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Driving performance deteriorates with excess driving stress rises, which may increase vehicle accident 

likelihood. This study aims to quantify the effect of driving stress by monitoring the heart rate increase with 

various traffic conditions in a real-world road network. The data collection includes heart rate from elec-

trocardiogram records, vehicle trajectories from GPS, road conditions from video, and vehicle conditions 

from CAN bus. We propose a machine learning methodology based on Random Forest for the estimation of 

car driver stress due to different driving events. In contrast to other statistical methods and machine learning 

methods, Random Forest can handle different types of predictor variables, make a high accurate prediction 

and give variable importance analysis. Results indicate that average speed, coefficient of covariance of 

speed, times of brake operation and times of acceleration operation contribute about 78% relative im-

portance to driving stress. Further sensitivity analysis show that low average speed, large speed variance, 

frequent operations of brake and acceleration will cause high level of driving stress. The driving stress heat 

map can be applied to a safety-based route guidance system. 
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1. INTRODUCTION 
 

In our highly motorized society, one of the social 

problems is the considerable numbers of injuries and 

deaths caused by traffic accidents. Clearly, we will 

benefit greatly with the improvements in advanced 

driver assistance system considering driving safety. 

Many research found that driving stress can have a 

significant impact on driving safety1,2). Drivers with a 

history of crashes reported significantly higher stress 

levels while performing common driving tasks1). 

Although moderate level of stress may be beneficial 

in maintaining driver attention3), high stress can in-

fluence adversely drivers’ reactions in critical situa-

tions and increase crash likelihood, thus it is one of 

the most important factors for vehicle accidents 

among fatigue and aggressive driving4-6). 

As the driving safety becomes a rising concern, 

many scientists have devoted themselves to finding 

the connection between driving safety and driving 

stress. There has been great interest in the use of 

physiological measures for driving performance 

monitoring in a new generation of advanced driver 

assistance systems7,8). A growing body of evi-

dence9-12) has shown that physiological signals can be 

used to detect continuous changes in heart rate, res-

piration, skin conductance, and muscle activity, thus 

they hold the potential to measure the change of 

driving stress in changing environment. For example, 

Yamakoshi et al.13) conducted an experiment on 

driver’s awareness level in monotonous situations 

and the cardiovascular parameters are used for 

analysis. It demonstrated that sympathetic activity 

was increased during monotonous situation whilst 

vagal tone appeared to be suppressed. Healey and 

Picard7) analyzed four types of physiological data 
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(electrocardiogram, electromyogram, skin conduc-

tivity, and respiration) during driving tasks to de-

termine a driver’s relative stress level. They found 

that an overall of 97.4% can be achieved by using 

5-min intervals data provided by heart rate and skin 

conductivity. Although different kinds of sensors 

enable to provide detail physiological signals in dif-

ferent aspects, it is impossible to wear different kinds 

of sensors simultaneously. For example, wearing 

many sensors may cause discomfort and dangers to 

drivers14). Among various physiological signals, 

many studies have validated the effectiveness of 

heart rate variability (HRV) measures extracted from 

electrocardiogram (ECG) can be used as an indicator 

for driver stress7,14,15). Thus, it is a worthwhile re-

search topic to develop an efficient driving stress 

recognition approach by using HRV. 

Driving stress is usually influenced by internal 

emotions and external factors. Stress from driving 

can be classified into two types: trait and state 

stress16-20). Trait stress is associated with those stable 

vulnerability factors residing within an individual, 

such as frustration, impatience, anger, and fatigue 

proneness. State stress is related to specific external 

situations that are considered challenging to control 

such as driving in a heavy traffic, driving on a slip-

pery road, limited visibility caused by rain, limited 

travel time budget, conflicting with pedestrians and 

cyclists, being put in danger by impatient, ignorant or 

aggressive drivers, and being caught behind a slow 

moving vehicle with time urgency. Hill and Boyle 

found that driving stress increased as the interactions 

with other drivers increased3), and the adverse 

weather conditions (e.g., icy road, heavy rain) and 

poor visibility conditions (e.g., nighttime driving) 

