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This paper studies system-optimal dynamic traffic assignment for morning commute in a corridor 

network with multiple bottlenecks. We reveal regularities of traffic flow patterns and provide analytical 

solution to this problem. Our results elucidate the precise relationship between bottleneck capacities and 

traffic flow patterns. By further comparing traffic flow patterns of dynamic system-optimum solution and 

dynamic user-equilibrium in the problem, we investigate similarities between them. 
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1. INTRODUCTION

Traffic congestion caused by morning commute is 
a common challenge in most metropolises. Great loss 
due to it has drawn much attention of researchers. 
Previous studies on traffic flow behaviors in morning 
commute can be traced back to Vickrey (1969). 
Vickrey’s bottleneck model has been further 
involved in a lot of literatures (e.g., Smith, 1984; 
Daganzo, 1985; Arnott et al., 1990; Kuwahara, 1990; 
Lindsey, 2004). The model takes advantage of simple 
network and focus on departure-time choices of 
commuters in traffic peaks. Recently, researchers 
started to study this problem in corridor networks 
with multiple bottlenecks (Arnott and De Palma, 
2011; Akamatsu et al., 2015), which naturally 
includes spatial dynamics of congestions. Besides 
these studies on the dynamic user-equilibrium 
(DUE), many focus on system-optimum dynamic 
traffic assignment in the problem as benchmark of the 
most efficient allocation of traffic flow in morning 
commute (Daganzo and Garcia, 2000; Muñoz and 
Laval, 2006; Shen and Zhang, 2009).  

 Nevertheless, previous studies hardly revealed 
analytical properties of traffic flow patterns in a 
corridor network. Consequently, relationship 
between the dynamic system-optimum (DSO) 
solution and dynamic user-equilibrium (DUE) have 
not been clarified.  

In this paper, we first investigate the DSO solution 

for morning commute in a corridor network with 
multiple bottlenecks. Based on the analytical 
approach in this paper, we are able to provide an 
explicit solution and investigate regularities of the 
traffic flow pattern in the solution for the first time. 
Second, we compare the DSO and DUE problems 
and provide insights into the relationship between 
them. Similarity of flow patterns in the two problems 
are revealed. 

In the rest of this paper, Section 2 models the DSO 
problem. Section 3 presents analytical properties of 
solutions to the problem. Section 4 considers the 
DUE problem and reveals similarities between flow 
patterns in the two problems. Section 5 confirms our 
findings by numerical examples. Finally, Section 6 
concludes the paper. 

2. MODEL OF THE DSO PROBLEM

(1) Model settings
Consider a freeway corridor that connects several

residential locations to a central business district 
(CBD) (see Fig.1). The residential locations are 
indexed sequentially from the CBD. We denote the 
set of locations by I≡{1,2…,I}. There is a single 
bottleneck with capacity μi just downstream of the 
on-ramp from the location i∊I. The bottlenecks are 
modeled by the point queue model; at each 
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bottleneck, a queue is formed vertically when the 
inflow exceeds the capacity. The traffic demand at 
each location i∊I is a given constant Qi. 

Fig.1 The corridor network 

To be specific, we assume that tradable network 
permits (TNP) scheme (Wada and Akamatsu, 2013) 
is implemented as a first-best traffic policy. In this 
scheme, a permit is a right that allows a permit holder 
to pass through a pre-specified bottleneck during a 
pre-specified time period, and a perfectly competitive 
trading market for the network permits is launched. 
By limiting the number of permits to be either equal 
to or less than the capacity of the bottleneck, the 
queue at each bottleneck is eliminated. This scheme 
internalizes congestion externalities and is 
mathematically equivalent to an optimal dynamic 
road pricing scheme that eliminates congestion. 

