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We present a detailed analysis of the Fujita and Ogawa (1982) model,1) the reference model for endoge-
nous formation of polycentric intra-urban configuration. Stability of its equilibria, however, has not yet
been studied; it thus has been unclear whether polycentric patterns actually emerge from the model. We
show that the model is a potential game. We apply stochastic stability analysis in evolutionary game theory
literature to select globally stable equilibria. We demonstrate that polycentric spatial patterns in the FO
model are actually (stochastically) stable.
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1. Introduction

We present a stochastic stability analysis of the
equilibrium solutions for the Fujita and Ogawa1)

model (henceforth “the FO model”). The model is the
reference model for endogenous formation of poly-
centric urban configurations. It describes the pro-
cesses of suburbanization via interactions between
two types of mobile agents: firms and households.
The centripetal force in the model is technological
externalities between firms, which is interpreted as
business communications; for the centrifugal force,
there is competition over land between agents. In this
sense, the model is similar to the social interaction
models à la Beckmann.2)

An additional feature of the FO model is that there
are households who are assumed to commute to job
locations, thereby producing another cost of firms’
agglomeration; since a larger agglomeration of firms
result in longer commuting length of households, they
should be compensated by higher wage. Thus, the ba-
sic trade-off in the model can be captured by two pa-
rameters. One is the commuting cost parameter t of
households and the other is the communication cost
parameter τ of firms.

A striking characteristic of the FO model is that the
model admits multiple equilibria, typically character-
ized by polycentric patterns.1 The well-known clas-

1 In fact, the model was designed to demonstrate the insuffi-
ciency of classical monocentric models.
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Figure 6.12: Parameter ranges for six equilibrium configurations.

respect to x ≥ 0, the corresponding density functions are as follows:

m(x) = 1/Sf and n(x) = 0 x ∈ [b1, b3] (6.73)

m(x) = 0 and n(x) = 1/Sh x ∈ [0, b1] and [b3, b4].

Furthermore, the individuals residing in the section [0, b1] (respectively
[b3, b4]) are assumed to work in the business section [b1, b2] (respectively
[b2, b3]). The corresponding commuting function is then

J (x) = b1 + b2 − b1

b1
x x ∈ [0, b1]

= b2b4 − b2
3

b4 − b3
+ b3 − b2

b4 − b3
x x ∈ [b3, b4]

= x elsewhere (6.74)

so that J (0) = b1, J (b1) = b2, J (b3) = b2, and J (b4) = b3. The associated
wage function is given by

W ∗(x) = W ∗(b2) − t |b2 − x |, x ≥ 0, (6.75)

which is represented in Figure 6.9(c).
Next, using (6.35), (6.48), and (6.73), we can compute the aggregate acces-

sibility as follows:

A∗(x) = β

Sh

[
∫ −b1

−b3

exp(−τ |x − y|)dy +
∫ b3

b1

exp(−τ |x − y|)dy
]

,

(6.76)

which is represented in Figure 6.9(b). Unlike the case depicted in Figure 6.6
for the linear accessibility case, A∗(x) now achieves its maximum at a location
inside each business section and decreases as x moves toward 0.

Fig.1 Emergence of multiple equilibria and polycentric
patterns (taken from Fujita and Thisse3)).

sification of possible equilibrium patterns on (τ, t)-
plane is shown in Fig.1, highlighting emergence of
multiple equilibrium spatial configurations at some
parameter values. In Fig.1, below the curve C1 lies
the monocentric pattern; inside C2 the duocentric pat-
tern; above CC a complete dispersion.2

Even though the FO paper discusses multiple equi-
libria and structural transitions, stability of solution
has been long-standing issue, as Fujita and Thisse3)

puts it:

Note, however, that we do not know any-
thing about the stability of these equilibria.

2 The completely integrated pattern; see the next section.

第 54 回土木計画学研究発表会・講演集

 63

9



Performing such an analysis when the un-
knowns are continuous curves is a hard task
left for future research

or as Fujita and Ogawa implicitly discusses it (em-
phasis by the present author):

Once a catastrophic structural transition of
the urban configuration has been recognized,
the ensuing problem is to understand the un-
derlying dynamics which generate it.

Under the existence of agglomeration economies, a
lack of stability analysis can result in a theoretical ar-
tifact; namely, one can select non-sustainable equilib-
rium. The situation around the FO model need some
resolution.

Do stable polycentric patterns emerge from the FO
model? Takayama and Akamatsu4) argues that a
source of polycentricity is existence of a global type
of dispersion force. Here, a global type of agglom-
eration force is a dispersion force that explicitly de-
pend the distance between locations. A typical ex-
ample of such dispersion force is spatial competition
among firms over spatially fixed demands. For in-
stance, in Krugman,5) distance-dependent demands
from immobile firmers produce a global type of dis-
persion force.

The conclusion of Takayama and Akamatsu throws
some doubts on actual emergence of polycentric pat-
terns from the FO model, because the model does not
seem to have any global type of dispersion force. On
the other hand, since the conclusion is drawn from
models with a single-type of agents, its adaptability
to the FO model—a model with multiple types of
agents—is ambiguous. That said, we have to con-
duct explicit stability analysis of equilibrium patterns
in the FO model to assess weather polycentricity re-
sults or not.

The analysis in this paper shall provide an answer
to the stability issue of the model. In doing so, we
employ stochastic stability analysis in evolutionary
game theory3 also employing the fact that the FO
model is a potential game. The facts we use in the
present paper is that:

Fact 1. In a potential game, global maximizers of the
potential function is stochastically stable.

Fact 2. In a potential game, local isolated maximizers
of the potential function is locally stable under a wide
range of dynamics.

The two facts together posit that by simplly com-
paring potential values for possible equilibrium pat-
terns, we can select locally and stochastically stable
equilibria.

3 Readers should consult Sandholm6) for a survey. For
stochastic stability, a recent survey by Wallace and Young7)

should be a good inroduction.

Our conclusion is that polycentric patterns in
the FO model are (locally or stochastically) stable,
thereby once again highlighting the theoretical impor-
tance of the FO model. We will also show that evo-
lution of spatial structure follows the so-called bell-
shaped development, which is reminiscent of impli-
cations from inter-regional models in the previous lit-
erature. To achieve these goals, we first introduce a
discrete analogue of the FO model to avoid difficul-
ties arising from continuous space. Then existence of
an associated potential function is proved. Equipped
with the potential function, we conduct stochastic sta-
bility analysis to show emergence of polycentricity.
We also conduct an approximated local stability anal-
ysis to reveal economic mechanisms behind emer-
gence of polycentricity.