may also contribute high levels of stress. In a driving 

simulation study, it is found that heart rate increased 

with heightened task demands such as entering a 

roundabout, and dropped as task demands decreased, 

for instance, driving on a two-lane highway21). Sim-

ilarly, changes in driving speed and brake operation 

have been observed when drivers appear to be more 

stressful22). Miller and Boyle found that dimensional 

differences in road geometry may impact driving 

stress and vehicle control15). A real-world driving test 

shown that participants’ heart rate was highest in the 

transition segments before tunnel segments. And 

they also found that stress was higher within a tunnel 

compared with the open road.  

All of the above findings indicate that driving 

stress have significant relationship with traffic con-

ditions and surrounding environment. However, few 

studies quantify their correlation and importance. 

That is, it has not yet determined which variables 

have the most important contribution to the driving 

stress and how many variables are needed for driving 

stress estimation. To fill this gap, we aim to quantify 

the effect of driving stress by monitoring the heart 

rate increase with various traffic conditions in a re-

al-world road network. Specifically, we propose a 

machine learning methodology based on Random 

Forest for the estimation of car driver stress, which 

enables to handle different types of predictor varia-

bles and provide interpretable results. Finally, the 

relative importance of each variables and the appli-

cation to network-wide driving stress mapping are 

given.  

 

 

2. METHODOLOGY 
 

 (1) Data collection 

a) Route and GPS 

As shown in Figure 1, the experimental route 

consists of arterial roads, residential streets, and 

mountain roads. It is about 22.6km and takes about 

70 minutes to complete. GPS data contains a vehi-

cle’s latitude and longitude position, speed and di-

rection with a fixed sampling frequency of 1s. There 

are 3 students participating in this experiment. Each 

student drives along the route 5 times in different 

dates. Totally, 374,880 GPS records with different 

  
Figure 1 Experimental route in Nagoya city, Japan 

 

 
Figure 3 Video data collection 

 

 
Figure 1 Experimental route in Nagoya city, Japan 

 

 
Figure 2 Video data collection 
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traffic conditions in 15 driving experiments are ob-

tained. A map-matching algorithm23) is used to map 

the raw GPS records to a digital map, and then the 

link-based speed and coefficient of variance of speed 

can be obtained. 

 

b) CAN bus 

CAN bus is a control network for the vehicle 

electronic equipment. It was designed as a commu-

nication medium of control units in vehicles. A CAN 

bus connects actuators with sensors enabling to de-

tect the health of vehicle from various vehicle-related 

information. The driving parameters such as brake 

operation, acceleration operation, steering wheel 

reversal rat and yaw velocity can be extracted sec-

ond-by-second. In this study, an on-board diagnos-

tics (OBD) device was installed in the experimental 

car (Toyota Prius) for CAN data collection. 

 

c) Video 

As shown in Figure 2, one video camera was in-

stalled on the dashboard to capture the front scenes of 

the road condition along the route. One video camera 

was mounted on the backrest of the back seat to 

capture the road condition in the back of the video. 

And another video camera was installed on the 

windshield to monitor the driver’s behavior. The 

road conditions and driver’s behavior such as con-

gestion, conflicting with pedestrians, signalization, 

and lane changing can be obtained after post pro-

cessing. 

 

d) Physiological signal 

As shown in Figure 3(a), we use the multi-channel 

telemetry system (Web-7000) developed by NIHON 

KONDEN Co.Ltd., Japan, for physiological signal 

acquisition. In this study, we acquired only the 

R-wave from ECG for driving stress analysis. To 

ensure the accuracy of R-wave occurrence time es-

timates, the ECG signal is acquired using 1000 Hz 

sampling rate. 

 

e) Data processing 

We derive the heart rate from the R-wave of ECG. 

The R-wave time instants can be detected by using 

the QRS complex (a combination of Q, R, and S 

waves in ECG) developed by Pan-Tompkins algo-

rithm24). A typical QRS complex detection algorithm 

consists of a preprocessing part followed by a deci-

sion rule26). The preprocessing includes bandpass 

filtering of the ECG to reduce power line noise and 

baseline wander, squaring of the data samples and 

moving average filtering to smooth close-by peaks. 

