# 移動軌跡情報に基づく 時間構造化ネットワーク上の交通配分

# 大山雄己<sup>1</sup>·羽藤英二<sup>2</sup>

<sup>1</sup>学生会員 東京大学/日本学術振興会特別研究員 DC (〒 113-8656 東京都文京区本郷 7-3-1)
 E-mail: oyama@bin.t.u-tokyo.ac.jp
 <sup>2</sup>正会員 博士 (工学) 東京大学 (〒 113-8656 東京都文京区本郷 7-3-1)
 E-mail: hato@bin.t.u-tokyo.ac.jp

道路パフォーマンスの向上から歩行環境の改善など,正の政策効果を評価することは都市空間の計画におい て重要である.本研究ではゼロコストサイクリック構造を含むネットワークにおける経路非列挙型交通配分の 手法として,時間構造化ネットワークを提案する.スケジューリングの概念を導入することによって,空間的 サイクリックを暗に保ったまま,計算対象となるネットワークからはサイクリック構造を除去することが可能 となる.時間構造化ネットワークにおける経路選択行動は,プリズム制約付の動的離散選択モデルとして記述 され,後ろ向き帰納法によって期待効用を算出することが可能である.簡易ネットワークを用いた計算の結果, 通常ネットワークにおける既往理論との整合性と,ゼロコストサイクリックを含むネットワークにおいて配分 結果が出力されることが確認された.

Key Words: Time-structured network, Trajectory data, Route choice model, Traffic assignment

# 1. はじめに

プローブカーや ETC2.0 の台頭により, 交通情報の 観測システムは従前のオイラー型からラグランジュ型 へとその主流を移そうとしている。集計的な交通状態 量から、個々の車両の移動軌跡情報へと観測の解像度 が高まることは、経路選択モデルの推定を容易にし、詳 細な行動原理の把握に基づいた配分を可能にすると考 えられる、ここで、確率的な経路選択モデルの構築には 選択肢集合の生成が必要であるものの、実ネットワー クにおける経路列挙は到底不可能という課題が存在す る。経路選択肢集合の生成手法を提案する既往研究は 多く,近年では Frejinger et al. (2009)<sup>11)</sup> や Flötteröd and Bierlaire (2013)<sup>9)</sup> により確率的な方法も開発され ている.しかし、リアルタイムな移動軌跡の観測・予 測や,非日常時における経路の多様性・複雑性を考え たとき,経路選択肢を明示的に列挙する方法は未だ予 測に課題を残している.

一方, Dial (1971)<sup>8)</sup> を嚆矢とした,経路選択肢を明 示的に列挙しない配分方法も存在する.このアプロー チは経路がリンクの系列であるという空間構造的特徴 を生かしたものであり,道路ネットワークを GEV ネッ トワークとして見なすことによって経路相関を扱った n-GEV 型経路選択モデルも存在する<sup>13)16)</sup>.しかし, Bierlaire (2002)<sup>6)</sup>, Daly and Bierlaire (2006)<sup>7)</sup> によ る n-GEV モデルの適用にはネットワークにサイクリッ ク構造を含まないという条件を満たす必要があり,対 象ネットワークが限られるという課題がある.対して, Bell(1995)<sup>4)</sup>, Akamatsu(1996)<sup>2)</sup>は吸収マルコフ連鎖 <sup>18)</sup>に基づいて,サイクリック構造を含むネットワーク におけるロジット型交通配分手法を提案した.さらに Fosgerau et al.(2013)<sup>10)</sup>が動的離散選択モデル<sup>17)</sup>とし て定式化することにより,選択肢非列挙型のアプロー チが推定可能なモデルとなった.

ここで、経路非列挙型アプローチは、各交差点にお いてリンク間を確率的に遷移するという逐次的なモデ ルに基づく、リンク間遷移の際に、直接的な移動コスト に加えて目的地までの期待コストを考慮し、その再帰 的な構造を利用することで経路列挙の必要性を回避し ている.しかし、ネットワークにコストの小さなサイ クリック構造が含まれる場合、その周回効用が無限大 に発散して期待コストが計算不可能になるという課題 を残している。これに対して、サイクリックを除去す る方法<sup>3)14)</sup>や、リンクコストを必ず負、かつパラメー タ初期値の絶対値を十分大きな値とする方法<sup>10)</sup>が取ら れてきている.しかし、こうした操作はサイクリック 経路への配分可能性や正の効果を生む多様な政策変数 の評価、そして推定に要する計算時間を犠牲にしてい ると考えられる。またパラメータ推定を前提とする場 合,その推定値の絶対値に十分な大きさを保証できず, 計算に不安定性を残すことが Fosgerau(2013)<sup>10)</sup> などで も指摘されている.