2. Fujita and Ogawa Model

In this section, we formulate a discrete version of
the FO model and analyze its basic properties. We
first show existence of the equivalent optimization
problem. We consider a decomposition of the equi-
librium problem into the short- and long-run compo-
nents, the latter of which can be naturally interpreted
as a potential game. The interpretation allows us to
apply stochastic stability analysis.

(1) Basic Assumptions and Agents
a) Basic Assumptions

We consider a one-dimensional space K with K
discrete locations, which is interpreted as a single city.
Land endowment at each location x ∈ K is fixed to
be S̄ ≡ S/K, so that total land endowment in the
economy is given by S. As usual, land is owned by
absentee landlords. For notational simplicity, the op-
portunity cost of land is normalized to be zero.

There are two types of mobile agents in the econ-
omy: households and business firms; there are a con-
tinuum N of identical households, as well as a con-
tinuum M of identical firms. Each household sup-
plies one unit of labor to a firm. The only income
of a household is the wage earned in compensation
of the labor. Firms are owned by absentee sharehold-
ers and export the same good to the outside world.
Firms produce the good under technological exter-
nalities which prefer proximity to other firms. Both
of the agents consume land for residential or produc-
tion use. Thus, in addition to the interactions in the
job-market, the two types of actors interact also in the
land market. Both markets are assumed to be per-
fectly competitive.
b) Household

Households consume land and composite good.
The identical preference for land and composite com-
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modity is expressed by U(s, z), where U : R+ ×
R+ → R is a strictly increasing function of land con-
sumption s and composite good consumption z. In
the FO model, for tractability, lot size s of a house-
hold is assumed to be a fixed constant Sh. Each
household supplies one unit of labor at some job loca-
tion j ∈ K, and compensated by the market wage Wj

prevailing at j. The budget constraint of a household,
who reside at i ∈ K and commute to j ∈ K, is given
by

Wj − t · Tij = z +Ri · Sh, (1)
where Ri is the market land rent at i ∈ K, Tij is the
Euclid distance between i, j (or commuting length),
and t is the unit commuting cost of households. Note
that z is taken as the numéraire. The left hand side of
(1) is the net income of a household that locate at i
and commute to j.

Maximization of utility U in our setting (fixed
land consumption s) is equivalent to maximization
of composite good consumption. Under fixed resi-
dential location i and fixed job location j, the utility-
maximizing consumption level of the composite good
zij is

zij ≡ argmax
z≥0

U(s = Sh, z) (2)

= Wj −Ri · Sh − t · Tij . (3)
Given the residential location i ∈ K of a household,

for later use we introduce the notion of commuting
function, C : K → K, which represents optimal job
choice of households. It is a function that satisfies the
following property:

C(i) = argmax
j∈K

{Wj − t · Tij} (4)

In other words, C(i) ∈ K is the job location that max-
imizes net income of household at i.
c) Business Firm

Firms produce good using a fixed amount of land
and fixed unit of labor, the value of which given by Sf

and L, respectively. There are technological external-
ities; the output level of a firm depends on the amount
of business communications such as face-to-face con-
tacts between the other firms. In reduced-form, the
profit function of a firm at location i ∈ K may be
expressed as

Πi(m) = Ai(m)−Ri · Sf −Wj · L, (5)
where Ai(m) is the accessibility field defined by4

Ai(m) =
∑
j∈K

dij ·mj , (6)

in which mj is the number of firms at location, m
is the vector of mi, and j ∈ K and dij is accessibil-
ity between locations. In the following, we concen-
trate on exponential accessibility function, or the spa-

4 See Fujita and Thisse,3) Chapter 6, for possible micro-
foundations of Ai(m).

tially discounted accessibility, as it is known that lin-
ear accessibility yields only monocentric spatial equi-
librium patterns (Ogawa and Fujita8)):

Assumption 1. D = [dij ] is given by the following
exponential formula with the communication cost pa-
rameter τ > 0:

dij = exp [−τ · Tij ] . (7)

In sum, there are two fundamental parameters: the
communication cost parameter τ for firms and the
commuting cost parameter t for households.

(2) Equilibrium Conditions
Let nij denote the number of households that

choose residential location i ∈ K and job location
j ∈ K. At an equilibrium, no household has an in-
centive to change its location or job. The condition is
expressed by the following:{

z∗ = zij if nij > 0,

z∗ ≥ zij if nij = 0.
∀i, j ∈ K (8)

where z∗ is the equilibrium level of the composite
good consumption. There should be no incentive for
a firm to change its location:{

Π∗ = Πi(m) if mi > 0,

Π∗ ≥ Πi(m) if mi = 0.
∀i ∈ K (9)

where Π∗ is the equilibrium profit.
The market land rent profile {Ri} and wage pro-

file {Wi} should be determined by equilibrium con-
ditions. The land market equilibrium condition is

Sh ·
∑
j∈K

nij + Sf ·mi = S̄ if Ri > 0

Sh ·
∑
j∈K

nij + Sf ·mi ≤ S̄ if Ri = 0
∀i ∈ K

(10)
Note that the left hand sides are the total land demand
at location x, whereas S̄ is the land endowment at
each location. Similarly, the job market equilibrium
condition is

∑
i∈K

nij = L ·mj if Wj > 0,∑
i∈K

nij ≥ L ·mj if Wj = 0.
∀j ∈ K (11)

The number of agents should be conserved:∑
i∈K

∑
j∈K

nij = N, (12)

∑
i∈K

mi = M. (13)

An equilibrium in the FO model is defined as a set
of variables that satisfies all of the above conditions.

Definition 1 (Spatial equilibrium in the FO model). A
spatial equilibrium in the FO model is a collection of
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variables ({mi}, {nij}, {Ri}, {Wi},Π∗, z∗) that sat-
isfies the no-arbitrage conditions (8), (9), the market
clearing conditions (10), (11), and the conservation
conditions (12), (13).

