
+

(
I − κD

d

)−1

· D
d

(
κI − D

d

)]
. (IV.7)

(1) Spatial discounting matrix

For the racetrack economy, the spatial discounting ma-

trix D for n = 4 is given as

DR =


1 r r 2 r
r 1 r r 2

r2 r 1 r
r r 2 r 1

 , (IV.8)

the matrix forn = 8 is given as

DR = R8 =

R̃8 R̂8

R̂8 R̃8

 with R̃8 =


1 r r 2 r3

r 1 r r 2

r2 r 1 r

r3 r2 r 1

 , R̂8 = r4


1 r−1 r−2 r−3

r−1 1 r−1 r−2

r−2 r−1 1 r−1

r−3 r−2 r−1 1

 ,
and that forn = 16 is given as

DR = R16 =


R̃8 R̂16 r4R̂8 R̂⊤16

R̂⊤16 R̃8 R̂16 r4R̂8

r4R̂8 R̂⊤16 R̃8 R̂16

R̂16 r4R̂8 R̂⊤16 R̃8

 with R̂16 =


r4 r5 r6 r7

r3 r4 r5 r6

r2 r3 r4 r5

r r 2 r3 r4

 .

(2) Proof of Lemmas 1 and 2

First, (14) gives a commutabilityT(g)J(λ∗) = J(λ∗)T(g)

(g ∈ G) holds for the groupG that labels the symmetry of

each economy. Next, from (34), we have

T(g)

(
1
K

I − 1
K2

11⊤
)
V(λ∗)−T(g)

v̄
K

11⊤ =
(

1
K

I − 1
K2

11⊤
)
V(λ∗)T(g)− v̄

K
11⊤T(g),

which gives a commutabilityT(g)V(λ∗) = V(T(g)λ∗) by

T(g)11⊤ = 11⊤T(g) = 11⊤ and11⊤V(λ∗) = V(λ∗)11⊤ =

V̂, whereV̂ is the sum of the entries of a column ofV(λ∗)

that is identical for all the columns by the symmetry of

the system. Last, from (35), we have a commutability

T(g)D̂ = D̂T(g). These three commutabilities guaran-

tee the existence of the common eigenvectorη. A con-

crete form ofη can be determined uniquely by adapting

the method for the hexagonal lattice (Ikeda and Murota,

2014, Section 7.514)).

Multiplying η to V(λ∗) in (35) from the right and using

D̂η = ϵη, we obtainV(λ∗) · η = γη with γ = K[κ′ϵ + (1−
κϵ)−1 · ϵ(κ − ϵ)]. Multiplying (34) by η from the right and

using1⊤η = 0 and1⊤V(λ∗) · η = γ1⊤η = 0, we obtain

J(λ∗) · η = γ
Kη. Then the eigenvalueβ of the Jacobian

matrix J(λ∗) for the eigenvectorη is expressed in terms of

ϵ asβ = Ψ(ϵ) in (39).
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