図-1 時間構造化ネットワークと射影による行動パタン評価

こうした背景のもと、本論文では、ネットワーク上 の経路選択モデルにスケジューリングと時間制約の概 念を導入した「時間構造化ネットワーク」手法を提案 する.時間構造化ネットワークは、空間的サイクリック 構造を保ったまま、計算対象となるネットワークから はサイクリック構造を除去できる手法であり、上述の 問題を解決する.2章において、時間構造化ネットワー クの生成手法の導入を行い、3章では時間制約付の経路 選択モデルを選択肢非列挙型アプローチに基づいて提 案する.また、本手法が既往理論に対して持つ、計算 に関する有用性を4章で議論する.5章は時間構造化 ネットワーク上の確率的配分手法を紹介し、6章におい て数値計算結果を示す.7章で結論及び移動軌跡情報と の関係について議論する.

# 2. 時間構造化ネットワーク

ネットワーク G = (N, A) を考える. N, A はそれ ぞれノード, リンクの集合である. ノード i, j 間の空 間的接続条件は  $\delta(j|i)$  を用いて表すこととし, リンク (i, j) が存在する場合に  $\delta(j|i) = 1$ , そうでない場合に  $\delta(j|i) = 0$ とする. したがって, G = (N, A) は通常の (空間) ネットワークである.

ここで、ネットワークに時間の概念を導入することを 考える.時間の不可逆性を考慮すれば、空間ネットワー クは離散化された時点 t ごとに異なる状態をとるため、 ネットワークの配列は  $\mathbf{G} = (\mathbf{S}, \mathbf{E})$  と書くことができる.  $\mathbf{S} = [S_0, ..., S_t, ..., S_T], \mathbf{E} = [E_0, ..., E_t, ..., E_{T-1}]$  はそ れぞれ状態集合  $S_t$ , エッジ集合  $E_t$  の時間配列である.  $S_t$  は状態  $s_t = i \in N \$ ,  $E_t$  はエッジ  $e_t = (s_t, s_{t+1}) \$ それぞれの要素として持つ.本研究では、 $\mathbf{G} = (\mathbf{S}, \mathbf{E})$ を「時間構造化ネットワーク」として定義し、時間構 造化ネットワーク上の経路選択行動を考える.

時間構造化ネットワーク上の経路は、離散化された時 点  $0 \sim T$  までの状態系列  $[s_0, ..., s_T]$  として記述される. ここで、Tは時間制約である。状態は「時間」と「空 間」の組み合わせとして記述されるため、時点の異な る 2 つの状態  $s_t, s_{t'}(t \neq t')$ は、例え同じ空間を示す場 合 (ex.  $s_t = i, s_{t'} = i$ ) においても全く異なる状態と して扱われる。1つの経路が同一の状態を2度以上とる ことがないという性質が示すように、ネットワークの 時間構造化操作は、計算対象となるネットワークから サイクリック構造を除去する意味を持つ. さらに重要 な点は、「空間的な」サイクリック構造を保っているこ とにある. 図-1のように、時間構造化ネットワーク上 の経路選択行動を x-y 平面及び t 軸に投影することで, 空間・時間それぞれの選択行動パタンを考察すること が可能となる. このとき, 空間的なサイクリック経路 は排除されることなく、他の経路と同様に配分対象と なる(図-1 左).

また、時間構造化ネットワーク手法は、スケジュー リングの概念を経路選択行動に導入する意味を持って いる.各時点の  $S_t$  及び  $E_t$  は時間制約 T の影響を受け ることにより、取りうる範囲が限定される。初期状態  $s_0 = o \in N$ 、最終状態  $s_T = d \in N$  が与えられたとす る.ここで、ノード i の変数として  $D^o(i)$  及び  $D^d(i)$  を 定義する。それぞれ、o、dからノード i に到達するまで の最小ステップ(リンク)数を示す。 $D^o(i)$ 、 $D^d(i)$  を 用いて、状態集合  $S_t$  は以下のように表される。

$$S_t = \{i \in N | I_t(i) = 1\}$$
(1)

where,

$$I_t(i) = \begin{cases} 1, & \text{if } D^o(i) \le t, D^d(i) \le T - t \\ 0, & \text{otherwise} \end{cases}$$
(2)

つまり  $S_t$  は、時間制約 T の中で o を出発して d に最終的に帰着することを前提とした場合における、時点 t



図-2 時空間プリズム制約による経路の限定

で個人が存在しうる空間集合を表す. 状態  $s_t = i$  の存 在可能性を表す指示変数が  $I_t(i)$  である.