Note in passing that the equilibrium conditions are
mathematically equivalent to those formulated by Fu-
jita and Ogawa1) based on the bid-rent approach of
Alonso.9)

(3) Equivalent Optimization Problem and Poten-
tial Game Interpretation

We have the following proposition via standard
complementarity problem arguments.5

Proposition 1 (Equivalent optimization problem for
the FO model). Spatial equilibria in the FO model co-
incide with the solutions for the following optimiza-
tion problem:

max
m,n

Z(m,n) ≡ Z1(m)− Z2(n) (14)

s.t. Sh ·
∑
j∈K

nij + Sf ·mi ≤ S̄ ∀i ∈ K (Ri)

(15)∑
i∈K

nij ≥ L ·mj ∀j ∈ K (Wj)

(16)∑
i∈K

∑
j∈K

nij = N (z∗)

(17)∑
i∈K

mi = M (Π∗)

(18)

where the functions Z1(m) and Z2(n) are defined by

Z1(m) ≡ 1

2

∑
i∈K

∑
j∈K

dij ·mimj , (19)

Z2(n) ≡ t
∑
i∈K

∑
j∈K

Tij · nij . (20)

Here n is a K2-dimensional vector of nij . One can
easily verify that the Karush–Kuhn–Tacker (KKT)
conditions for the above problem coincides with the
equilibrium conditions in the previous section.

As in the social interaction models, one can ob-
serve the fundamental trade-off between agglomera-
tion force and dispersion force in the above objective
function Z(m,n). The first term Z1(m) represents
the tendency of firms to agglomerate, while the sec-
ond term Z2(n) prefers dispersion of firms. Note also
that Z2(n) is exactly the total commuting costs expe-
rienced by households.

5 The existence of equivalent optimization problem for the FO
model is demonstrated by Akamatsu.10)

We interpret that the optimization problem consists
of two components: the short-run and the long-run. In
the short-run, the location of firms are given (i.e., m
is given). Only households choose their residential
and job locations. The short-run component of the
equivalent optimization problem may be written as

min
n

Z2(n | m) s.t. (15), (16), (17) (21)

with a fixed spatial pattern of firms m. Let the so-
lution for (21) be n∗, and the optimal value function
of (21) be Z2

∗ (m) ≡ Z2(n∗ | m), as (21) can be
regarded as a parametric optimization problem with
parameter m.

The other component is the long-run. In the long-
run, firms are allowed to relocate; firms’ location
choice pattern m, which is the parameter of (21), can
vary. Then, one may formulate the following prob-
lem that characterize the long-run location choice of
firms:

max
m

Z1(m)− Z2
∗ (m) s.t. (18) (22)

Conceptually,6 letting

Π̂i(m) ≡ ∂Z1(m)

∂mi
− ∂Z2

∗ (m)

∂mi
, (23)

and M ≡ {m ∈ KK
+ |

∑
i∈K mi = M}, the long-

run problem can be regarded as an equivalent op-
timization problem for a potential game G ≡
(S,M, Π̂) with potential function Z1(m)−Z2

∗ (m).
Thus, stochastically stable equilibria are global
maximizers of Z1(m) − Z2

∗ (m), or equivalently,
Z(m,n).

3. Equilibrium Patterns

(1) Equilibrium Patterns on a Line Segment and
Difficulties

We shall first discuss equilibrium patterns and their
properties. The analysis in the original Fujita and
Ogawa1) paper considers a continuous line segment
as depicted in Fig.2a. The original article showed
that there are three essential types of equilibria. The
first type is the completely integrated pattern. The
second is segregated patterns, in which segregation
between firms and households, or endogenous for-
mation of business and residential districts, occur
(Fig.2c, Fig.2d, Fig.2e). Showing emergence of poly-
centric patterns such as Fig.2d or Fig.2e is a major
contribution of Fujita and Ogawa.1) The last type is
incompletely integrated patterns in which complete
segregation does not occur (Fig.2f). The original pa-
per does not analyze polycentric incompletely inte-
grated patterns to avoid complication.

6 Strictly speaking, Z2
∗(m) might not always be differentiable

with respect to m.
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-1 {-

(a) A continuous line segment (b) Completely integrated

(c) Monocentric, segregated (d) Duocentric, segregated

(e) Tricentric, segregated (f) Monocentric, incompletely in-
tegrated

Fig.2 Example of spatial equilibrium patterns in a line segment derived by Fujita and Ogawa.1) Dark gray regions depict
pure business district; light gray regions depict integrated regions; white are pure residential districts.

On a line segment, polycentric equilibrium patterns
such as duocentric and tricentric cannot be analyti-
cally derived due to asymmetry. To determine the loci
of boundaries of business districts, we should solve
highly nonlinear equations; in fact, there is no hope
for obtaining analytical solutions. Although numeri-
cal approaches such employed by the original FO pa-
per is possible, the intractability has long been a major
weakness of the FO model.

(2) Simplification: Continuous Approximation
and Normalizations

It is the effect of boundaries of space, or more con-
cretely, the locational advantage in the central portion
of a line segment, that cause the above difficulty. In
the following analysis, for simplification and abstrac-
tion from the first-nature advantage, we shall consider
a racetrack economy in line with Akamatsu et al.:11)

Assumption 2 (A racetrack economy). The underly-
ing space S ≡ (K,T ) is a racetrack economy whose
total land endowment is S.

It is immediate that polycentric segregated patterns
with equidistantly placed, same-sized business dis-
tricts are trivial equilibria on a racetrack economy,
thereby overcoming difficulties in obtaining relevant
equilibrium patterns for our analysis.

In addition, for simplicity7 of computation we shall
approximate our discrete space by a continuous one,
as we did for the SI model:

Assumption 3 (Continuous approximation).
Throughout our analysis of the FO model, a
continuous racetrack economy S is assumed as an
approximation. Locations are assumed to be indexed

7 On a discrete space, boundaries between business and resi-
dential districts such depicted in Fig.2 might not be uniquely
determined due to discretization errors. However, such inde-
terminacies are irrelevant for analyzing essential properties
of equilibrium patterns. In the present thesis, we shall avoid
such unnecessary complications by employing the continu-
ous approximation.

0 1
2

· · ·

-x0

x = −S

2
=

S

2

{

Fig.3 Discrete (K = 16) and continuous racetrack
economies. In both geographies, the total land en-
dowment is assumed to be S. For the continuous
one, space is indexed as S = [−S/2, S/2).

by x ∈ [−S/2, S/2), with a periodic boundary
condition.

At this point, the land endowment at each location
x ∈ S is assumed to be 1, so that total land endow-
ment equals the original discrete setting. See Fig.3 for
a comparison between discrete and continuous race-
track.