The decision rules include amplitude threshold and 

expected time between adjacent R-waves. As shown 

in Figure 3(b), R is a point corresponding to the peak 

of the QRS complex of the ECG wave. We use the 

RR interval (RRI) to represent the heart beat interval. 

The heart rate can be presented by 60,000/RRI with 

the unit of beat/min as shown in Figure 3(c). To 

synchronize all the data, the original RRI time series 

needs to be re-sampled and interpolated because RRI 

series is an irregularly time-sampled signal. The RRI 

series is converted into equidistantly sampled form 

by using cubic spline interpolation prior to HR 

analysis25). Finally, data from GPS, CAN, ECG and 

video are synchronized second-by-second. 

As shown in Figure 3(c), the driving stress is de-

fined as the heart rate increase comparing to the av-

erage heart rate before driving. Specifically, the in-

stantaneous driving stress can be expressed as fol-

lows: 

𝐷𝑆 = max(0, 𝐻𝑅𝑑𝑟𝑖𝑣𝑒 − 𝐻𝑅𝑐𝑎𝑙𝑚)     (1) 

where 𝐷𝑆 denotes the instantaneous driving stress 

driving stress, 𝐻𝑅𝑑𝑟𝑖𝑣𝑒  denotes the instantaneous 

heart rate during driving, and 𝐻𝑅𝑐𝑎𝑙𝑚  denotes the 

mean of heart rate in a calm condition before driving. 

Because driving stress is influenced by both in-

ternal and external factors, it is difficult to predict it 

in a short-time interval. There may be an increase in 

driving stress due to anticipatory, monitoring, and 

planning effects before a stressor is observed. For 

example, drivers may feel nervous before entering a 

 
Figure 3 Physiological signal detection 
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congestion area though he/she was still driving on a 

free-flow roadway. In addition, the physiological 

effect of a stressor may occur slightly after the stim-

ulus and may take several seconds or several minutes 

to recover27). To alleviate this problem, we aggregate 

the driving stress in a link-based level. That is, we 

estimate the heart beat increase for each road seg-

ment, instead of the heart beat increase sec-

ond-by-second. Since the lengths of the road seg-

ments are different, we normalize the heart beat in-

crease in 1km by dividing the road length. 

𝐿𝐷𝑆𝑗 =
∑ 𝐷𝑆𝑖𝑗
𝑛
𝑖=1

𝐿𝑗
                           (2) 

where 𝐿𝐷𝑆𝑗 denotes the link-based driving stress of 

link 𝑗, 𝐷𝑆𝑖𝑗 denotes the driving stress in the ith sec-

ond in link 𝑗, 𝑛 denotes the number of time interval 

in link 𝑗. Because the time interval for each sample is 

1s, ∑ 𝐷𝑆𝑖𝑗
𝑛
𝑖=1  represent the total heart beat increase 

in a link. 

 

(2) Driving stress modelling 
Driving stress is an effective measure for safety 

evaluation. However, it is unpractical to collect the 

physiological signal by requiring drivers wearing the 

detector in a road network every day. Thus, it is 

necessary to develop a driving stress model by using 

other easy-to-measure variables (e.g., speed, accel-

eration, traffic condition) which can be obtained 

from probe vehicles or video camera. In this section, 

we propose a tree-based ensemble model to predict 

the link-based driving stress by using the relevant 

variables obtained from GPS, CAN bus, and video 

data. 

In recent years, tree-based ensemble model is 

popular in solving prediction and classification 

problems because it not only achieve strong predic-

tive performance but also enables to identify which 

predictor variables are the most important to make 

these predictions28-30). These advantages make the 

tree-based ensemble models good candidates in 

solving regression problems. 

 

a) Regression tree 

A single regression tree model partitions the fea-

ture space into a number of regions and fits a simple 

model for each region. The region space is first par-

tition into two regions, and then each region is further 

partitions into two more regions. To decide the best 

splitting point, a greedy algorithm is implemented to 

maximize the information gain at a tree node (31). 