同様に,状態間の接続条件であるエッジ集合 *E*<sub>t</sub> も時間制約を用いて以下のように定義される.

$$E_t = \{(i, j) \in A | \Delta_t(j|i) = 1\}$$
(3)

where,

$$\Delta_t(j|i) = I_t(i)\delta(j|i)I_{t+1}(j) \tag{4}$$

 $\delta(j|i)$ は前述したように、空間的接続条件を表す指示変数であり、リンク $(i,j) \in A$ が存在する場合に1をとる.  $\delta(j|i)$ 及び $I_t(i)$ を用いて、時空間上の状態接続条件を表す指示変数 $\Delta_t(j|i)$ を定義する. つまり、状態 $s_t = i$ 及び $s_{t+1} = j$ がネットワーク $\mathbf{G} = (\mathbf{S}, \mathbf{E})$ 上に存在し、かつリンク $(i,j) \in A$ が存在する場合にのみ $\Delta_t(j|i)$ は1となる. それ以外では $\Delta_t(j|i) = 0$ である.

以上の  $S_t$  及び  $E_t$  の定義は,時間構造化ネットワー ク上の経路選択行動が時空間プリズム<sup>12)</sup>内でのみ行 なわれることを意味している。時空間プリズム制約の イメージを図-2 に示す。図 (A-1), (A-2) 及び (A-3) は, 状態の遷移によって時空間プリズム (到達可能な範囲) が逐次的に縮小されていくことを表している。また, Härgerstrand(1970)<sup>12)</sup> は時空間上パスが受ける制約と して,プリズムに加えて「バンドル」及び「ドメイン」 と呼ばれる制約を提唱している.バンドル制約は個人 を一定時間,特定空間に拘束する活動が存在すること, ドメイン制約は立ち入ることのできない時空間領域が 存在する(例えば,店舗の営業時間制約など)ことを それぞれ意味する.本稿の提唱する時間構造化ネット ワーク上の経路選択行動は,特定のトリップという概 念を前提としないため,適切に状態制約を定義するこ とでバンドル,ドメイン制約についても図-2中の(B), (C)のように記述することが可能である.

## 3. 経路選択モデル

ネットワークの時間構造化操作は、空間ネットワーク をTだけ重ねることを意味する.そのため、プリズム制 約によって経路が限定されることを前提としても、適切 な経路選択肢の列挙は困難である.本章では、Fosgerau et al.(2013)<sup>10)</sup>をベースとし、動的離散選択モデルによ る選択肢非列挙型の経路選択モデルを構築する.

個人 n が状態  $s_t = i$  にあるとき,次時点の状態  $s_{t+1}$  へ遷移することを考える. 個人は、 $s_{t+1} = j$ への遷移 に関する直接的な効用  $v_t(j|i)$  と、状態  $s_{t+1}$  へ遷移した 際の期待最大効用  $V_{t+1}^{s_T}(j)$  との和を最大化するように選 択行動を行なうと仮定する. なお、 $V_{t+1}^{s_T}(j)$  は  $s_{t+1}$  及び



**図-3** スペクトル半径 ρ(M) の計算結果

 $s_T$ によって形成される時空間プリズムの期待効用の評価関数である.このとき、 $V_t^{s_T}(i)$ は Bellman 方程式<sup>5)</sup>を用いた定式化が可能である(簡便のため個人 n、最終状態  $s_T$  及び推定パラメータ $\theta$ の表記を省略している).

$$V_{t}(i) = \max_{s_{t+1}} E\left[\sum_{t=\tau}^{T} \beta^{t-\tau} u(s_{t+1}|s_{t})\right]$$
  
=  $E\left[\max_{j \in C_{t}(i)} \{v_{t}(j|i) + \beta V_{t+1}(j) + \mu \epsilon_{t+1}(j)\}\right]$   
(5)

ここで、 $\epsilon$ はタイプIのi.i.d. 極値分布(ガンベル分布) に従う.  $\mu$ はガンベル分布のスケールパラメータであり、 常に正の値をとる.  $C_t(i)$ は $s_t = i$ から $e_t \in E_t$ によっ て接続される次時点の状態集合であり、逐次経路選択 行動の選択肢集合を意味する. このとき、状態 $s_t = i$ ,  $s_{t+1} = j$ 間の遷移確率は以下で定式化される.

$$p_t(j|i) = \frac{e^{\frac{1}{\mu}\{v_t(j|i) + \beta V_{t+1}(j)\}}}{\sum_{j' \in C_t(i)} e^{\frac{1}{\mu}\{v_t(j'|i) + \beta V_{t+1}(j')\}}}$$
(6)

誤差分布をガンベル分布と仮定したとき、その性質に より、式(5)はログサムを用いて以下のように変換可能 である.

$$V_{t}(i) = \begin{cases} \mu \log \sum_{j \in N} \Delta_{t}(j|i) e^{\frac{1}{\mu} \{v_{t}(j|i) + \beta V_{t+1}(j)\}} \\ (t \neq T \land i \neq d) \\ 0 \\ (t = T \lor i = d) \\ . \end{cases}$$
(7)

上式の動的離散選択モデルは Fosgerau et al.(2013)<sup>10)</sup> や Mai et al.(2015)<sup>15)</sup> による Recursive logit (RL) モ デルと類似した形をとるものの,時間の概念及び時空 間プリズム制約  $\Delta_t(j|i)$  を新しく含んでいる点に大きな 特徴を有している.後述するが,この特徴により,既 存理論において未解決であったネットワーク上の問題 を扱うことができる.