Each commuter chooses a departure-time t∊T to 
minimize his/her own travel cost Ti(t), where T 
denotes a sufficiently large time window to allow all 
commuters to arrive at the CBD. For the time index 
t, we take the arrival time at the CBD rather than the 
departure time at the residential location (Akamatsu 
et al., 2015). The travel cost is defined as  

1
( ) ( ) ( )

i

i i jj
T t s t c p t


   (1) 

where ci(t) is the free-flow travel cost from location i 
to the CBD, s(t) is the quasi-convex schedule-delay 
function with unique minimum at the desired arrival 
time t=td, pi(t) denotes the price of a permit at 
bottleneck i with the arrival time t. The third term in 
Ti(t) is thus the total amount of permit costs a 
commuter has to pay to arrive at t. 

(2) Dynamic equilibrium under first-best traffic

control scheme
We formulate the dynamic equilibrium under TNP 

scheme. Let qi(t) be the arrival-flow rate at time t of 
commuters residing at i and thus {qi(t)} represents the 
arrival-flow pattern. Then, the equilibrium under 
TNP scheme can be formulated by three conditions. 
Firstly, the no-arbitrage condition of commuters' 
arrival-time choices asks that no commuter has 
incentive to alter his/her choice of arrival time: 

 0 ( ) ( ) 0i i iT t q t    (2) 

where ρi states the equilibrium commuting cost of 
commuters residing at location i. Secondly, the 
demand-supply equilibrium condition at permit 

market asks that 

0 ( ) ( ) 0
I

i j ij i
q t p t


    
  (3) 

Finally, the conservation constraint of commuters 
requires that 

0 ( )d 0i i iq t t Q    T (4) 

An equilibrium under TNP scheme is a set of 
variables {qi(t),ρi,pi(t)} that satisfies the above 
conditions. The following theorem gives an 
equivalent linear programming to this formulation. 

Theorem 2.1. The equilibrium under TNP scheme is 
the solution to the following linear programming 
(LP): 

min ( ) ( )dii t
s t q t t

 
 I Tq 0

(5) 

. . ( )
I

j ij i
s t q t 


 ,i t  I T (6)

( )di iq t t QT i I (7)

By this theorem, numerical solution to the 
equilibrium under TNP scheme can be easily 
obtained by solving this LP. Notice that the free-flow 
travel cost ci is insignificant in the formulation and 
thus omitted. 

3. ANALYTICAL APPROACH TO THE

DSO PROBLEM

(1) Reducibility of tandem bottlenecks
In this subsection, we will expound that which of

the bottlenecks in our model deserve concerns and 
others are dispensable. By doing this, we actually 
investigate the reducibility of tandem bottlenecks and 
simplify the network without loss of generality.  

By Eq.(3) we know that if the permit price pi(t) 
equals zero for all t∊T, then the capacity constraint of 
bottleneck i is not binding and we call it a “false 
bottleneck”. A “false bottleneck” is actually not a 
bottleneck in the DSO solution because traffics get 
through it as free-flow at all times. We define a “false 
bottleneck” formally in the following. 

Definition 3.1. A bottleneck i with the permit price 
pi(t)=0,∀t∊T in the DSO solution is called a false 
bottleneck, and a network with no false bottleneck is 
called a reduced network. 

The concept of reduced network is the key to 
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derive the analytical solution as we will show later. 
The case of interest here is how to determine the 
underlying reduced network of an arbitrary corridor 
network. For convenience of expression, we first 
define normalized demand at each bottleneck with 
respect to its capacity as 

/
I

i j ij i
Q 


 (8) 

To construct the reduced network from the original 
corridor network, we provide the criterion to screen 
out false bottlenecks in a corridor network by the 
following lemma. 

Lemma 3.1. In a corridor network with I tandem 
bottlenecks, bottleneck i(i≤I) is not a false bottleneck 
if and only if 

i k  k i  (9)

This lemma enables us to detect false bottlenecks 
in a corridor network. We can then construct the 
reduced network by the following algorithm. 

Algorithm 3.1. (construct reduced network from a 
corridor network {(μi,Qi)|i=1,2,…,I}):  

Step 0. Let n := 0; 
Step 1. For i from 2 to I, 

If  ψi-n  ≤ ψi-n-1, 
Qi-n-1 := Qi-n-1 +Qi-n; 
For k from i-n to I-n, 

Qk := Qk+1; 
μk := μk+1; 

n := n+1; 
Step 2.  Return {(μi,Qi)|i=1,2,…,I-n} as the 

reduced corridor network. 