Now that space is continuous, spatial patterns and
job choice patterns m,n are represented by continu-
ous density functions m : S → R+ and n : S × S →
R+. Also, we shall use z(x, y), Π(x), C(x), R(x)
and W (x) in the places of zij , Πi(m), C(i), Ri, and
Wi. In particular, the accessibility function Ai(m) is
now computed as

A(x) =

∫
S
D(x, y)m(y)dy ∀x ∈ S (24)

where D : S × S → R+ is defined by

D(x, y) ≡ exp[−τ |x− y|] (25)

Here, |x−y| is loosely interpreted as the shortest path
length between x and y on the continuous racetrack.
The continuous-space analogue of the potential func-
tion is given by:

Z[m,n] ≡ Z1[m]− Z2[n] (26)

Z1[m] ≡ 1

2

∫∫
S×S

D(x, y)m(x)m(y)dxdy, (27)
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(a) Completely inte-
grated

x̄0 = 0

x̄1x̄−1

b3−b3

c3−c3

(b) Segregated

b̂3−b̂3

(c) Incompletely inte-
grated

Fig.4 Example of spatial equilibrium patterns. Dark gray regions depict pure business district; light gray regions depict
integrated regions; white are pure residential districts. For segregated or incompletely integrated patterns, the J = 3
(tricentric) case are taken as examples.

Z2[n] ≡ t

∫∫
S×S

|x− y|n(x, y)dxdy. (28)

where (27) and (28) corresponds to (19) and (20), re-
spectively. Similarly, the constraints (15) and (16) are
rewritten as

Sh ·
∫
S
n(x, y)dy + Sf ·m(x) ≤ 1 ∀x ∈ S, (29)∫

S
n(x, y)dx ≥ L ·m(y) ∀y ∈ S (30)

In addition to Assumption 2 and Assumption 3, we
make some normalization for simplicity of presenta-
tion. Integrating (29) and (30) over the continuous
racetrack, it follows that

ShN + SfM ≤ S (31)
N ≥ LM (32)

In the following, we shall assume full employment
(i.e., N = LM ) as the economy is closed. With-
out loss of generality, we further assume that there
are no vacant land in the racetrack economy (i.e.,
ShN + SfM = S), since firm’s preference for prox-
imity to other firms and household’s desire to shorten
commuting length together generically result in a
connected support (i.e., supp[m] ∪ supp[n] must be
a convex set in an equilibrium). Under the above two
natural assumptions, we can use the following nor-
malization by choosing appropriate unit for measur-
ing the number of mobile agents N and M :8

Assumption 4 (Normalizations). Sf = 1, Sh = 1.

In the following, we shall summarize possible equi-
librium patterns under the above normalization. Note
that as N = LM , by Assumption 4 the only indepen-
dent parameters other than τ and t are M and L; the
two parameters together determine the size of the city
by the relation S = (1 + L)M .

8 Specifically, we shall set M := SfM , N := ShN , L :=
(Sh/Sf)L using the original constants. See also Fujita and
Thisse,3) Chapter 6.

(3) Equilibrium Patterns and Their Properties
Assuming the continuous racetrack economy, we

consider three kinds of possible spatial patterns, anal-
ogous to those in a line segment (Fig.2).
a) Completely Integrated Pattern

As usual on the racetrack, the uniform distribution
of mobile agents is always an equilibrium (Fig.4a).
We shall call the pattern the completely integrated
pattern, in line with that on a line segment (Fig.2b).
The completely integrated pattern is

m(x) = m̄ ≡ M

S
=

1

1 + L
∀x ∈ S (33)

n(x) = n̄ ≡ N

S
=

L

1 + L
∀x ∈ S (34)

where

n(x) ≡
∫
S
n(x, y)dy ∀x ∈ S (35)

is the residential density function of households. Note
that n̄ = Lm̄ as N = LM .

In the completely integrated pattern, there is no
costly commuting. The corresponding commuting
function C(x) is the identity map: C(x) = x for all
x ∈ S. Let the uniform level of market wage and land
rent be W̄ and R̄, we have

z∗ = W̄ − R̄, (36)

Π∗ = Ā− W̄L− R̄, (37)

where

Ā =
2M

Sτ
·
(
1− exp

[
−τ · S

2

])
(38)

is the uniform level of firms’ accessibility.9 Letting
a normalization R̄ = 0 and assuming zero-profit of
firms in order to avoid indeterminacy, we have W̄ =
Ā/L. It is thus obvious that the completely integrated
pattern is always an equilibrium.10

9 Observe that exp[−τ(S/2)] is the accessibility between an-
tipodal points on the circumference (i.e., D(0, S/2)).

10 Note that, on a line segment, the completely integrated pat-
tern cannot be an equilibrium for specific regions of the
transport cost parameter pairs (τ, t).
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x̄j

x̄j + cJx̄j − cJ
?

R−
j

?

R+
j

?

Bj

Fig.5 A business district Bj and the associated residential
districts R+

j ,R
−
j

b) Segregated Patterns
Consider J-centric segregated patterns in which

J ∈ Z++ same-sized business districts (BDs) are
equidistantly placed over the racetrack, and the rest
are used for residential districts (RDs). Fig.4b il-
lustrates the 3-centric segregated equilibrium. These
patterns are symmetric versions for Fig.2d or Fig.2e.
We assume that there is a BD whose center is lo-
cated at the origin x = 0, and call it the central
BD. From the central BD, other BDs are numbered
by j where j = J−, . . . ,−1, 0, 1, . . . , J+ with J− ≡
⌈−(J − 1)/2⌉, J+ ≡ ⌈−(J − 1)/2⌉. The center of
the jth business district is denoted by x̄j , the actual
value of which being x̄j = (S/J)j.

For each J-centric segregated pattern, we shall de-
note jth BD by Bj ⊂ S , and the union of all the BDs
by B ≡ ∪jBj ⊂ S . As the number of firms at each
BD (= the width of the BD, as the land density is
unity) is given by M/J , the “radius” of a single BD
is given by

bJ ≡ M

2J
. (39)

Using bJ , jth BD may be expressed as Bj ≡ [x̄j −
bJ , x̄j + bJ ]. The J-centric segregated pattern is thus
expressed as

m(x) = 1B (40)
n(x) = 1S\B (41)

where for a given set X , 1X denotes the indicator
function for it.