# 4. モデルの特性

## (1) 価値関数

ここで,式(7)の両辺に指数関数をとることによって 以下のように変形する.

$$e^{\frac{V_{t}(i)}{\mu}} = \begin{cases} \sum_{j \in N} \Delta_{t}(j|i) e^{\frac{1}{\mu} \{v_{t}(j|i) + \beta V_{t+1}(j)\}} \\ (t \neq T \land i \neq d) \\ 1 \\ (t = T \lor i = d) \\ . \end{cases}$$
(8)

さらに、行列  $z_t(|N| \times 1)$  及び  $M_t(|N| \times |N|)$  を定 義し、その時間配列を  $\mathbf{z} = [z_0, ..., z_t, ... z_T]$ ,  $\mathbf{M} = [M_0, ..., M_t, ..., M_{T-1}]$  と表記する. 行列  $z_t$ ,  $M_t$  の要 素はそれぞれ、

$$z_{ti} = e^{\frac{V_t(i)}{\mu}}, M_{tij} = \Delta_t(j|i)e^{\frac{v_t(j|i)}{\mu}}$$
(9)

である.このとき、価値関数  $V_t(i)$  は式 (8) を変形した 以下の Bellman 方程式の解となる.

$$z_{ti} = \begin{cases} \sum_{j \in N} M_{tij} (z_{t+1,j})^{\beta}, & t \neq T \\ 1, & t = T \end{cases}$$
(10)

式(10)は行列演算を用いて、最終的に以下となる.

$$z_t = M_t X(z)_{t+1} + b$$
 (11)

ここで,  $X(z)_t$  は要素に  $X(z)_{ti} = (z_{ti})^{\beta}$ を持つ  $|N| \times 1$ 行列,  $b(|N| \times 1)$  は d 番目(最終状態  $s_T$  がとる空間に 対応する)要素のみ  $b_i = 1$ , それ以外で  $b_i = 0$ をとる 行列である.

#### (2) 既存配分理論の求解条件

既存の経路非列挙型配分理論<sup>2)4)10)15)</sup>に対して本論 文が持つ有用性は,価値関数求解のために逆行列計算 や反復計算を必要としない点にある.従前の手法では, 以下のスペクトル半径に関する不等式条件を満たす必 要があった.

$$\rho(M) = \max\{|\lambda_h|\} < 1 \tag{12}$$

ここで、 $\lambda_h$  は行列 M の固有値である。スペクトル半径  $\rho(M)$  はその定義より、行列の固有値の絶対値の最 大値を示す。つまり、式 (12) は  $m \to \infty$  のときに  $M^m$  が収束するための必要十分条件となる。

ネットワーク特性のに応じた計算可能性の変化を検 証するため、簡易ネットワークにおいてその特性を変 化させて ρ(M) の計算を行なった. 図-3 はネットワー ク設定と計算結果を示している. ネットワーク1はゼ ロコストのサイクリック構造 (リンク3→7) を含んで おり、コストのパラメータ $\theta_{cost}$ をどのような値にして も $\rho(M)$ が1未満になることはない.この事実は,赤 松・牧野 (1996)<sup>3)</sup> でも指摘され,幾何学条件を用いて サイクリックを除去する手法も考案されている。サイ クリックの除去を行わない場合、従前のアプローチは  $\theta_{cost}$ を必ず負の値になるように設定することによって、 この問題を回避することを試みてきた。しかしネット ワーク2における計算結果が示すように、コストが負 の場合においても、そのスケールによって  $\rho(M)$  が1以 上の値を取りうることが明らかとなった。したがって、 既存理論においてはパラメータの絶対値が小さい場合 は価値関数の求解、つまりは配分結果の出力が不可能 となる。特にパラメータ推定を行なう場合<sup>10)</sup>, コスト を負に設定したとしても計算には不安定性が残されて いるといえよう.