The split chosen at each tree node is selected from the 

set argmax𝑠 𝐼𝐺(𝐷, 𝑠)  where 𝐼𝐺(𝐷, 𝑠)  is the infor-

mation gain when a split 𝑠 is applied to dataset 𝐷. 

The information gain is the difference between the 

parent node impurity and the weighted sum of the 

children node impurities, which is defined as the 

following equation. 

𝐼𝐺(𝐷, 𝑠) =

𝐼(𝐷) −
𝑁𝑙𝑒𝑓𝑡

𝑁
𝐼(𝐷𝑙𝑒𝑓𝑡) −

𝑁𝑟𝑖𝑔ℎ𝑡

𝑁
𝐼(𝐷𝑟𝑖𝑔ℎ𝑡)             (3) 

where 𝐷 , 𝐷𝑙𝑒𝑓𝑡  and 𝐷𝑟𝑖𝑔ℎ𝑡  are the datasets for the 

parent node, the left-side child node and the 

right-side child node, respectively; 𝑁 , 𝑁𝑙𝑒𝑓𝑡  and 

𝑁𝑟𝑖𝑔ℎ𝑡 are the corresponding size of the datasets. 

𝐼(𝑑) =
1

𝑛
∑ (𝑦𝑖 − 𝜇)2𝑛
𝑖=1                           (4) 

𝜇 =
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1                                            (5) 

where 𝑦𝑖 is the label for an instance in dataset 𝑑, 𝑛 is 

the sample size of dataset 𝑑, and 𝜇 is the mean of the 

instances. 

 

b) Random Forest 

A single regression tree usually suffers from high 

variance, which makes them very unstable. Ensem-

ble methods provide an efficient way to improve the 

accuracy over a single regression tree. A basic en-

semble method is called Bagging32), in which trees 

are generated on random bootstrap samples from the 

original dataset. In Random Forest33), two powerful 

machine learning techniques are combined: Bagging 

and random features selection34). For a given training 

dataset with sample size n, Bagging generates k new 

training set, each with sample size n, by sampling 

with replacement. Then, k models are trained by 

using the k training set and combined through aver-

aging. The second technique in Random Forest is 

random feature selection. Instead of using all features 

(predictor variables) as input for each splitting node, 

it only uses a random subset of features. Thus, it 

enforces diversity between base models. 

The idea in Random Forest is to improve the 

forecasting performance through variance reduction 

(Eq.(4)) of Bagging by reducing the correlation be-

tween the trees, without increasing the variance too 

much35). The variance of a random forest is deter-

mined by the variance of individual tree (𝜎2), cor-

relation between trees (𝜌) and the number (𝑀) of 

trees as follows. 

𝑉𝐴𝑅 = 𝜌𝜎2 +
1−𝜌

𝑀
𝜎2                            (6) 

To optimize the Random Forest model, Liaw and 

Wiener36) suggested growing forests with good 

number of trees (𝑀) until increasing tree numbers do 

not improve the accuracy. Breiman33) suggested to 

try different numbers of feature selections by setting 

𝑣 =
𝑝

6
, 
𝑝

3
 and 

2𝑝

3
.  

Evaluation of variable importance is one signifi-

cant advantage of Random Forest model, which in-

dicates the contribution of a variable to the output 

prediction when all other variables are present in the 

model. The variable importance in a random forests 
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regression model is measured by decrease in node 

impurity. In the case of regression tree, the node 

impurity is measured by sample variance (Eq.(4)). 

The decrease in node impurity is given by infor-

mation gain (Eq.(3)). The importance of variable 𝑋𝑘 

is measured by adding up the weighted decreases in 

node impurities for all nodes where 𝑋𝑘 is used for 

splitting. 

𝐼𝑚𝑝(𝑋𝑘) =
1

𝑀
∑ ∑

𝑁𝐷

𝑁𝐷∈𝑇𝑇 𝐼𝐺(𝐷, 𝑠)            (7) 

where 𝑁𝐷 is the number of data points at node 𝐷, 𝑁 

is the total sample size, 𝑇 is the regression tree. 

