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Bus bunching is a well-known phenomenon on many bus routes where an initial delay to one service 

can disturb the whole schedule due to resulting differences in dwell times of subsequent buses at stops. 

This paper deals with the passenger behavior when there are more than one bus serving at the stop, 

focusing on their choices and possible switching actions from the queue of the bus they are waiting to 

board. A parameter   is introduced to denote the percentage of passengers boarding the front bus when 

buses are bunched. A set of discrete state equations is implemented to obtain the departure times of a set 

of buses following the occurrence of an exogenous delay to one of the buses at a bus stop. Overtaking and 

no-overtaking cases are also distinguished from each other in this paper. Measures are introduced to 

evaluate the performance of the bus service along a corridor under different   levels. We find that it is 

an optimal measure to keep the percentage of passengers boarding the front bus low. Beside, overtaking is 

a favourable counter-measure against comparatively high front-bus preference.  
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1. INTRODUCTION 
 

Good public transport services are an essential 

part of a sustainable urban transport system, and 

improving public transport service quality is a major 

challenge for the operators and government 

agencies. The lack of bus service reliability is a 

major problem for bus passengers and service 

operators. A key feature of an unreliable service is 

the irregular arrivals of buses at stops. The effect of 

two successive services of a single line arriving at 

stops with shorter than designed headways is 

generally defined as bus bunching. Bus bunching is 

undesirable for passengers because it leads to 

increases of waiting time at some bus stops, and 

unpredictability of bus arrival times. Studies have 

shown that passengers value their time waiting at 

bus stops more than they do to on-board travel time. 

Hollander and Liu (2008) found that the value of 

service reliability to bus passengers is four times 

higher than that of mean travel time. 

Bus bunching may be caused by the first service 

being delayed due to unforeseen traffic congestion 

en-route or unplanned high demand at previous 

stops. The subsequent service then has fewer 

passengers to pick up at that stop and departs earlier 

than scheduled. At downstream stops the effect is 

emphasised as the (small) delay to the first vehicle 

and the (slight) early arrival of the second vehicle 

result in increasingly longer dwell times for the first 

bus and increasingly shorter dwell times for the 

second bus. The bus bunching effect on a single line 

of service was first described in a seminal work by 

Newell and Potts (1964). They studied an idealised 

corridor with evenly spaced bus stops, identical 

travel times between stops, and constant passenger 

loads at bus stops. Given a small delay of the first 

bus of a service at a stop, Newell and Potts provide 

an analytical formulation of the deviation of bus 

arrival time to schedule for all buses and at all 

subsequent stops. They show that adjacent buses 

alternate between being behind and ahead of 

schedule, leading to bus bunching. The scale of the 

bunching effect and the stability of the bus system is 

affected not only by the size of the original delay to 

the first bus, but also by the ratio (referred to as the 

k value later) between passenger arrival rate and 

boarding rate. They show that if 1/2 < 𝑘 < 1 , 

instability occurs. In practice, however, one would 

expect the passenger arrival rate to be much smaller 

than the loading rate, i.e.  0 < 𝑘 < 1/2. In this 

case, Newell and Potts show that the system can 

recover from the original perturbation and return to 

schedule. Furthermore, bus bunching is more noted 

in high frequency services, where the headway 

between buses is small and the delay to headway 
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ratio is easily over the threshold so that bus 

bunching amplifies (rather than being damped and 

remaining localised) further down the route. 

Following on from Newell and Potts’ work, there 

has been a significant body of literature designing 

operational strategies to avoid the bunching effect. 

In particular holding strategies of early buses as well 

as strategies to keep minimum distances between 

subsequent services have been analysed and shown 

to be successfully applied in literature. The holding 

strategies are implemented through building slacks 

in the schedule at key timing points and holding 

buses at these points to keep them to schedule (e.g. 

Osuna and Newell, 1971; Newell, 1974; Hickman, 

2001; Eberlein, 2001; Cats et al, 2012). Due to the 

complexity of the problem, most of these early 

studies involve solving just one controlled timing 

point. Using a simulation approach, Hickman (2001) 

derived a set of static holding solutions, which do 

not respond to dynamical changes in the actual bus 

performances on the day. Eberlein et al (2001) 

proposed a model for dynamic bus holding which 

take real-time information on bus headways into 

consideration and strives to minimise passenger 

waiting time.   