## (3) 後ろ向き帰納法への帰着

一方,本論文で提案した時間構造化ネットワークに おいては,時間の持つ不可逆性により,単純な後ろ向 き帰納法を用いて価値関数を求めることができる.後 ろ向き帰納法のアルゴリズムは以下のステップに従う. Step 1:準備. $s_0 = o, s_T = d$ ,そして $V_t^{s_T}(d) = 0, \forall t$ とする.時空間上の状態接続条件に関する指示



図-4 時間前進配分

変数  $\Delta$  及び状態遷移効用 M を計算する. Step 2: 初期化. t = T,  $V_t^{s_T}(i) = 0, \forall i \in N$  とする.

- Step 3: 後ろ向き計算. t = t-1とし,  $V_t^{s_T}(i)$ を式 (11) によって計算する.
- *Step 4*: 終了判定. *t* = 0 であれば計算を終了し,そう でなければ Step 3 へ戻る.

この計算方法は単純で収束計算を必要としないため,時 間制約*T*が有限であるかぎり一定の計算時間のオーダー で求解が可能である.

#### 5. 確率的交通配分

## (1) 計算の前提

時間構造化ネットワーク上で交通配分を行なうにあ たり、いくつかの仮定を置く.まず、本論文では意思決 定タイミングによるネットワークの時間構造化を行な う.つまり、離散化された時点tは明示的な時間単位で はなく、状態遷移のステップであり、1ステップの間に 必ず1回のノード間遷移が行われる.それ以下でもそ れ以上でもない.時点間隔として(30秒や1分といっ た)明示的な時間を設定すれば、スケジューリング行 動や配分結果の時間依存性を考察可能である.本稿は 既存の静的配分理論との比較に重きを置くため、時間 に関する考察は後続の研究に譲ることとする.

## (2) 配分アルゴリズム

時点 t の状態  $s_t = i$  に関する交通量をノードストッ ク  $G_t(i)$ , エッジ  $e_t = (s_t = i, s_{t+1} = j)$  に関する交通 量をリンクフロー  $F_t(i, j)$  として定義する. このとき, 両者は以下の関係式に従う.

$$G_t(i) = \begin{cases} Q_t(i) + \sum_{k \in N} F_{t-1}(k, i), & t \neq 0, \\ Q_t(i), & t = 0. \end{cases}$$
(13)

 $Q_t(i)$  は時点 t にノード i から発生する交通量である. また、リンクフロー  $F_t(i, j)$  はノードストック  $G_t(i)$  に 状態遷移確率  $p_t(j|i)$  を掛け合わせることによって得ら

#### Network 1



#### $Q = 1000, \ \theta_{\text{cost}} = -1$ : All links have equal costs

|                            | al  | a2  | a3  | a4  | a5  | a6  | a7  | a8  | a9  | a10 | a11 | a12 |
|----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Dial(1971)                 | 500 | 167 | 500 | 333 | 167 | 333 | 333 | 167 | 333 | 500 | 167 | 500 |
| Bell(1995), Akamatsu(1996) | 500 | 167 | 500 | 333 | 167 | 333 | 333 | 167 | 333 | 500 | 167 | 500 |
| Fosgerau et al.(2013)      | 500 | 167 | 500 | 333 | 167 | 333 | 333 | 167 | 333 | 500 | 167 | 500 |
| This paper (T=10)          | 500 | 167 | 500 | 333 | 167 | 333 | 333 | 167 | 333 | 500 | 167 | 500 |

\*  $a_n(c)$  : link number (link cost)

#### Network 2



Q = 1000,  $\theta_{\rm cost}$  = -1 : Link a6 and a7 have smaller costs

|                            | al  | a2 | a3  | a4  | a5 | a6  | a7  | a8 | a9  | a10 | a11 | a12 |
|----------------------------|-----|----|-----|-----|----|-----|-----|----|-----|-----|-----|-----|
| Dial(1971)                 | 269 | 0  | 731 | 269 | 0  | 731 | 731 | 0  | 269 | 731 | 0   | 269 |
| Bell(1995), Akamatsu(1996) | 298 | 63 | 702 | 235 | 63 | 639 | 639 | 63 | 235 | 702 | 63  | 298 |
| Fosgerau et al.(2013)      | 298 | 63 | 702 | 235 | 63 | 639 | 639 | 63 | 235 | 702 | 63  | 298 |
| This paper (T=10)          | 298 | 63 | 702 | 235 | 63 | 639 | 639 | 63 | 235 | 702 | 63  | 298 |

\*  $a_n(c)$  : link number (link cost)