(2) Analytical solution
To present properties of flow patterns in a reduced

network conveniently, let t
e 

i
and t

l 

i
be the earliest 

arrival time and the latest arrival time of commuters 
residing at location i respectively. Consequently, the 
arrival-time window of location i is Ti≡[t

e 

i
,t

l 

i
]. The 

following lemma provides regularities of the DSO 
arrival-flow pattern in a reduced corridor network. 

Lemma 3.2. In a reduced corridor network, arrival-
time windows of the DSO solution satisfy 

1i iT T i I  (10) 

By this lemma, we can show the relationship 
between the equilibrium commuting cost ρi and 
arrival-time window Ti as Fig.2: for each location i, 
the difference between ρi and s(t) equals the total 
permit-price cost from i to the CBD. The permit price 

of each bottleneck can be determined respectively 
and exhibits a layered structure as shown in the 
figure. The arrival-time window [t

e 

i
,t

l 

i
] is graphically 

determined by the equilibrium commuting cost ρi and 
the schedule-delay function s(t). This result further 
implies a relationship between bottleneck capacities 
and arrival-time windows. To summarize this 
relationship formally in the following theorem, let 

l e

i i i iT t t  T i I (11) 

Theorem 3.1. In a reduced corridor network, the 
DSO solution satisfies 

ˆ
i i iT Q  i I (12) 

where 

1  if  
ˆ

if  

i i

i

I

i I

i I

 




 
 


(13) 

This theorem show that the difference between 

capacities of adjacent bottlenecks 𝜇̂𝑖 provides more

meaning than capacity itself. The length of arrival-

time window R(ρi) is the ratio between local demand 

Qi and 𝜇̂𝑖. This implies regularities of the DSO flow

pattern: (1) Upstream demands (with larger index i) 

have the priority to pass bottlenecks in the sense that 

only the extra capacity of bottleneck i over bottleneck 

i+1 is occupied by the local demand Qi. (2) The 

assignment of commuters with respect to arrival-

times has an “all-or-nothing” pattern: the arrival-flow 

rate qi(t) equals 𝜇̂𝑖 for arrival time in the arrival-time

window Ti and equals zero for arrival time outside. 

By this theorem, we can further derive the analytical 

solution. For convenience of expression, define  

( ) l e

i i iR t t   i I (14) 

Fig.2 Relationships between variables of the DSO solution 

in a reduced corridor network 
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Corollary 3.1. As the analytical solution to the DSO 
problem in a reduced corridor network, the arrival-
flow pattern of each location is 

ˆ
( )

0

i

iq t


 


if  

otherwise

itT
i I (15) 

The equilibrium commuting cost of each location is 

1 ˆ( / )i i iR Q  i I (16) 

The permit price at each bottleneck is 

1

1

max{ ( ),0}  if  1
( )

max{ ( ) ( ),0}    if  1

i

ii

i jj

s t i
p t

s t p t i








 
 

   
t T (17) 

4. DSO VS. DUE

In this section, solutions to the DSO and DUE 
problems are compared to elucidate similarities in 
traffic flow patterns of the two problems. Before this, 
we consider the DUE problem based on the same 
approach as in the DSO problem. 

(1) The DUE problem
As proposed in Akamatsu et al. (2015), the

formulation for the DUE problem in a corridor 
network is 

 0 ( ) ( ) 0i i iT t q t    (18) 

0 ( ) ( ) ( ) 0
I

i i j ij i
t q t w t 


     
   (19) 

0 ( )d 0i i iq t t Q    T (20) 

where 

1

1
( ) 1 ( )

i

i ij
t w t




   (21) 