Daganzo (2009) explored a more systematic 

approach to the dynamic holding problem with 

real-time bus performance. Daganzo’s method is 

able to consider holding at multiple timing points, 

therefore providing opportunity for return to 

schedule for long bus routes. In addition, the model 

takes into account random effects in bus travel time, 

bus dwell time and passenger demand, making it 

resemble more to real-life situations.  Daganzo and 

Pilachowski (2011) proposed an adaptive bus 

control scheme based on a two-way bus-to-bus 

cooperation, where a bus adjusts its speed to both its 

front and rear headways. They show that the scheme 

yields significant improvements in bus headways 

and bus travel time. Moving away from the 

traditional ideal of schedule and a prior target 

headway, Pilachowski (2009) proposed to use GPS 

data to counteract directly the cause of the bunching 

by allowing the buses to cooperate with each other 

and to determine their speed based on relative 

position, while Bartholdi and Eisenstein (2012) 

proposed a self-coordinating method to equalise bus 

headway.  

Despite these recent developments, most of the 

existing studies present an oversimplified model of 

the bus bunching phenomenon, notably with a single 

line of service, with fixed service frequency, 

uniformly distributed (in time and space) passenger 

flows, and no bus overtaking. They neglect 

important aspects of real-life bus systems, such as 

passenger behaviour, en-route service perturbation, 

transport operator policies such as holding and 

overtaking, and complex network features such as 

common lines. Newell and Potts (1964), for 

instance, assume fixed frequency, constant dwell 

times, equal-distance stops and equal-travel time 

between stops, and that buses cannot overtake. In 

real-life situations, busy urban corridors are often 

served by multiple lines of bus services, with 

different frequencies and different sequence of 

stops. Besides, when buses are bunched at the stop, 

some passengers are likely to stick to front bus, 

while some others are intended to get on the back 

bus, which will change the dwell time of buses and 

the order of bus departures. 

To explore the effect of common section of a 

corridor served by multiple buses, Hernández et al 

(2015) proposed real-time control strategies in a 

corridor with multiple bus services while the 

common section is short. Schmöcker et al (2015) 

discussed the problem in a long common section 

with 10 stops, and found that common sections will 

contribute when overtaking policy is allowed, but 

the model they proposed is simplified by infinite 

capacity and no alighting process, which makes it 

still a little unrealistic. 

 

In this paper, returning to the bunching problem 

on a corridor with one line, we focus on the 

passenger behaviour when there is more than one 

bus stopping at the stop at the same time. We 

investigate especially their choices and possible 

switching actions from the queue of the bus they are 

waiting to board to that of the coming one. A 

parameter    is introduced to denote the percentage 

of passengers remaining in queue for the front bus. 

We presume the same percentage applies further to 

passengers arriving at the stop during the dwell 

time,   thus could be regarded as a kind of 

front-bus preference. Different scenarios of different 

arrival and departure sequences are discussed 

respectively. Furthermore, we consider resulting 

differences in bunching depending on whether 

overtaking of buses at bus stops is allowed or not. 

Chapter 2 of the paper sets out the basic model 

notations. Chapter 3 introduce the percentage of 

passengers who board the front bus when buses are 

bunched. Chapter 4 describes the formulation of bus 

propagation model, and without and with bus 

overtaking. Four evaluation indices are proposed in 

Chapter 5, and the performance of the model are 

illustrated through case studies in Chapter 6. 

Finally, Chapter 7 draws conclusions of the study 

and discusses the implications on network design. 
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2. NOTATION AND BASIC 

ASSUMPTIONS 
 

The following notation will be used throughout 

the paper. 

Let 

m      bus number according to arrival time at the 

bus stop (which does not necessarily have to be the 

dispatching order from depot if we allow for 

overtaking) with m=0,1,2,..,M 

n      bus stop number with n=0,1,2,..N 

h      headway of the line 

 

The above set of variables defines the basic 

service characteristics. In the following we 

introduce variables for specific buses at specific 

stops. 