Network 3-1

 $Q = 1000, \ \theta_{\text{cost}} = -1$  : Including cycles (a6, a13), (a8, a14)

| 6                   | $a_{1}(2)$         | $a_2(2)$    |            |   |
|---------------------|--------------------|-------------|------------|---|
| C C                 |                    |             | [          |   |
|                     | $a_{1}(2)$         | $a_{*}(2)$  | $a_{-}(2)$ |   |
|                     |                    | -4(-)       |            |   |
|                     | $a_6(1)$           | $a_{7}(1)$  |            |   |
| ł                   | $a_{13}(1)$        |             | ľ –        |   |
| a (2)               | a (2)              | $a_{o}(2)$  | $a_{-}(2)$ | ĺ |
| u <sub>14</sub> (2) | u <sub>8</sub> (2) |             |            | ľ |
|                     | $a_{11}(2)$        | $a_{12}(2)$ | 5          | , |
|                     |                    |             | 9          | L |

|                            | al  | a2 | a3  | a4  | a5 | a6  | a7  | a8 | a9  | a10 | a11 | a12 | a13 | a14 |
|----------------------------|-----|----|-----|-----|----|-----|-----|----|-----|-----|-----|-----|-----|-----|
| Dial(1971)                 | 269 | 0  | 731 | 269 | 0  | 731 | 731 | 0  | 269 | 731 | 0   | 269 | 0   | 0   |
| Bell(1995), Akamatsu(1996) | 290 | 54 | 710 | 236 | 54 | 797 | 643 | 83 | 236 | 697 | 67  | 303 | 154 | 16  |
| Fosgerau et al.(2013)      | 290 | 54 | 710 | 236 | 54 | 797 | 643 | 83 | 236 | 697 | 67  | 303 | 154 | 16  |
| This paper (T=5)           | 298 | 63 | 702 | 235 | 63 | 639 | 639 | 63 | 235 | 702 | 63  | 298 | 0   | 0   |
| This paper (T=10)          | 290 | 54 | 710 | 236 | 54 | 795 | 642 | 83 | 236 | 697 | 67  | 303 | 153 | 16  |
| This paper (T=20)          | 290 | 54 | 710 | 236 | 54 | 797 | 643 | 83 | 236 | 697 | 67  | 303 | 154 | 16  |

Network 3-2



 $Q = 1000, \theta_{\text{cost}} = -0.2$  (smaller than 3-1) : Including cycles (a6, a13), (a8, a14)

\* - : acalculia

\* - : acalculia

|                            | al  | a2  | a3  | a4  | a5  | a6        | a7   | a8   | a9  | a10 | a11 | a12 | a13  | a14  |
|----------------------------|-----|-----|-----|-----|-----|-----------|------|------|-----|-----|-----|-----|------|------|
| Dial(1971)                 | 269 | 0   | 731 | 269 | 0   | 731       | 731  | 0    | 269 | 731 | 0   | 269 | 0    | 0    |
| Bell(1995), Akamatsu(1996) | -   | -   | -   | -   | -   | $\bigcap$ | -10  | 58 - | -   | -   | -   | -   | -    | -    |
| Fosgerau et al.(2013)      | -   | -   | -   | -   | -   | P         | -1.0 | -    | -   | -   | -   | -   | -    | -    |
| This paper (T=5)           | 465 | 144 | 535 | 320 | 144 | 391       | 391  | 144  | 320 | 535 | 144 | 465 | 0    | 0    |
| This paper (T=10)          | 363 | 36  | 637 | 327 | 36  | 1431      | 399  | 764  | 327 | 435 | 238 | 565 | 1032 | 526  |
| This paper (T=20)          | 340 | 12  | 660 | 328 | 12  | 3312      | 401  | 2008 | 328 | 413 | 259 | 587 | 2911 | 3164 |

Network 4



 $Q = 1000, \ \theta_{\text{cost}} = -1$  : Including a zero cost cycle (a6, a13)

|                            | al  | a2 | a3  | a4  | a5 | a6         | a7    | a8 | a9  | a10 | a11 | a12 | a13  |
|----------------------------|-----|----|-----|-----|----|------------|-------|----|-----|-----|-----|-----|------|
| Dial(1971)                 | 269 | 0  | 731 | 269 | 0  | 731        | 731   | 0  | 269 | 731 | 0   | 269 | 0    |
| Bell(1995), Akamatsu(1996) | -   | -  | -   | -   | -  | ρ          | =1.0  | 00 | -   | -   | -   | -   | -    |
| Fosgerau et al.(2013)      | 1   | -  | -   | -   | -  | _ <u>_</u> | - 1.0 | -  | -   | -   | -   | -   | -    |
| This paper (T=5)           | 298 | 63 | 702 | 235 | 63 | 639        | 639   | 63 | 235 | 702 | 63  | 298 | 0    |
| This paper (T=10)          | 279 | 22 | 721 | 257 | 22 | 1627       | 656   | 81 | 241 | 678 | 81  | 322 | 986  |
| This paper (T=20)          | 273 | 8  | 727 | 265 | 8  | 4123       | 662   | 87 | 243 | 670 | 87  | 330 | 3482 |

図-5 リンク交通量の計算結果

れる.