Polycentric segregated patterns includes commut-
ing of households. It is immediate that households
commute to the nearest business district. Define cJ ≡
S/(2J); also define residential district Rj associated
to Bj by

Rj ≡ R−
j ∪R+

j , (42)

R−
j ≡ [x̄j − cJ , x̄j − bJ), (43)

R+
j ≡ (x̄j + bJ , x̄j + cJ). (44)

Then, households in Rj commute to Bj . For an illus-
tration of R±

j , see Fig.5. Then, commuting function

C(x) for Rj may be expressed as11

C(x) =


x̄j +

bJ
lJ

(x− x̄j + bJ) if x ∈ R−
j

x̄j +
bJ
lJ

(x− x̄j − bJ) if x ∈ R+
j

(45)

where lJ ≡ cJ − bJ = N/(2J) is the width of the
residential districts R−

j , R+
j . Let Ej ≡ Bj ∪ Rj . We

shall call Ej “j-th employment area”.
We can easily check the J-centric segregated spa-

tial configurations are potential equilibria. We shall
first derive the accessibility profile A(x) for J-centric
pattern. Because of symmetry, we shall only consider
the accessibility function in the central employment
area (E0). Recalling m(x) = 1 in B,

A(x) =

∫
S
D(x, y)dy =

∑
j

∫
Bj

D(x, y)dy (46)

To provide some intuitions, we shall compute a part
of A(x). For j > 0, the accessibility to Bj , Aj(x) is
computed as

Aj(x) ≡
∫
Bj

D(x, y)dy (47)

=

∫ x̄j+bJ

x̄j−bJ

exp[−τ(y − x)]dy (48)

=
2

τ
· exp[−τ(x̄j − x)]︸ ︷︷ ︸

(a)

· sinh[τbJ ]︸ ︷︷ ︸
(b)

. (49)

for all x ∈ B0. In Aj(x), (a) can be interpreted as the
effect of the average distance to the destination sup-
port Bj from location x ∈ B0, while (b) the effect of
“spread” of Bj . Via a similar straightforward compu-
tation, we show that A(x) is

A(x) =



2

τ
·
(
α̂J − β̂J cosh[τ(x+ cJ)]

)
,

∀x ∈ R−
0

2

τ
·
(
αJ − βJ cosh[τx]

)
,

∀x ∈ B0

2

τ
·
(
α̂J − β̂J cosh[τ(x− cJ)]

)
,

∀x ∈ R+
0

(50)

where αJ and βJ are defined by the following

αJ ≡

{
1 (J : odd)
1− r

J/2
J (J : even)

(51)

11 We assume parallel commuting in Fujita and Ogawa.1)

Berliant and Tabuchi12) give a more detailed scrutiny on
commuting patterns in the FO model when convexity of
commuting cost change.
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Fig.6 The two terms in the potential values in equilibria (Z1
J (τ) and −Z2

J(t)). Z
1
J (τ) is strictly decreasing in J , where as

−Z2
J(t) is strictly increasing in J .

βJ ≡


exp[τbJ ] + 2 sinh[−τbJ ] · dJ (J : odd)
exp[τbJ ]− r

J/2
J exp[−τbJ ]

+2 sinh[−τbJ ] · dJ
(J : even)

.

(52)

α̂J ≡

{
−r

J/2
J (J : odd)

0 (J : even)
(53)

β̂J ≡



−r
J/2
J exp[−τbJ ]

+2 · r−1/2
J · sinh[−τbJ ] · d̂J
(J : odd)

2 · r−1/2
J · sinh[−τbJ ] · d̂J

(J : even)

. (54)

with rJ ≡ exp[−τ(S/J)] being accessibility be-
tween two consecutive centers x̄j , x̄j+1. Using rJ ,
dJ and d̂J are defined by

dJ ≡
⌈(J−1)/2⌉∑

j=0

rjJ , d̂J ≡
⌊J/2⌋∑
j=1

rjJ . (55)

Observe that dJ and d̂J reflect a global accessibility
structure, analogous to the row-sum of spatial dis-
counting matrix D. In other words, accessibility
function in the FO model has implicit global struc-
ture. Also observe that A(x) is a unimodal function,
as readily expected from its meaning.
c) Incompletely Integrated Patterns

A polycentric incompletely integrated pattern with
J = 3 is illustrated by Fig.4c. Such incom-
pletely integrated patterns are here considered to
be “transitional” patterns. For instance, on a line
segment, monocentric incompletely integrated pat-
tern can emerge between the completely integrated
equilibrium and segregated equilibria (Fujita and

Ogawa1)). Sufficiently large values of t induces emer-
gence of the completely integrated pattern (complete
dispersion), whereas small values of t fosters that
of segregated patterns. Incompletely integrated pat-
terns emerge, if any, for intermediate values of the
commuting cost parameter t. Even on the symmetric
racetrack, however, we encounter difficulties in ob-
taining analytical formula for incompletely integrated
patterns. For instance, boundaries of integrated dis-
tricts (i.e., b̂3 in Fig.4c) should be obtained by solving
nonlinear equations.

We shall recall that the main objective of the
present thesis is the contrast between polycentricity
and monocentricity. In light of this, our scrutiny in the
present paper shall focus on the simple question of:
do stable polycentric patterns actually emerge from
the FO model? To this end, assuming sufficiently
small t, we shall refrain here from analyzing incom-
pletely integrated patterns, as they can be regarded as
transitional ones. Curiously enough, supplementary
numerical assessments have shown that incompletely
integrated patterns can never emerge if we take into
account polycentric segregated equilibria with large
J .

4. Globally Stable Equilibria in the FO Model

(1) Potential Values
To analyze stochastic stability of equilibria, we

shall first compute the potential values at relevant
equilibrium patterns: the completely integrated pat-
tern and segregated patterns.

For the completely integrated pattern, there are no
commuting of households. Using the accessibility
formula (38), it is straightforward to compute:

Lemma 1 (The potential value for the completely in-
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tegrated equilibrium). Let Z0 be the potential value at
the completely integrated pattern. Then,

Z0(τ) =
M2

Sτ

(
1− exp

[
−τ · S

2

])
. (56)

As the completely integrated pattern does not cause
households’ commuting, the potential value does not
depend on the commuting cost parameter t.

For the segregated patterns, using commuting func-
tion described in the previous section, we show the
following lemma.

Lemma 2 (The potential values for J-centric segre-
gated patterns). Let ZJ be the potential value at J-
centric segregated pattern. Then, ZJ is given by

ZJ(τ, t) = Z1
J(τ)− Z2

J(t), (57)

Z1
J(τ) ≡

M

τ

(
αJ − βJ

sinh[τbJ ]

τbJ

)
, (58)

Z2
J(t) ≡

(1 + L)LM2

4
· t

J
. (59)

where αJ and βJ are defined by (51) and (52), respec-
tively.

It can be shown that when the number of BDs goes
to infinity for the segregated patterns, the associated
potential value converges to that of the completely in-
tegrated pattern:

lim
J→∞

ZJ(τ, t) = Z0(τ). (60)

The convergence result is natural, since as J increase,
commuting lengths of households become shorter and
shorter, asymptotically approaching zero; the limiting
pattern can be roughly interpreted as a “completely
integrated” pattern in an average sense.