 

 

3. RESULTS 
 

(1) Variable importance 

As shown in Table 1, we collected 24 predictor 

variables from GPS, CAN bus and video for driving 

stress analysis. Predictor variables usually have dif-

ferent influences on the output. Variable importance 

is measured by weighted decreases in node impuri-

ties. Figure 4 gives the variable ranking in the pre-

dictor set based on their importance in producing 

accurate predictions. The relative importance of each 

individual variable is scaled so that the sum of them 

for all the input variables equals to 1. The average 

speed contributes the most to the link-based driving 

stress. A possible reason is that the average speed is 

one of the most important variables reflecting the 

general traffic condition and driving behavior. Lower 

average speed may indicate the unfavorite driving 

condition such as reverse weather and traffic con-

gestion, while higher average speed usually indicates 

a smooth or free-flow traffic condition. The second 

important factor variable is COV of speed, which 

directly indicates the fluctuation of the traffic condi-

tion. A higher COV of speed may indicate an unsta-

ble driving state such as following an imprudent 

leading vehicle or moving jam. Brake and accelera-

tion also ranked in front of most of the variables. This 

is expected, as brake and acceleration frequency 

directly reflects the stressor when the drivers deal 

with a complex driving situation such as conflict with 

other vehicles or pedestrians. The top four most 

important variables altogether had approximately 

78% contributions in modelling driving stress. It 

suggests that it is possible to estimate the driving 

stress by using limited variables such as average 

speed, COV of speed, brake and acceleration fre-

quency. This finding is important because collecting 

ECG and a mass of variables is unpractical for re-

al-world implementation. It indicates that it is pos-

sible to estimate the driving stress in a large-scale 

network by developing a simple random forest model 

with these four variables collect from probe vehicle. 

 

(2) Variable sensitivity 

To reveal how the selected variables influence the 

driving stress, this study proposes the following 

simple methodology for variable sensitivity analysis. 

After training the Random Forest structure with a 

large set of input variables, we calculate an average 

value for each input variable. Then, holding all var-

iables at their average values but one each time, vary 

the one input over its entire range and analyze the 

variability produced in the outputs. Here, sensitivi-

ties of the top 4 variables are examined. The average 

values for average speed, COV of speed, brake and 

acceleration are set to 9 m/s, 0.25, 41 times/km, and 

71 times/km, respectively. As shown in Figure 5(a), 

the driving stress keeps a relatively high level when 

the average speed is less than 6 m/s, and the fluctua-

tion of driving stress is also large. This reflects the 

Table 1 Input variables 
Variables Note 

COV of Speed Coefficient of variance of speed in a link 

Average Speed Average speed in a link 

Brake Frequency of brake operation per km 
Acceleration Frequency of acceleration operation per km 

Wheel angle Accumulated wheel angle per km 

Divide Diverging point exists 
Merge Merging point exists 

Parking vehicle Parking vehicle exists 

Pedestrian Number of conflicting pedestrians 
Congestion Congestion occurs 

Sidewalk Sidewalk exists 

Maintenance Road maintenance 
Opposite Vehicle Conflict with opposite vehicle 

Number of Lane Number of lane 
Signalization Signalized control exists 

Lane Change Frequency of lane changing behavior 

Temperal Stop Frequency of stopping behavior 
Intersection Passing through intersection 

Crosswalk Passing through crosswalk 

Bus Lane Bus lane exists 
Curve Passing through a curve link 

T_road Passing through road with T junction 

Right-turn lane Driving on the right-turn lane 
Left-turn lane Driving on the left-turn lane 

 

 
Figure 4 Variable importance 
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unstable psychological changes in a low speed situ-

ation. When the average speed increases from 6 m/s 

to 12 m/s, the driving stress gradually reduces to a 

low level. And the driving stress keeps a relatively 

stable level when the average speed is larger than 12 

m/s. The trend of impacts of average speed on driv-

ing stress is similar under different settings of COV 

of speed. Figure 5 (b) shows a higher COV of speed 

results in higher driving stress when the average 

speed is set to 10m/s and 15m/s. However, the in-

creasing trend of driving stress with increasing COV 

of speed is not significant when the average speed is 

small (e.g., 5 m/s), but the driving stress keeps a high 

level. A possible reason is that drivers always feel 

uncomfortable and nervous in poor traffic situations. 