 $F_t(i,j) = G_t(i)p_t(j|i), \ t = \{0, ..., T-1\}$ (14)

各状態からの遷移確率の和は1であるため,式(14)か ら以下が成り立つ.

$$\sum_{j \in N} F_t(i,j) = G_t(i) \sum_{j \in N} p_t(j|i) = G_t(i).$$
(15)

式 (13)(14)(15) より,各ノードには以下のフロー保存 則が成立する.

$$\sum_{j \in N} F_t(i,j) - \sum_{k \in N} F_{t-1}(k,i) - Q_t(i) = 0, \ t = \{1,...,T\}$$
(16)

以上の関係式を踏まえ、図-4に本研究の配分アルゴリ

ズムを示す.時点0の交通量 $G_0$ が決まれば,全ての時 点のリンクフローは式 (14),(13)を用いて時間前進方 向に計算される.さらに,各時点断面のリンクフロー を足し合わせることによって,リンク $(i, j) \in A$ の集計 交通量を算出することができる.

$$F(i,j) = \sum_{t=0}^{T-1} F_t(i,j)$$
(17)

式 (17) における *F*(*i*, *j*) は,通常の静的配分におけるリンク交通量を示している.

## 6. 数値計算

#### (1) 既存理論との比較

簡易ネットワークにおける本理論と既存理論<sup>2)4)8)10)</sup> の配分結果を図-5に示す。表中の数字は発生交通量を  $G_0(o) = Q_0(o) = 1000$ としたときの空間リンクフロー F(i, j)を表している。ネットワーク1及び2の計算結 果より、本論文で提案した手法が既存配分手法と等し い結果を出力していることがわかる(ネットワーク2に おける Dial 配分の結果との相違は, Efficient path の 影響である). ネットワーク 3-1 からは, サイクルを含 む場合に既存理論の結果と一致するためには、時間制 約 T を一定程度大きくする必要があることが明らかと なった. ネットワーク 3-2 は 3-1 と同様のネットワーク において  $\theta_{cost}$  の絶対値を小さくした場合, ネットワー ク4はゼロコストのサイクル (リンク6→13) を含む 場合をそれぞれ示している. このとき, 既存理論では スペクトル半径が1より大きくなり,配分結果の出力 が不可能であるのに対して、本理論では配分結果を出 力することが可能となっている.

以上の計算結果は、本モデルが既存の配分手法との 整合性を保ちながら、既存理論では計算不可能であっ たネットワーク(ポジティブサイクリックを含む場合 や、コストパラメータの絶対値が小さい場合)におい ても配分結果を出力することが可能であることを示し ている.

## (2) 配分対象経路

前節の計算より, Dial 配分には Efficient path の影響 が存在することを確認した.暗黙裏な経路の限定によ り,いずれのネットワークにおいても配分結果を出力す ることが可能であった一方で,この限定の結果として極 めて不自然で非現実的なフローパタンを生成する可能 性が指摘されている.特に,均衡配分を行なう際,繰り 返し計算の中でパス集合が変化することによって,厳 密解への収束が保証されない.また,BellやAkamatu による配分ではサイクルを含む Infinite-path を考慮す ることにより,過大なサイクリックフローの生成や IIA 特性の増幅という課題が存在する.

本研究では、時間制約 T により形成されたプリズム 内で、サイクルを含む全経路集合を配分対象する.つ まり、Efficient-path よりも広く、Infinite-path よりも 狭い範囲で、パラメータ T により経路集合を操作する ことが可能である.移動軌跡情報に基づいた実経路集 合が得られることで、各手法の配分適正を議論可能で あり、場合に応じた T の設定を行なうことができると 考えられる.

# 7. おわりに

本論文では、時間構造化ネットワーク上の交通配分 手法を提案した.まず、空間ネットワークにスケジュー リングの概念を導入することにより、空間的サイクリッ クを保ちながら、計算対象となるネットワークからサ イクリック構造が除去できることを示した.またプリ ズム制約の導入によって時空間接続条件が記述できる ことを示し、時間制約付の経路選択モデルを動的意思 決定モデルとして構築した.簡易ネットワークにおけ る比較計算を通して、本理論が既存理論との整合性を 保ったうえで、ゼロコストサイクリック構造を含むネッ トワークにおいて配分結果を出力可能であることを明 らかにした.時間制約Tの適切な設定方法や、時間を 明示的に扱う準動的・動的配分理論との関係の考察は 今後の課題である.