Fig.6 depicts the two terms (Z1
J(τ) and −Z2

J(t)) in
the potential values for segregated patterns (Lemma
2). Fig.6a illustrates the first term Z1

J(τ) of the poten-
tial value. Observe that for segregated pattern, Z1

J(τ)
is strictly decreasing in J and converge to Z0(τ) as
J goes to infinity. On the other hand, the second
term −Z2

J(t) is strictly increasing in J as illustrated in
Fig.6b, reflecting smaller commuting costs. The op-
posite properties concretely reveals the fundamental
trade-off between commuting costs of households and
communication level of firms. For instance, we can
immediately show the following intuitively straight-
forward propositions by just comparing the potential
values:

Proposition 2 (Monocentricity without commuting).
If t = 0, then the monocentric segregated equilibrium
is stochastically stable.

Proposition 3 (Dispersion without communication
costs). If τ = 0, then the completely integrated equi-
librium is stochastically stable.

(2) Emergence of Polycentricity in Globally Sta-
ble Equilibria

For deriving stochastically stable equilibrium pat-
terns, we have to compare potential values obtained
in Lemma 1 and Lemma 2. Even though apparently
simple at the first glance, the potential values for J-
centric segregated equilibria ZJ(τ, t) have quite com-
plicated form, particularly due to the first term Z1

J(τ)
and does not seem to facilitate simple comparison
in general.12 We shall look into some simple cases
(J = 1, 2), and then proceed to a numerical assess-
ment for larger Js.

We shall first compare the monocentric pattern
(J = 1) and the duocentric pattern (J = 2), as well
as the completely integrated pattern. In order to as-
sess model’s ability to produce polycentric patterns,
it is sufficient to show that there are parameter val-
ues such that the monocentric and the completely in-
tegrated patterns are dominated by some polycentric
patterns. We show the following proposition:

Proposition 4. Assume that the communication cost
parameter τ is sufficiently large. Then, there exist a
range of the commuting cost parameter t such that
Z2(τ, t) > max{Z0(τ), Z1(τ, t)} holds.

Corollary 1 (Emergence of polycentricity). There are
pairs (τ, t) of the transport cost parameters such that
neither of the monocentric segregated pattern nor the
completely integrated pattern is stochastically stable.

In sum, the above statements formally demonstrate
that the FO model can produce polycentric patterns
in stochastically stable equilibria, as neither of mono-
centricity nor complete dispersion will result.

Numerically comparing all the potential values
{ZJ} (J = 0, 1, 2, . . .), we obtain more concrete
intuitions regarding Proposition 4 and Corollary 1.
Fig.7a shows a whole picture of the partition of (τ, t)-
plane based on the stochastically stable equilibrium
pattern. The gray areas are where segregated patterns
dominate the completely integrated pattern, whereas
the white region the opposite. Each gray region cor-
responds to one of J-centric segregated patterns. In
τ -axis, each gray region are aligned in the increasing
order of J (see Fig.7b). Also observe that (at least
for relatively large values of τ ) there appears to be a
threshold value, t∗, of the commuting cost parame-
ter below which segregated patterns emerge. Observe
that our partition in Fig.7 is qualitatively consistent
with the results presented in the FO paper (see Fig.1
in the introduction).

A major implication of the classification illustrated
inf Fig.7 is the effect of changing the communica-
tion cost parameter τ of firms. Fig.8 depicts a evo-
lutionary path of stochastically stable spatial struc-

12 For instance, see the exact analytical formula for βJ in (52).
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Fig.7 Classification of stochastically stable equilibria on the (τ, t)-plane. Independent parameters are set to be (M,L) =
(100, 1), in agreement with Fujita and Thisse.3) Gray regions are where J-centric equilibrium patterns are stochas-
tically stable. (a) Polycentric segregated equilibria are stochastically stable for small t, especially below a threshold
value t∗ for large τs. (b) J is aligned in the increasing order in τ -direction.
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Fig.8 The communication cost τ vs. stochastically stable equilibria in the FO model.

ture in line with changing τ .13 A striking property
here is that a steady decrease in τ induces a repetitive
emergence of polycentric patterns with decreasing J
which converges to monocentricity, and then at the fi-
nal stage re-dispersion from the monocentric pattern.
Curiously enough, we observe such behavior in inter-
regional models with both local and global disper-
sion forces (e.g., Tabuch,13) Puga;14) in spatial eco-
nomic literature, such two-stage (agglomeration and
re-dispersion) behavior is called a “bell-shaped devel-
opment” of spatial structure (Fujita and Thisse3)). It
may be interpreted that the FO model exhibits a bell-
shaped development in intra-urban scale. It should be
noted that, however, in the FO model the agglomera-
tion and dispersion behaviors occur in a single city,
i.e., a single convex connected support which corre-
sponds to a single location in inter-regional models.
Although qualitatively similar, the evolutionary be-
havior should be regarded as a distinct one compared
to those in inter-regional models.14

13 Here, the commuting cost parameter t is assumed to be fixed
at a level below t∗, say, t = 0.1.

14 To explicitly demonstrate the difference, we must consider
possibility of vacant land. Due to a lack of symmetry, how-
ever, analytical study would become a hard task.

(3) Mechanism Behind Polycentricity in the FO
Model

We have a partition of the (τ, t)-plane which sug-
gests emergence of polycentricity from the FO model.
Yet, it is hard to tell what actually is the key for emer-
gence of polycentricity in the FO model only from
the analysis in the previous sections. We discuss how
polycentricity is formed in the FO model.

First, we note that since households and firms are
evenly spread at the completely integrated pattern,
emergence of some agglomeration from the pattern
can be approximated by a model without location
choice of households—as land market acts towards
only dispersion. As land market competition can
work as local scale of dispersion force, what matters
for the emergence of polycentricity from uniformity
in the FO model would be job choice behavior of
households. To elaborate on this point, abstracting
location choice of households, we here analyze the
effect of job choice of households via some local sta-
bility analysis arguments and try to explain how the
partition of (τ, t)-plane in Fig.7 is formed.

To analyze local stability, we again consider the
discrete version of the FO model with K locations
with K being a multiple of four. For simplicity,
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we also assume that L = 1 (i.e., the number of
households equals to the number of firms) and N =
M = K. Then, at the completely integrated pattern,
hi ≡

∑
j nij = 1 and mi = 1 for all i ∈ K. We

denote the spatial pattern of households by a vector
h.