When the average speed is larger than 10 m/s, driving 

stress increases gradually as the COV of speed in-

creases. Figure 5 (c) shows the impact of brake fre-

quency on driving dress. As expected, higher fre-

quency of brake results in higher level of driving 

stress, especially in low speed situation. Figure 5 (d) 

shows the relationship between driving stress and 

acceleration frequency. In lower average speed situ-

ation, the trend is not significant but the driving stress 

keeps a high level. In higher average speed situation, 

the driving stress increases as the acceleration oper-

ation frequency increases. Figure 5 (c) and (d) indi-

cates that the high frequency of stop-and-go behavior 

in congested condition significantly results in high 

level of driving stress. 

 

4. APPLICATION 
 

A promising application of driving stress estima-

tion is to develop a route guidance system consider-

ing traffic safety. Driving stress can be seen as the 

surrogate index for safety evaluation. Because the 

variable importance analysis indicates that the top 4 

important variables (average speed, COV of speed, 

brake and acceleration frequency) contribute 78% 

importance to the proposed model, we can draw the 

heat map of driving stress distribution by using these 

variables collected from probe vehicle data. Here, we 

collect large-scale GPS and CAN bus data from 153 

probe vehicles in Toyota city, Japan in 10 months. 

More than 70,000 trips with millions of sec-

ond-by-second data records are available for analy-

sis. The GPS trajectories cover the whole road net-

work with 4072 nodes and 12,877 links. Figure 6 

shows the driving stress mapping in the whole net-

work. It indicates that most of the high driving stress 

occurs in the center of the city. It is expected, as the 

traffic conflict and congestion are more frequent in a 

dense population area, which may cause higher level 

of driving stress. The heat map of driving stress helps 

to find a comfortable route avoiding the location with 

potentially high driving stress, which is especially 

beneficial to older drivers and beginners. 

 

 

5. CONCLUSION AND FUTURE WORK 

 

This study presents a framework for driving stress 

detection and prediction in a real-world network. The 

driving stress is quantified by using the heart beat 

increase in a link-based level. Various data collected 

from GPS, CAN, and video are used as the predictor 

variables for estimating the driving stress. The 

Random Forest, a superior machine learning method, 

is introduced to model the car driver stress caused by 

different driving events. The benefits of the proposed 

method are mainly from two aspects. First, Random 

Forest provides a method to measure the relative 

importance of each predictor variable. Second, the 

prediction accuracy can be improved by using the 

ensemble techniques such as Bagging and random 

feature selection.  

Based on the results of the driving experiment, key 

findings are summarized as follows: 

(1)Average speed has the most important impact 

on driving stress. Lower average speed usually re-

 
Figure 5 Sensitivity analysis on important variables 

 

 
Figure 6 Driving stress mapping in a network-wide scale 
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sults in higher driving stress in urban road network, 

because drivers may feel nervous in congested traffic 

condition. 

(2)The top four most important variables, i.e., av-

erage speed, COV of speed, brake and acceleration 

frequency, altogether had approximately 78% con-

tributions in modelling driving stress. It suggests that 

it is possible to estimate the driving stress by using 

limited variables collected from probe vehicle. 

(3)The driving stress heat map shows that most of 

the high driving stress occurs in the center of the city. 

A possible reason is that the traffic conflict and 

congestion are more frequent in a dense population 

area. 

The driving stress model will be incorporated to a 

route guidance system in the future study. Not only 

the travel time, but also the driving stress for safety 

improvement will be considered for the route plan-

ning in the next generation navigation system. It will 

be beneficial to older drivers, beginners, and those 

drivers who are unfamiliar with the road network. 
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