一方,本手法は動的離散選択モデルに基づいており, リンク間遷移効用を適切に定義することでそのパラ メータを推定可能である. モデルの持つ再帰的な構造 により,通常の方法ではパラメータ推定を行えないもの  $\mathcal{O}$ , NFXP (Nested Fixed Point) algorithm<sup>17</sup>  $\stackrel{\circ}{\sim}$  NPL (Nested Pseudo Likelihood) algorithm<sup>1)</sup> といった構造 推定手法が提案されてきている。これらの構造推定手 法では、価値関数 V の求解(STEP A)とパラメータ θの推定(STEP B)を互いを所与としながら繰り返し 計算する。計算が収束するためには、その過程でSTEP A に与えられる θ は常に式 (12) を満たす必要がある. そのため, 推定の不確実性が大きい RL モデルに対し て, θに依らず V の求解が可能な本モデルは有用性を 持つと考えられる. また, ロジット型選択確率モデル では IIA 特性の解消が重要な課題とされてきたが、重 複や相関の考慮についても、既往研究<sup>10)15)</sup>と同様の 方法で定式化可能である。リアルタイムな移動軌跡情 報を本モデルに適用することによって、行動パラメー タの動学的な変化を踏まえた配分が可能であると考え られる。こうした推定可能性や計算速度についての検 証,既存理論との整合性・拡張については継続して研 究を進めていく.

**謝辞**:本研究は JSPS 科研費 26-10824 の助成を受けた ものです.ここに感謝の意を表します.

#### 参考文献

- Aguirregabiria, V., Mira, P., 2002. Swapping the nested fixed point algorithm: a class of estimators for Markov decision models. *Econometrica* 70, 1519-1543.
- Akamatsu, T., 1996. Cyclic flows, Markov process and stochastic traffic assignment. *Transportation Research Part B* 30(5), pp.369-386.
- 3) 赤松隆,牧野幸雄,1996. 複素数空間での経路の幾何学 要因を考慮した確率的交通配分.土木計画学研究・講演 集 19(1).
- Bell, M.G.H., 1995. Alternatives to Dial's logit assignment algorithm. *Transportation Research Part B* 29(4), pp.287-295.
- 5) Bellman, R., 1957. *Dynamic Programming*. Princeton University Press, Princeton.
- Bierlaire, M., 2002. The network GEV model. Proceedings of the 2nd Swiss Transportation Research Conference, Monte Verita, Switzerland.
- Daly A. and Bierlaire M., 2006. A general and operational representation of generalized extreme value models. *Transportation Research Part B* 40, 285-305.
- 8) Dial, R.B., 1971. A probabilistic multipath traffic assignment model which obviates path enumeration. *Transportation Research* 5, 83-111.
- 9) Flötteröd, G. and Bierlaire, M., 2013. Metropolis-Hastings sampling of paths. *Transportation Research Part B* 48, 53-66.

- 10) Fosgerau, M., Frejinger, E. and Karlstrm A., 2013. A link-based network route choice model with unrestricted choice set. *Transportation Research Part B* 56, 70-80.
- Freginger, E., Bierlaire, M., Ben-Akiva, M., 2009. Sampling of alternatives for route choice modeling. *Transportation Research Part B* 43, 984-994.
- Hägerstrand, T., 1970. What about people in regional science? Papers of the Regional Science Association 24(1), 6-21.
- 13) 原祐輔,赤松隆,2014. Network GEV 型経路選択モデルを用いた確率的利用者均衡配分.土木学会論文集 D3 (土木計画学)70(5),611-620.
- 14) Huang, H.J., Bell, M.G., 1998. A study on logit assignment which excludes all cyclic flows. *Transporta*tion Research Part B 32(6), 401-412.
- 15) Mai, T., Fosgerau, M., Frejinger, E., 2015. A nested recursive logit model for route choice analysis. *Trans*portation Research Part B 75, 100-112.
- 16) Papola, A. and Marzano, V., 2013. A network generalized extreme value model for route choice allowing implicit route enumeration. *Computer-aided Civil and Infrastructure Engineering* 28, 560-580.
- 17) Rust, J., 1987. Optimal replacement of GMC bus engines: an empirical model of Harold Zurcher, *Econometrica* 55(5), 999-1033.
- 18) 佐佐木綱, 1965. 吸収マルコフ過程による交通流配分理論. 土木学会論文集 121, 28-32.

# TRAFFIC ASSIGNMENT IN TIME-STRUCTURED NETWORKS BASED ON TRAJECTORY DATA

#### Yuki OYAMA and Eiji HATO

This paper presented an assignment method in the time-structured network. We started to introduce the time-structured network which incorporating spatial networks into the concept of scheduling and the time constraint prism. Moreover we formulated a path choice model without restriction of choice set. The model is based on dynamic discrete choice model, and in proposed model path choice behavior is constrained by time-space prism. Thanks to this idea, we could solve the value functions regardless of network settings and output flow patterns in networks with cycles using the time-straightforward assignment method.