𝑎𝑚  time at which bus m of line l arrives at stop 

n (measured from t00=0) 

𝑑𝑚,𝑛  time at which bus m of line l leaves at stop 

n (measured from t00=0)  

𝑣𝑚,𝑛  travel time of bus m between stops n-1 and 

n; taken as fixed value in this study  

𝜌𝑚,𝑛  initial “exogenous” delay to bus m of line l 

before or at the nth stop  

∆𝑚,𝑛  passenger arrival period over which 

demand for bus m at stop n accumulates 

𝑤𝑚,𝑛  dwell time of bus m at stop n 

𝑏𝑚 passenger loading rate of bus m 

𝑞𝑛  passenger arrival rate at stop n for 

passengers 

𝑘𝑚,𝑛 ratio between passenger arrival and 

loading for bus m at stop n 

We assume that bus travel time between stops is 

constant so that 𝑣𝑚,𝑛 simplifies to 𝑣. Instead in the 

later case study we assume that one bus is subject to 

an initial delay at stops denoted by 𝜌𝑚,𝑛. This event 

triggers the subsequent bunching effect. The 

difference between assuming random link travel 

times and delays at stops is that in the latter 

passengers arriving at the stop during the delay 

period can board the bus whereas in the former 

obviously they cannot. We also note that replacing 

𝜌𝑚,𝑛  by one (or multiple) link delay presents no 

methodological difficulty in the approach presented 

hereafter. 

The passenger arrival period, ∆𝑚,𝑛, for a regular 

service will be equal to the service headway. In case 

of a bunched service, various definitions are 

possible, depending on bus stop layout, operational 

policy as well as passenger behaviour. In particular, 

passengers arriving while two buses are at the same 

time at the stop will have a choice between these. 

The effect of different assumptions regarding ∆𝑚,𝑛 

will be discussed later.  

The boarding time per passenger is primarily 

depending on doors and ticketing system. Sun et al 

(2014) report that the loading time per passenger 

further depends on the interaction between boarding 

and alighting passengers. In the following we omit 

this issue and instead make the simplifying 

assumption that all buses are identical, i.e. have the 

same boarding rate per passenger, so that we can 

assume a fixed 𝑏𝑚  and omit the subscript m. 

Further, whereas Fonzone et al (in press) assume 

that arrival patterns are time dependent here we 

assume a constant 𝑞𝑛. With these assumptions also 

k becomes time and bus independent and can be 

defined as 

  𝑘𝑛 =
𝑞𝑛

𝑏                 (1) 

 

Clearly to avoid queues at bus stops building up 

over the analysis period we require 

  0 ≤  𝑘𝑛  < 1             (2) 

 

In this paper, passengers who arrive during the 

dwell time can still board the bus, which means the 

arrival period of passengers is not equal to headway 

which is the interval of two adjacent arrivals, but is 

defined as the interval of two adjacent departures. 

∆𝑚,𝑛 can be generally obtained as 

 

∆𝑚,𝑛= 𝑚𝑖𝑛{𝑑𝑚,𝑛−𝑑𝑚′,𝑛|𝑑𝑚′,𝑛 ≤ 𝑑𝑚,𝑛}, ∀𝑚 (3) 

 

Which simplifies to (4) if overtaking is not allowed 

or does not occur 

 

∆𝑚,𝑛= 𝑑𝑚,𝑛−𝑑𝑚−1,𝑛          (4) 

 
We further note that equation (5) to obtain dwell times 

does not hold if several buses are serving the stop. We 

elaborate on this in the following section.  

𝑤𝑚,𝑛 = ∆𝑚,𝑛𝑘𝑛            (5) 

 

 

 

3. PASSENGER CHOICE BETWEEN 

BUNCHED BUSES 
 

Let us now consider the case that two buses are 

boarding passengers at the same time. As described 

in the introduction let   denote the front-bus 

preference of passengers waiting to board and newly 

arriving during the dwell time of the buses. 

Therefore, with  = 1 all passengers keep boarding 

the front bus, whereas with  = 0 all passengers at 

the bus stop swop to board the bus that arrived later.  