Comparing with that for the DSO problem, 
formulation for the DUE problem substitutes permit 
price pi(t) and bottleneck capacity 𝜇̂𝑖 with queuing
delay wi(t) and “virtual” bottleneck capacity 𝜇̂𝑖 ⋅
𝜎𝑖
′(t). The difficulty of the DUE problem is how to

determine 𝜎𝑖
′(t). Here, we consider a DUE with wi(t)

having the same value of pi(t) for each bottleneck i at 
all t∊T. By the same approach in the DSO problem, 
we can obtain the same equilibrium commuting cost 
{ρi(t)} as that in the DSO problem but a different 
arrival-flow pattern {𝑞𝑖

𝐷𝑈𝐸(t)}:

1 1

1

ˆ ( ) if  

ˆ( ) [1 ( )]  if  

0  otherwise  

i i i i

DUE

i i i

s t t

q t s t t

 



 



   


   



T T

T

i I (22) 

where t
e 

0
= t

l 

0
=td, 𝜇𝐼+1=0.

One more thing that needs to be concerned here is 
the condition for the coincidence between cost 
variables {wi(t)} and {pi(t)}, which is provided by the 
following theorem. 

Theorem 4.1. The queuing delay {wi(t)} in the DUE 
coincides with permit price {pi(t)} in the DSO 
solution in a reduced corridor network if and only if 

11 ( ) / 1i is t   
    , ii I t  T (23) 

Notice that the left-hand side of Eq.(23) is actually 
the existence condition of DUE by Akamatsu et al. 
(2015) but in a reduced corridor network. The 
intuitive interpretation of this part is clear: 
commuters must prefer early-arrival schedule to 
queuing delay, i.e. the cost of early-arrival schedule 
delay must be less than that of the same amount of 
queuing delay. The right-hand side of Eq.(23) is the 
condition for coincidence. This condition actually 
asks that no commuter arrives later than ti where 
s’(ti) = 𝜇𝑖/𝜇𝑖+1 − 1 and ti>td, because late-arrival 
schedule delay increases faster than the dissipation of 
queuing delay at any arrival time later than ti in this 
solution. 

(2) Comparison of traffic flow patterns
The important characteristic of the coincidence

introduced in the previous subsection is the similarity 
between DSO and DUE traffic flow patterns. 
Consider the aggregate outflow 

( ) ( )
I

i jj i
y t q t


 (24) 

of each bottleneck i in the two problems, or 
equivalently the link flow between adjacent 
bottlenecks (superscript for distinguishing DSO and 

DUE patterns): 

1

if  

( ) if  

0 otherwise  

i i

DSO

i j j j

t

y t t



 




  



T

T T

,i j i  I (25)
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1

1 1

if  

( ) if  

0 otherwise  

i

DUE

j j j

t

y t t



 




  



T

T T

1j  (26) 

1

[1 ( )] if  

( ) if  

0  otherwise  

i i

DUE

i j j j

s t t

y t t



 

  


  



T

T T

1,i j i   (27) 

As there is no queue in the DSO solution, the DSO 
flow pattern 𝑦𝑖

𝐷𝑆𝑂(t) with respect to arrival-time t is
the same as 𝑓𝑖

𝐷𝑆𝑂(𝜎 i(t)) with respect to departure-
time 𝜎𝑖 (t) from bottleneck i. As for the DUE, we
have 

( ( )) ( ) ( )DUE DUE

i i i if t y t t   (28) 

By this, it is derived that 

1

if  

( ( ))    if  

0 otherwise  

i i

DUE

i i j j j

t

f t t



  




  



T

T T

,i j i  I (29) 

which is the same as 𝑓𝑖
𝐷𝑆𝑂(𝜎i(t)). This result reveals

that the link-flow pattern of the DSO solution and 
DUE with respect to the departure-time are the same. 

5. NUMERICAL EXAMPLES

Numerical examples in this section present our 
findings on regularities of the DSO and DUE flow 
patterns. A reduced corridor network with three 
bottlenecks is considered and the existence condition 
of DUE is satisfied in all examples. Schedule delay 
functions are linear for both early and late arrivals. In 
each figure of the examples, solid curves stand for the 
DSO flow pattern and dashed curves stand for the 
DUE flow pattern. The first row in each figure shows 
aggregate cumulative flow of each bottleneck and the 
second to the fourth rows are disaggregate 
cumulative flow with respect to each location (from 
top to bottom is location 1 to 3 in turn). Blue curves 
stands for cumulative departure-flow from 
bottlenecks and the space between blue and red 
curves stands for permits price in the DSO solution 
and queuing delay in the DUE respectively. The 
desired arrival-time td=35 is marked for each 
subfigure. 