We are to see if polycentricity can emerge from the
completely integrated pattern by inspecting the prop-
erties of the eigenvalues of the profit function Π(m)
of firms. When we abstract from land market and set
L to unity, it is given by

Π(m) = Dm−W , (61)
where W = [Wi] is the wage vector and D is the spa-
tial discounting matrix of interactions between firms
with a single communication freeness parameter

r ≡ exp

[
−τ

S

K

]
. (62)

where S is the circumferential length of the racetrack
economy. To inspect the eigenvalues of Π(m) at the
completely integrated pattern, we should evaluate the
Jacobian matrix

∇Π(m̄) = D −∇W (63)
at the completely integrated pattern m̄ ≡ 1. How-
ever, the second term, ∇W cannot simply evaluated
since the job-choice behavior of households is as-
sumed to be deterministic in the FO model; W is not
differentiable.

In order to ensure differentiability of consumer’s
choice, we assume a household chooses its job loca-
tion through logit probability, analogous to consump-
tion behavior in the SISC model. Specifically, we as-
sume that a household in location i choose job loca-
tion j according to the following logit probability

Pij(W ) =
exp[θ(Wj − t · Tij)]∑

k∈K exp[θ(Wk − t · Tik)]
, (64)

where θ is, as usual, a positive constant that expresses
the (inverse) intensity of randomness. When θ → ∞,
the choice probability converges to deterministic
maximization of wage net of commuting cost, i.e.,
limθ→∞ Pij > 0 if and only if j ∈ argmaxj Wj − t · Tij .
We assume θ is relatively large so that we can ap-
proximate the original FO model.15

In the following, we define
wi ≡ exp[θWi], (65)

dHij ≡ exp[−θtTij ], (66)
and the freeness of commuting

rH ≡ exp

[
−θt

S

K

]
(67)

so that DH = [dHij ] is the spatial discounting matrix
for households’ commuting with a single parameter

15 Whether a concrete value of θ is “large” or “small” depends
on scale of W or T . In the following, we assume θ is at least
larger than one.

rH. Using DH and w = [wi], the choice probability
matrix P = [Pij ] can be expressed as

P = diag[DHw]−1DH diag[w]. (68)

The job market clearing condition yields that job
demand at i, Lmi = mi should met by the above
commuting behavior:

mi =
∑
j∈K

nij =
∑
j∈K

hjPji (69)

or in the vector-matrix form

m = P⊤h (70)

The condition is analogous to wage equations of typi-
cal NEG model à la Krugman;5) a subtle difference is
that the above equation is a quantity-based equation,
in contrast to price-based ones in the NEG literature.
In effect, the above equation yields that the Jacobian
matrix ∇W of the wage with respect to m is given
by

∇mW =
1

θ

(
diag[P⊤1]− P⊤P

)−1
(71)

for our case (h = 1). From symmetry, wage is con-
stant across locations at the completely integrated pat-
tern; we then have P = D̄H at the completely inte-
grated pattern, where D̄H is the row-normalized ver-
sion of D̄H. It thus follows that

∇mW =
1

θ

[
I − D̄2

H

]−1 (72)

We thus have obtained desired analytical expression
of ∇Π(m̄):

∇Π(m) = D − θ−1(I − D̄2
H)

−1. (73)

We show the following lemma by applying the
method of Akamatsu et al.:11)

Lemma 3 (The eigenvalues of ∇Π(m̄)). For the
modified FO model with (i) logit commuting choice
of households and (ii) no land market, the eigenval-
ues of ∇Π(m̄) at the completely integrated pattern is
given by

ek =
1

1− (fH
k )2

·G(fH
k , f̂k) (74)

G(fH
k , f̂k) ≡ {1− (fH

k )2} · f̂k −
1

θ
. (75)

where f̂ is the eigenvalues of D and fH is the eigen-
values of D̄H. f̂ and fH are obtained as analytic
functions of the freeness of firm communication, r,
and the freeness of household commuting, rH, respec-
tively.

Note that the range of f̂ is not normalized to (0, 1)
as D is not normalized by d(r), the row-sum of D.
As discussed in Akamatsu et al.15) or Osawa et al.16)

The eigenvalues ek or the function G(fH
k , f̂k) can be

interpreted as the net agglomeration force in the k-th
direction.
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i=1 of D̄H for K = 16.

The thick black curve is the maximal eigenvalues
f1 = fK−1, while the dashed black curve is the
minimal eigenvalue fM . The gray curves between
them are the other eigenvalues.

There are many implication from the functional
form of the eigenvalues {ek}. Even though fH

k and fk
are both monotone in k for 1 ≤ k ≤ K/2 (see Fig.9
and Fig.10), the maximal among ek is ambiguous.
This ambiguity arises because there are two trans-
port costs (i.e., commuting and communication), one
prefers unimodal agglomeration and the other prefers
period-doubling (polycentric) agglomeration.

First, the need to communicate with the other firms
prefer unimodal agglomeration. For instance, fix the
freeness of commuting rH at very high level. Then,
fH
k ≈ 0 for all k (see Fig.9) and 1 − (fH

k )2 ≈ 1 for
all k. Then, ek would be written as

G(fH
k , f̂k) ≈ f̂k −

1

θ
. (76)

The above formula is typical one for models with
monocentric agglomeration; a decrease of the free-
ness of communication r results in emergence of
monocentricity.

On the other hand, polycentric agglomeration is
preferred if commuting behavior of households dom-
inates. For example, fix the freeness of communica-
tion r at very low level (r ≈ 0) so that communication
between distant firms is impossible. Then, f̂k ≈ 1 for
all k and thus

G(fH
k , f̂k) ≈ −(fH

k )2 + 1− 1

θ
. (77)

The above formula is typical one for models with
polycentric agglomeration. Even though firms hope
to agglomerate due to the low freeness of communi-
cation, job market clearing does not allow firms to
produce unimodal agglomeration because firms must
compensate commuting costs of households by set-
ting higher wage so that it can meet its own (fixed)
labor demand L.