In line with previous notation we utilise in the 

following: 

𝑎𝑚−1,𝑛 and 𝑎𝑚+1,𝑛   as time at which the previous 
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and next bus to m arrives at stop n 

𝑑𝑚−1,𝑛 time at which bus 𝑎𝑚−1𝑛 departs from the 

stop 

𝜉𝑛(𝑡)  last departure time given time t  

𝑥𝑛(𝑡)  queue of passengers at stop n at time t who 

want to board the bus 

 

Considering departure of the previous bus and 

arrival of the bus subsequent to bus m, each column 

of below table shows a possible event sequence. In 

the top row the number stands for the number of 

buses at the bus stop and the letter behind the 

number for the position of the bus of interest at the 

bus stops. 2f stands for the bus being the front bus at 

the stop, 2b for the bus being at the back of two 

buses at the bus stop and 3m for the bus being the 

middle one of three at the bus stop. The arrow 

stands for the state transition of the bus. 
The lower part of the table then shows which 

cases can occur depending on  and depending on 

whether we allow for overtaking between buses or 

not. Case 1 denotes the non-bunched case in that bus 

m arrives after the previous bus has left and departs 

before the next bus has arrived. The case clearly can 

occur for all   and independent of whether 

overtaking is considered or not. It can be solved 

with the equations shown in Section A. 

The second case, 1->2f , denotes the case that 

while the bus is still boarding the subsequent bus 

arrives. In this case, and all subsequent cases, hence 

the solution depends on . Firstly if  = 1 then all 

passengers board the bus of interest, so that the 

waiting time of the bus is identical to the case 

without considering bus m+1. The case also makes 

bunching worse compared to smaller  values, as 

bus m+1 does not help to relieve bus m though it has 

already caught up with this bus. For cases 1 >  >
0 the relief by bus m needs to be taken into account 

as shown in Section B. With decreasing   the 

dwell time of bus m will continuously decrease so 

that in the extreme case of  = 0 bus m leaves 

immediately when bus m+1 is arriving. This 

corresponds to the case of the bus driver in the front 

bus trying to reduce the bunching effect by pushing 

all passengers to the back bus. 

In case overtaking is allowed bus m+1 will 

overtake bus m in case  > 0.5 as this means more 

than half the passengers will remain boarding bus 

m. In case of  = 0.5  the buses become “twin 

buses” as they depart at the same time, whereas in 

the case of  < 0.5 bus m will depart before bus 

m+1. One issue is though that obtaining the exact 

dwell time in case of 1 >  > 0.5 is not possible 

with our solution approach. Bus m+1 will overtake 

bus m so that from 𝑑𝑚+1 until 𝑑𝑚 bus m becomes 

the only bus at the stop again. Hence obtaining 

𝑑𝑚+1  is required in order to obtain 𝑑𝑚 . One 

approximation that can be made is though to 

(linearly) approximate the dwell time for this case 

from the cases  = 1  and  = 0.5  as the dwell 

time for bus m must also be smaller than for  = 1 

but bigger than for = 0.5. 

The following five columns all presume that bus 

m arrives while bus m-1 has not yet departed. Firstly 

consider a system without overtaking. For  ≥ 0.5 

this hence means that bus m leaves together with 

bus m-1 so that the behaviour of bus m+1 does not 

have to be considered and one always obtains 

𝑤𝑚 = 𝑑𝑚−1 − 𝑎𝑚  which is equivalent to 𝑑𝑚 =
𝑑𝑚−1. In case of  < 0.5 instead bus m will have to 

pick up more than half the passengers queuing at the 

stop and hence these passengers need to be 

considered in determining the dwell time of bus m 

(Cases C and D in the table). Let us for simplicity 

assume that only two buses can board passengers at 

the same time, i.e. a third (and fourth..) bus that 

might be at the stop at the same time can not pick up 

passengers until one of the front two buses has 

departed. Under this assumption case 2b->3m->2f 

simplifies to the 2b->2f case. That is, until departure 

of bus m-1, bus m is the latter of two buses. At 

departure of bus m-1 then bus m becomes the front 

bus of two boarding buses. This case is denoted as F 

and solved below. Note further that for  = 0 again 

the solutions simplify. Whenever the bus transits 

into the 2f state, it can leave immediately, if it is in 

the 2b state, bus m-1 can leave immediately and 

hence it becomes identical to the 1 bus waiting time 

if bus m can leave before bus m+1 is arriving. 

