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We formulate an approach based on stochastic state equations to describe the gradual change of behavior 

over time. At the start a user is likely to be in a low-usage state. A transition function then determines the 

likely change in behavior from one time period to another. We discuss time-homogeneity issues and pos-

sibilities to calibrate the transition function. The model is applied to panel data from Kyoto University’s 

bicycle share system. Finally, the errors between actual and estimated value are analyzed to evaluate the 

model. The reliability and weaknesses of our method and further works are discussed. 
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1. INTRODUCTION
Understanding long term demand dynamics re-

mains an important challenge for transport. In most 

cases the future demand is uncertain, particular if 

there are changes in the supply system.  

Considering situations in which new modes are 

being introduced or if major changes occur, “adap-

tation” is likely to take place, i.e. it requires time for 

travellers to adapt to the new available options. As 

these processes might even lead to different “final” 

equilibria, it is important that demand forecasting 

captures theses gradual processes. 

Panel data are one way to observe these processes 

effective and accurately (Kitamura, 2003). Com-

pared to time series and cross-sectional data which 

are the most frequently used ones for travel behav-

iour analysis, panel data have advantages in accurate 

inference of model parameters, greater capacity for 

capturing the complexity of travel behaviour and in 

identifying causalities (Yeun-Touh Li, 2016). 

Therefore, to understand such adaptation we re-

quire panel data that track a person’s behaviour over 

a longer period of time. Such data become increas-

ingly available through smart card data as well as 

other “smart systems” that track the behaviour of 

users. 

The objective of this research is to formulate an 

approach based on stochastic state equations that 

describes the change of behaviour over time by using 

panel data.  

The process underlying the behaviour is assumed 

to be a Markov process in this study. In a Markov 

process, the behaviour at any given time point can be 

expressed by a set of discrete states and the process 

can be shown by transitions from state to state over 

time. 

In previous studies, methods are developed to 

obtain the best fitting parameters of a Markov proc-

ess based on minimizing the magnitude of the errors 

estimated for transitions between states of a system at 

different time points (Singer,1981; Kitamura,2003). 

Instead, in this study the maximum likelihood ap-

proach is utilised based on observations of all users’ 

states at some or all discrete time epochs. 

The structure of this paper is as follows: After this 

introduction, in Section 2 we offer a description of 

the stochastic process of discrete behaviours ob-

served at discrete time epochs in a panel study. Then, 

how this process might be depicted by observations 

第 53 回土木計画学研究発表会・講演集

 1341

03-05



from a panel study is discussed. In Sections 3 and 4, 

by using the maximum likelihood estimation and the 

Newton iteration method, the parameters of the 

transition function can be estimated based on panel 

observations. In Section 5, an example of Kyoto 

University’s bicycle share system is used to show the 

issue how accurately the parameters that characterize 

the process can be estimated and which method can 

be more effective. Finally, in Section 6 some initial 

conclusions and possible future research is discussed. 

2. MODEL CONCEPTUALIZATION
Suppose the process to be measured in panel data

can be represented by a set of discrete states. These 

discrete states can represent categories, frequency 

counts or measurements depend on the researches 

(Kitamura, 2003). Regardless of what it represents, it 

is assumed that for every person a transition from one 

state to another can take place between the adjacent 

time epochs and the process occupies one state be-

tween two successive transitions. It is also assumed 

that these transitions are probabilistic, and the tran-

sition function does not change over time 

(time-homogeneity). 

Denote the discrete time periods by the letter t 

(with t = 0, 1, 2,...). Let      be the observed system 

state at time t with elements               denoting 

whether a person j is in state i or not. M presents the 

set of all possible states and m is the number of states. 

   is the time period when the nth transition is made 

and X(  ) presents the system state after the nth 

transition. 

Each person must be in exactly one state at each 

time t so that        takes binary values with 

                            (2-1) 

We are interested in estimating the transition 

probabilities between subsequent time epochs. For 

this we define Q with vector        as the estimated 

probability mass function for person j which we refer 

to as the “state probability distribution”. And define 

       as the probability of person or person group j 

being in state i at time t. 

                             (2-2) 

Due to sampling limitations, including potential errors 

due to the discretization of the states, we presume that 

       does not include the zero and one boundaries but 

instead takes following form: 

            (2-3) 

As we will discuss this assumption will be useful for 

our parameter estimation. Further, clearly each person 

must be in one of the m states at any time t. 