The relative strengths of the above two oppos-
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�

Fig.10 Eigenvalues f̂ of D and 1/θ. If r > r∗K/2 is sat-
isfied, K/2-th eigenvector ek is always negative
and the period-doubling bifurcation does not occur
from the completely integrated pattern.

ing forces toward monocentricity and polycentricity
depend heavily upon exact values of communica-
tion/commuting freeness pair (r, rH). Actually, de-
pending on the freeness of communication r, possi-
ble numbers of peaks in emergent spatial pattern de-
crease. The following lemma gives the critical value
of rH(r) at which the bifurcation from the completely
integrated pattern emerge:

Lemma 4 (The critical value of rH as a function of r).
Consider a fixed r. Let rH∗(r) be the critical value
of rH at which the bifurcation from the completely
integrated pattern emerge. Then, it is given by

rH∗(r) ≡ min
k∈K(r)

rH∗
k (r), (78)

rH∗
k (r) ≡ fH−1

k (fH∗
k (r)), (79)

fH∗
k (r) ≡

√
1− 1

θf̂k(r)
, (80)

with K(r) ≡ {k | f̂k(r) > 1/θ}.

Observe that the critical value for fH
k (rH) is k-

dependent and the actual critical point for rH is the
minimal among {rH∗

k }. It is also noted that when
one increase the agglomeration force of firms (i.e.,
increase r, or equivalently, decrease τ ), the number
of emergent peaks decrease. As depicted by Fig.10,
depending on the value of r, the condition for the ex-
istence of (80) might not be satisfied for some k. For
instance, for a k such that

r > r∗k ≡ f̂k(1/θ), (81)
bifurcation in the k-th direction cannot occur since
ek is negative for all values of the freeness of com-
muting rH. This means that, even though households
prefer as much polycentricity as possible to shorten
their commuting distance, the merit of agglomeration
overcomes tendency toward polycentricity.
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Fig.11 Local stability and bifurcation directions from the
completely integrated pattern in line of decrease in
the commuting cost parameter t (K = 25, θ = 3).
The figure is obtained by a suitable change of co-
ordinate (r, rH) 7→ (τ, t). In the light gray re-
gion, the completely integrated pattern is unstable.
As t decreases, the completely integrated pattern
becomes unstable at a τ -dependent critical point
t∗(τ). Dashed lines depicts critical values of τ
where k∗(τ) switch.

We denote the bifurcation direction at rH∗ by k∗(r);
that is,

k∗(r) ≡ argmin
k∈K(r)

rH∗
k (r). (82)

We have following characterization for the bifur-
cation from the completely integrated pattern after
Lemma 4:

Corollary 2 (The value of r and monocentric-
ity/polycentricity). Consider a bifurcation from the
completely integrated pattern due to increase of the
freeness of commuting rH. Then, emergent patterns
are characterized as follows (see Fig.12 for K = 32):

• For r ≈ 0, k∗(r) = K/2. The associated eigen-
vector is ηK/2 ≡ [(−1)j ] where alternate lo-
cations increase its inhabitants. That is, spatial
period-doubling patterns17) emerge.

• For r ≈ 1, k∗(r) = 1. That is, monocentric
patterns emerge.

Fig.11 illustrates the above discussions on (τ, t)-
plane via an appropriate change of coordinate
(r, rH) 7→ (τ, t) so that one can compare the fig-
ure with Fig.7.16 The number of locations is set to
K = 32. When r is sufficiently small, i.e., the com-
munication cost τ is large, k∗(τ) = K/2 = 16; a

16 Qualitative difference between the shapes of regions in these
figures should be understood as a consequence of (i) dis-
cretization of the underlying space and (ii) logit approxima-
tion of commuting behavior.
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Fig.12 Eigenvectors η1,η4,η8,η16 in a K = 32 location
racetrack. Observe that the eigenvectors are given
by cosine curves.

steady decrease of the commuting cost t result in a
period-doubling bifurcation. On the contrary, if r is
large, i.e., τ is small, k∗(τ) = 1; a decrease of t thus
result in an emergence of monocentric pattern. Fig.11
further illustrates that k∗ is monotonically decreasing
if we decrease τ . In particular, k∗(τ) = 16, 8, 4, 1
are highlighted in the figure, as they are analogous to
the spatial period-doubling cascade path discussed in
Akamatsu et al.11) and Ikeda et al.17) Associated bi-
furcation modes η1,η4,η8 and η16 are illustrated in
Fig.12.

In sum, the section showed that the distance-
dependent job-choice behavior of households in the
FO model can produce a global class of dispersion
force on the side of firms. An agglomeration of firms
at a location calls for larger number of household
commuting to the location to meet its labor demand;
this in turn requires a higher wage so that the loca-
tion can be attractive compared with other locations,
despite (possibly) longer commuting distance on the
side of households. In effect, if the commuting cost t
is sufficiently high, firms cannot attract distant house-
holds and global dispersion occur so that commut-
ing distance becomes shorter. The mechanism behind
polycentricity in the FO model is thus basically con-
sistent with the conclusions of Takayama and Aka-
matsu.4) Explicitly considering location choice of
households will not affect the basic mechanism, as
competition over land can produce only local disper-
sion force.

5. Concluding Remarks

This paper has applied the global stability analy-
sis technique to analyze the FO model. Although the
model has been the reference model for urban poly-
centricity, it has been also criticized for its intractabil-
ity, and also for resulting lack of stability analysis of
equilibrium patterns. This paper has introduced a dis-
crete version of the FO model to recast the model
into an instance of potential games, so that stochas-
tic stability analysis is possible. Via stochastic sta-
bility analysis on a symmetric racetrack economy, it
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is shown that: (a) the FO model admits stochasti-
cally stable polycentric patterns, and (b) the evolu-
tionary path of spatial structure exhibits a specific
pattern analogous to the so-called “bell-shaped de-
velopments.” These results together provide an an-
swer to the stability issue of equilibrium patterns for
the FO model, as well as clarifying the effect of the
communication cost parameter τ on resulting spa-
tial structures. In addition, we have found that job-
choice behavior of households is the key for emer-
gence of polycentric patterns in the FO model. Since
the job-choice of commuters are distance-dependent,
it in turn produces a distance-dependent, global dis-
persion force. The result shows a fundamental im-
portance of existence of a dispersion force that acts
in global scale in producing polycentric patterns. We
also

As our analysis in the paper has focused solely on
showing emergence of stable polycentric patterns in
the FO model, there remains a number of interest-
ing research directions. First, it should be interest-
ing to dig deeply into properties of spatial equilib-
rium patterns in the racetrack, e.g., wage profile, land
rent profile, or equilibrium payoffs, and their compar-
ative statics, e.g., dynamic transitions between stable
spatial patterns. Also, making a concrete comparison
between the original spatial setting (a line segment)
and the present setting (a racetrack) should be an in-
teresting task. In particular, it is probable that incom-
pletely integrated patterns or polycentric segregated
patterns with different-sized supports (cf. Fig.2) are
consequences of the first nature of line segment.
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