Finally, note that for  < 0.5 no overtaking occurs 

at the bus stop as the previous bus will always be 

able to leave before the subsequent bus as it will 

have to pick less passengers of the remaining 

queuing travellers at the stop. 
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Table 1 Possible event sequences from the view of bus m and corresponding calculation of dwell time 

 

Possible event sequences 

Case 1 1->2f 2b -> 1 2b->1->2f 2b 2b->3m->2f 2b->3m 

event 

sequence 
(increasing 

time) 

𝑑𝑚−1 𝑎𝑚 

𝑎𝑚 𝑑𝑚−1 𝑑𝑚 𝑎𝑚+1 

𝑑𝑚 𝑎𝑚+1 𝑑𝑚 𝑎𝑚+1 𝑎𝑚+1 

𝑑𝑚−1 

𝑑𝑚−1 𝑑𝑚 

𝑎𝑚+1 𝑑𝑚 𝑎𝑚+1 𝑑𝑚 𝑑𝑚 𝑑𝑚−1 

Solution to specific cases 

No overtaking 

 = 1 A A (m+1 
waits behind 

m) 

𝑤𝑚

= 𝑑𝑚−1

− 𝑎𝑚 
(m-1 and m 
bunched) 

Does not 
occur: 

𝑑𝑚 = 𝑎𝑚+1

= 𝑑𝑚−1 

Does not 
occur: case 

presumes 
overtaking 

𝑤𝑚

= 𝑑𝑚−1

− 𝑎𝑚 
(m-1 and m 
bunched)* 

Does not 
occur: case 

presumes 
overtaking 1 >  > 0.5 B (m and 

m+1 
bunched) 

 

 = 0.5 

0.5 >  > 0 B C D F* 

 = 0 𝑤𝑚

= 𝑎𝑚+1

− 𝑎𝑚 

𝑤𝑚

= 𝑎𝑚+1

− 𝑎𝑚 

𝑤𝑚 =
𝑑𝑚−1 − 𝑎𝑚* 

Overtaking 

 = 1 A A (m+1 

leaves 
immediately) 

Does not 

occur:  
𝑑𝑚 < 𝑑𝑚−1 

Does not 

occur: 

𝑤𝑚 = 0 
and  

𝑑𝑚 < 𝑑𝑚−1 

𝑤𝑚 = 0 
(and 

overtaking) 

Does not 

occur: 

𝑤𝑚 = 0 and  

𝑑𝑚 < 𝑑𝑚−1 

𝑤𝑚 = 0 
(and 

overtaking; 

only if  
𝑎𝑚+1 = 𝑎𝑚) 

1 >  > 0.5 X (m+1 

overtakes m) 

E E* 

 ≤ 0.5 Overtaking does not occur, identical to no overtaking case 

 

 

A: 1bus, no bunching case 

𝑤𝑚,𝑛 =
1

𝑏
∫ 𝑞𝑙𝑛𝑑𝑡

𝑑𝑚,𝑛

𝑑𝑚−1,𝑛
 =

1

𝑏
∫ 𝑞𝑛𝑙𝑑𝑡

𝑎𝑚,𝑛+𝑤𝑚,𝑛

𝑑𝑚−1,𝑛
 =

𝑘𝑙𝑛(𝑎𝑚,𝑛 + 𝑤𝑚,𝑛 − 𝑑𝑚−1,𝑛)                (6) 

 

𝑤𝑚,𝑛 =
𝑘𝑙𝑛(𝑎𝑚,𝑛−𝑑𝑚−1,𝑛)

(1− 𝑘𝑙𝑛)                     (7) 

 

B: 1->2f and assuming no overtaking (either 

because  < 𝟎. 𝟓  or because overtaking not 

allowed) 