                        (2-4) 

Our objective is to estimate a Markovian transi-

tion function  that updates the estimated state 

probabilities.  is a      matrix with elements    

denoting that the probability of state transitions from 

k to i. 

   

       

   
       

      (2-5) 

The n-step transition function      is also a   

  matrix with elements    
   

 denoting that the proba-

bility of transitions from the initial states k to state i. 

      
   
     

 

   
   
     

 
     (2-6) 

          Due to the time-homogeneity assumption of 

the transition function  , we can obtain following 

relationships: 

                    (2-7) 

           (2-8) 

                   (2-9) 

3. PARAMETERS ESTIMATION
In Section 2, we established the Markov Chain

model to describe the stochastic process of discrete 

behavior with panel data. Next, we aim to estimate 

parameters in the model by Maximum likelihood 

estimation. The objective is to estimate the likelihood 

of correctly predicting the state of each person in the 

final time epoch   . We formulate this as follows: 

                    
       

        (3-1) 

As we want to maximize likelihood we can con-

sider the log likelihood function L: 

                          
                         (3-2) 

Since the parameters we want to estimate are the 

    of the transition function , an expression of the 

log likelihood function L as functionality of  these 

    must be obtained. 
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First, let us define     as the number of people 

who are at time    in state k and in the target time   

in state i, 

                        (3-3) 

Further, define    
   

 as the conditional probabil-

ity that people who are at time     in state k transfer 

into state i in the target time    with constraint 

    
    

             (3-4) 

According to Eq. (2-9) we can obtain 

                   
   

   (3-5) 

Utilising Eq. 2-1 we first expand the log likelihood 

functions into  

                                        (3-6) 

We then adjust the order of summation and in-

troduce     denoting the observed number of people 

who were initially in state k and are in time interval (n) 

in state i. The resulting function is shown in Eq.(3-7). 

                                           

              
   

             (3-7) 

       We continue by utilizing (2-8) and introduce 

functions G      to present the relationship between 

   
   

 and the one step conditional transition proba-

bilities     as in Eq.(3-8) 

 
 
 

 
    

   
                   

 

   
   

                   

 

   
   

                   

         (3-8) 

Finally, the resulting function to be estimated is: 

                                   (3-9) 

4. EQUATIONS SOLVING
        We aim to find the maximum value and best 

estimation for  . There appear to be m2 parameters in 

    , however, due to constraints (3-4) there are 

only m (m-1) free variables     to be estimated.  

      To search the maximize value of     , the 

maximum likelihood estimation of     usually sat-

isfy the equation: 

     

    

             (4-1) 

     Since we can not solve this High Order Nonlinear 

Equations directly, we make use of  Newton‘s itera-

tive method for finding the roots of a differentiable 

function f. However, this methods is only suitable for 

non-binding equations. Since here we have con-

straints (4-2) and (4-3) 

                     (4-2) 

            (4-3) 

     new unconstrained variables     are introduced as 

in (4-4) 

    
    

        
   

       )         (4-4) 

      In this way the problem of solving equations with 

constraints variables is transformed into solving 

equations with unconstrained variables.        
   

  

presents the estimated values after the  th iteration. 

    

   
   

 

       
   

 
  (4-5) 

Denote finally 
     

    
                             (4-6) 

      

                  

 
                      

 
     (4-7) 

      

 
 
 
 
 

    

    
 

   

        

   
        

    
 

        

         
 
 
 
 

    (4-8) 
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We start the process with some arbitrary initial 

value   .Then we find the “better guess”   .The 

process is repeated as 

        
     

         (4-9) 

until a sufficiently accurate value is reached. 

5. CASE STUDY

5.1 The COGOO Shared Bicycle Scheme 

Fig.1 Kyoto University’s Bicycle Share System 

      Bicycles are a laudable and sustainable form of 

transportation but they also create some problems on 

university campuses. Managing parked bicycles and 

specifically abandoned bicycles is a major challenge 

for Kyoto University and other Japanese universities. 

As part of efforts to encourage bicycle usage but at 

the same time reduce the numbers of abandoned 

bicycles, a bicycle sharing service called "COGOO" 

has been introduced. The COGOO service provides 

free bike rentals to Kyoto University students, fac-

ulty and staff. Users can register via mobile phone 

and pick up or drop off a bicycle from any of 10 

COGOO parking lots. Since this system was intro-

duced in March 2014, it has 1,600 registered mem-

bers was used for more than 14,000 times accumu-

latively. We could obtain individual rental records for 

13 months). (Unfortunately since April 2015 the 

service has been stopped due to bicycles being used 

inappropriately.) 