Fig.4 shows flow patterns with the coincidence 

condition satisfied, meaning that the DUE is 
coincident with DSO solution. As the numerical 
result shows, flow rate of the DSO arrival-flow from 
each location (disaggregate flow) is constant, which 
is presented by linear arrival-flow curves in the 
figure. The permit price at each bottleneck fits the 
layered structure of a triangle for linear early-arrival 
and late-arrival penalty. As for the DUE pattern, the 
link-flow patterns (blue curves in the first row) is the 
same as that in the DSO pattern, though disaggregate 
flow patterns are quite different. 

In examples shown by Fig.5,6,7, we gradually 
increase the late-arrival penalty (slope of the linear 
late-arrival schedule delay function) to show flow 
patterns with the consistency condition unsatisfied. 
The example in Fig.7 almost has no late arrivals due 
to high late-arrival penalty. DSO patterns in these 
examples show identical regularities as those in 
Fig.4. But DUE patterns do not exhibit the 
consistency with DSO patterns in the aggregate 
departure flow as in Fig.4. As a whole, aggregate 
flow of the DUE pattern in these examples take more 
cost than those of the DSO pattern due to earlier 
arrivals (more schedule delay cost). However, 
disaggregate flow patterns show that only the flow of 
location 3 suffers this extra cost and flow of location 
2 and 1 is even more concentrated around the desired 
arrival-time. This phenomenon verifies the priority of 
commuters residing at further locations in the DSO 
pattern as previously mentioned. 

6. CONCLUDING REMARKS

This study explored properties of DSO solution 
under TNP scheme for morning commute in a 
corridor network with multiple bottlenecks. Based on 
reducibility of tandem bottlenecks, we developed an 
analytical approach that gains insights into system-
optimal traffic controls and traffic flow patterns in a 
reduced corridor network. In the DSO solution, (1) 
arrival-time (departure-time) windows of upstream 
bottlenecks always cover those of downstream 
bottlenecks in the DSO solution (Lemma 3.2 and 
Fig.2); (2) traffic flow from each location follows the 
“all-or-nothing” pattern, which means the arrival-
flow (departure-flow) rate of each location is a 
positive constant in the arrival-time window and is 
zero outside the arrival-time window (Theorem 3.2); 
(3) the flow rate in arrival-time windows equals the
extra capacity of the bottlenecks at just downstream
of the location over that of the bottleneck at just
upstream (Eq.(14)). In the DUE problem, (1) we
derived the condition for coincidence between
queuing delay in DUE and permit price in DSO
solution (Theorem 4.1); (2) the DUE that coincides
with DSO solution has the same link-flow pattern as
that of the DSO solution (Eq.(29)). Explicit results in
this paper extended analytical approach in traffic
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congestion problems, especially those involve with 
departure-time choices. Our results have a potential 
to be extended in various aspects (e.g. heterogeneity 
of commuters) of these problems and will be 
explored in future. 
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Fig.4 Flow patterns with s(t)=max{0.5(35-t),0.5(t-35)}. DUE (dashed) is consistent with DSO (solid) in link flows (blue curves in the 

first row). 
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Fig.5 Flow patterns with s(t)=max{0.5(35-t),2(t-35)}. DUE (dashed) starts to deviate from DSO (solid) in link flows. 

Fig.6 Flow patterns with s(t)=max{0.5(35-t),8(t-35)}. DUE (dashed) deviates from DSO (solid) in link flows. 
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Fig.7 Flow patterns with s(t)=max{0.5(35-t),32(t-35)}. DUE (dashed) significantly deviates from DSO (solid) in link flows. 
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