We obtain the queue x at stop n at time 𝑎𝑚+1,𝑛 

as 

𝑥𝑛(𝑎𝑚+1,𝑛) =  𝑞 (𝑎𝑚+1,𝑛 − 𝜉𝑛(𝑎𝑚+1,𝑛)) −

𝑏(𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛)                                                    (8) 

 

Waiting time of bus m can be obtained as 

𝑤𝑚,𝑛 = (𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛) +


𝑏
(𝑥𝑛(𝑎𝑚+1,𝑛) +

∫ 𝑞𝑙𝑛𝑑𝑡
𝑑𝑚,𝑛

𝑎𝑚+1,𝑛
)                            (9) 

 

Which is equivalent to 

𝑤𝑚,𝑛 = (𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛) +
𝛾𝑥𝑛(𝑎𝑚+1,𝑛)

𝑏(1−𝛾𝑘)
       (10) 

 

C: 2b -> 1 and no overtaking because  < 𝟎. 𝟓 

We firstly obtain the queue of passengers at 

the stop when bus m is arriving as 

𝑥𝑛(𝑎𝑚,𝑛) =  𝑞 (𝑎𝑚,𝑛 − 𝜉𝑛(𝑎𝑚,𝑛)) − 𝑏(𝑎𝑚,𝑛 −

𝑎𝑚−1,𝑛)                                (11) 

 

The waiting time can be formulated as follows 

𝑤𝑚,𝑛 =
1−

𝑏
(𝑥𝑛(𝑎𝑚,𝑛) + ∫ 𝑞𝑙𝑛𝑑𝑡

𝑑𝑚−1,𝑛

𝑎𝑚,𝑛
) +

1

𝑏
∫ 𝑞𝑙𝑛𝑑𝑡

𝑑𝑚,𝑛

𝑑𝑚−1,𝑛
                          (12) 

 

And hence 

𝑤𝑚(𝑙),𝑛 =
(1−)𝑥𝑛+𝑏𝑘(𝑎𝑚,𝑛−𝑑𝑚−1,𝑛)

𝑏(1−𝑘)
          (13) 

 

D: 2b->1->2f and no overtaking because  < 𝟎. 𝟓 

In this case we need to obtain the queue of 

passengers at the arrival of bus m (when bus m 

enters the 2b state) as well as at time 𝑎𝑚+1,𝑛 when 

bus m enters the 2f state. In fact, as shown below the 
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𝑥𝑛(𝑎𝑚+1,𝑛) obviously depends on 𝑥𝑛(𝑎𝑚,𝑛). 

𝑥𝑛(𝑎𝑚,𝑛) =  𝑞 (𝑎𝑚,𝑛 − 𝜉𝑛(𝑎𝑚,𝑛)) − 𝑏(𝑎𝑚,𝑛 −

𝑎𝑚−1,𝑛)                                 (14) 

 

𝑥𝑛(𝑎𝑚+1,𝑛) = 𝑥𝑛(𝑎𝑚,𝑛) − 2 ∗ 𝑏(𝑑𝑚−1,𝑛 − 𝑎𝑚,𝑛) −

 𝑏(𝑎𝑚+1,𝑛 − 𝑑𝑚−1,𝑛) +  𝑞(𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛)     (15) 

 

As this case implies that the bus is still at the stop 

at the arrival time of bus m+1 the waiting time can 

be obtained as 

𝑤𝑚,𝑛 = (𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛) +


𝑏
(𝑥𝑛(𝑎𝑚+1,𝑛) +

∫ 𝑞𝑛𝑑𝑡
𝑑𝑚,𝑛

𝑎𝑚+1,𝑛
)                            (16) 

 

Which can be solved to 

𝑤𝑚,𝑛 = (𝑎𝑚+1,𝑛 − 𝑎𝑚,𝑛) +
𝑥𝑛(𝑎𝑚+1,𝑛)

𝑏(1−𝛾𝑘)
       (17) 

 

E: 2b (only for  > 𝟎. 𝟓, includes overtaking) 