     COGOO is a good example to help us have a 

better understanding of how people will adapt to a 

new mode and predict the demand in the future. 

 In this case, we distinguish five different states for 

each person that are {never, few, sometimes, often, 

always} according to the use frequency (see Table 1). 

The time interval between subsequent time points is 

one month. 

Table 1 State division 

No States Frequency 

1 never 0 

2 few 1-3 

3 sometimes 4-10 

4 often 11-20 

5 always >20 

5.2 DATA ANALYSIS 

      We focus on the adaptation of the new mode in 

the initial months from March to Jul 2014. 

Fig.2 Distribution of user states 

Fig.3 Number of users in different states 

Percentage and number of users in all five states 

in different months are shown in Figs 2 and 3. It is 

clear to see that users of state 2 and 3 (low frequency 

user) at the beginning (the first month) increase very 

slowly then grow rapidly and later maintain steady 

growth. But high frequency users (states 4 and 5) 

after the first 1 or 2 month will keep quite stable 

though number of these users are few. 

     As shown in table 2, through the method we in-

troduced before the estimated transition matrix can 

be calculated out. We can see that most of users in all 

the states maintain in the state which they were in the 

last period. Especially, all very high frequency users 
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of state 5 keep their state. Besides, we find that the 

probability of jumps in more than one status level 

(e.g. state 1 to 3 or state 4 to 2) is very low. This 

suggests that people tend to change their habit 

gradually. 

Table 2 Estimated Monthly Transition Matrix 

states 1 2 3 4 5 

1 0.8568 0.1313 0.0097 0.0022 0.0000 

2 0.2152 0.6987 0.0861 0.0000 0.0000 

3 0.0000 0.2553 0.7009 0.0438 0.0000 

4 0.0000 0.0000 0.3660 0.5917 0.0422 

5 0.0000 0.0000 0.0000 0.0000 1.0000 

     It is important to identify the difference of our 

estimated states and actual states to evaluate our 

model. 

      and         represent the estimated number of 

users and actual number of users at time t respec-

tively.       is the difference between actual value 

and estimated value of state i at time t. MAE (Mean 

Squared Error) MAPE (Mean Absolute Percent Er-

ror)  and MSE(Mean Square Error) can be calculated 

by the following equations: 

                   (5-1) 

            
 
     (5-2) 

      
        

 
   

      
 
   

       
     (5-3) 

      
   

     
   

      
 
   

 
         (5-4) 

      From the analysis results in Table 3, it is clear that 

estimation of the time epochs which are close to our 

final time epoch (June and July) have higher accu-

racy. The reason may be that our methodology only 

use the initial time epoch and final time epoch, the 

estimated values of intermediate time epochs would 

have larger errors. 

     Generally, when MAPE <10% it can be consid-

ered as high accuracy prediction. This encourages us 

to further investigate the use of Markov Chain mod-

els to estimate the adaption to new transport modes 

also for other applications.  

6. DISCUSSION
In this paper we focused on formulating an ap-

proach based on stochastic state equations to describe 

the gradual change of behavior over time. We also 

discuss time-homogeneity issues and possibilities to 

calibrate the transition function. The model is applied 

to panel data from Kyoto University’s bicycle share 

system. The results of this case study offer indica-

tions that stochastic, discrete behavioral processes 

can be estimated in a panel data study. There are still 

a number of issues that need to be addressed in fur-

ther work.  

Firstly, our methodology only use the initial time 

epoch and final time epoch in the process to estimate 

the parameters, but this ignores the “path" users take 

in their adaptation process. Therefore, as a next step, 

we should also take the intermediate time steps into 

consideration. 

Besides, even through the transit function in dif-

ferent time epochs are similar, there still are differ-

ences. In fact, time does appear to affect the transi-

tion function as shown in the figures which violates 

our time-homogeneity assumptions. We therefore 

suggest to give different weights for the prediction 

values based on intermediate time epochs.  

Connected to this, we found that in our case study 

the summer break influences the usage frequency. It 

would lead to significant errors in the prediction. So 

the recurring impacts should be take in consideration 

in order to make more accurate prediction.  Estab-

lishing a suitable model to describe the process of 

adaption accurately will be one of the critical tasks.  
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