We obtain again the queue at the stop when bus m 

is entering stage 2b as 

𝑥𝑛(𝑎𝑚,𝑛) =  𝑞 (𝑎𝑚,𝑛 − 𝜉𝑛(𝑎𝑚,𝑛)) − 𝑏(𝑎𝑚,𝑛 −

𝑎𝑚−1,𝑛)                               (18) 

 

This lead to 

𝑤𝑚,𝑛 =
1−

𝑏
(𝑥𝑛(𝑎𝑚,𝑛) + ∫ 𝑞𝑙𝑛𝑑𝑡

𝑑𝑚,𝑛

𝑎𝑚,𝑛
)       (19) 

 

And hence  

𝑤𝑚,𝑛 =
(1−)𝑥𝑛(𝑎𝑚,𝑛)

𝑏(1−𝑘+𝛾𝑘)
                     (20) 

 

F: 2b->(3m)->2f, no overtaking (because  <

𝟎. 𝟓) 
Finally, with our assumption that only two buses 

are boarding passengers simultaneously, we obtain 

that in this case the bus transfer immediately from 

the 2b state into the 2f state. The transition occurs at 

time 𝑑𝑚−1,𝑛 and we obtain the queue at this point 

in time by 

𝑥𝑛(𝑎𝑚,𝑛) =  𝑞 (𝑎𝑚,𝑛 − 𝜉𝑛(𝑎𝑚,𝑛)) − 𝑏(𝑎𝑚,𝑛 −

𝑎𝑚−1,𝑛)                                 (21) 

 

𝑥𝑛(𝑑𝑚−1,𝑛) = 𝑥𝑛(𝑎𝑚,𝑛) − 2𝑏(𝑑𝑚−1,𝑛 − 𝑎𝑚,𝑛) 

=  𝑞 (𝑎𝑚,𝑛 − 𝜉𝑛(𝑎𝑚𝑛)) + 𝑏(𝑎𝑚,𝑛 + 𝑎𝑚−1,𝑛 −

2𝑑𝑚−1,𝑛)                                (22) 

 

Then the waiting time can be obtained by 

𝑤𝑚,𝑛 = (𝑑𝑚−1,𝑛 − 𝑎𝑚,𝑛) +


𝑏
(𝑥𝑛(𝑑𝑚−1,𝑛) +

∫ 𝑞𝑛𝑑𝑡
𝑑𝑚,𝑛

𝑑𝑚−1,𝑛
)                            (23) 

 

And hence 

𝑤𝑚,𝑛 = (𝑑𝑚−1,𝑛 − 𝑎𝑚,𝑛) +
𝑥𝑛(𝑑𝑚−1,𝑛)

𝑏(1−𝛾𝑘)
       (24) 

 

X: 1->2f,  > 𝟎. 𝟓, with overtaking 

The only case that we can not solve accurately is the 

case denoted by X in above table. As noted the reason 

is that the departure time for bus m+1 needs to be 

known or solved simultaneously when we solve for the 

departure time of bus m. One could do so by a time 

step simulation approach similar to work described in 

Fonzone et al (in press).  However, as the two 

limiting cases for 𝛾 = 1 (case A) and 𝛾 = 0.5 (case 

B) can be solved accurately and since we know that 

the waiting time is continuously decreasing for bus m 

in state 2f for decreasing 𝛾 we can approximate: 

𝑤𝑚,𝑛 = 2((𝛾 − 0.5)𝐴 + (1 − 𝛾)𝐵)     (25) 

 

 

 

4. BUS PROPAGATION MODEL 

 

The following algorithm then solves the problem 

considering the dwell time equations as in previous 

equations. We note that stochastic link travel times 

(instead of random delays at stops) could be easily 

implemented by adding “error terms” 𝜌 also to link 

travel times. 

 

Initialisation  

Set 𝑎𝑚,1 ∀𝑚  

Set ∆1,𝑛  ∀𝑛 

For each stop n in increasing order  

Sort buses according to arrival times at stop 

For each bus m in order of increasing arrival 

times obtain 

 Obtain 𝑤𝑚,𝑛 as in Section 3 

 𝑑𝑚,𝑛 = 𝑎𝑚,𝑛 + 𝑤𝑚,𝑛 + 𝜌𝑚,𝑛        (26) 

 𝑎𝑚,𝑛+1 = 𝑑𝑚,𝑛 + 𝑣𝑚,𝑛                (27) 

 

 

 

5. EVALUATION MEASURES 
 

To evaluate the system performance of a series of 

successive buses, the emphasis is put on the service 

regularity in this paper and the index of the service 

interval duration ∆𝑚,𝑛 as in equation (4) and its 

standard deviation. ∆𝑚,𝑛 has a direct effect on the 

waiting time of passengers at the stop. Assuming 

constant passenger arrival patterns, a constant ∆𝑚,𝑛 

will also minimise passenger waiting times.  

As a critical index, ∆𝑚,𝑛, the passenger arrival 

period over which demand for bus m at stop n 

accumulates is essential for the evaluation. 

The mean and maximum of ∆𝑚,𝑛 of all the bus 

services can be obtained respectively as  
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�̅� =
∑ ∑ ∆𝑚,𝑛𝑚𝑛

𝑀×𝑁                (28) 

 

�̂� = max
𝑛

max
𝑚

∆𝑚,𝑛            (29) 

 

Further, the total standard deviation of ∆𝑚,𝑛 and 

the stop-specific maximum standard deviation of  

∆𝑚,𝑛, can be obtained respectively as 

 

𝜎 = √∑ ∑ (∆𝑚,𝑛 −∆̅𝑚,𝑛 )
2

𝑚𝑛

𝑀×𝑁         (30) 

 

�̂� = max
𝑛

√∑ (∆𝑚,𝑛 −∆̅𝑚,𝑛 )
2

𝑚

𝑀        (31) 

 

In order to learn under which degree of front-bus 

preference the system will reach the optimum as 

well as to discuss the effect of overtaking or 

no-overtaking policy, all the evaluation indices will 

be calculated under different preference level and 

distinguished by overtaking and no-overtaking case. 

 

 

6. CASE STUDY 

 
(1) Specifications 

We consider a single line with 10 stops in this 

case study. The bus line runs with a frequency of 

h=6min. Further, we assume that the travel time 

between two adjacent stops takes a constant value of 

3min. Then we assume that an initial random delay 

of 2min occurs for the 2nd bus at the 2nd stop. This 

means that the first bus is unaffected and hence runs 

with the expected headways and encounter the same 

(expected) dwell times at the stop. 

To evaluate the effect of different choice strategy 

of passengers, we test the bus system with 

different  , (  =0, 0.1, 0.2, …, 1). We also 

distinguish different overtaking policies, especially 

when  >0.5, obvious differences are expected to 

be observed between overtaking and no-overtaking 

cases. 

 

(2) Illustration of bus trajectories 

Figures 1 to 3 show the bus trajectories for 3 

extreme cases. The case that all the passenger 

choose to board the back bus is illustrated in figure 

1. The case that all the passenger will stick to the 

front bus and the back bus hence can overtake it is 

shown in figure 2. Figure 3 is to distinguish from 

figure 2 with the case that the back bus is not 

allowed to overtake the front one although no one is 

going to get on the back one.  

Comparing the figure 2 and figure 3 firstly, and it 

is clear to see that bus system will provide superior 

services with shorter maximal departure intervals 

which determine the maximal waiting time at the 

stops and smaller variation of departure intervals 

which can assess the service regularity of the bus 

system. Particularly worth mentioning is that �̂� 

and 𝜎 are reduced by 30% and 40% respectively. 

We have enough evidence to conclude that 

overtaking policy is of significant necessity to be 

applied if passengers show no propensity to take the 

back bus or the layout of the stop make passenger 

unable to take the back bus. 

Secondly, we can notice that the service 

performances of figure 1 an figure 2 are almost the 

same, case 1 exceeds case 2 by just a tiny 

advantage. When it is difficult to meet the needs of 

overtaking because of the stop layout or other 

issues, the bus operator should try to recommend 

passengers to take the back bus, which can also 

remain the bus system in a good condition. 

 

 
 

Fig.1 bus trajectory when  = 0 

 

 
 

Fig.2 bus trajectory when  = 1 with overtaking 
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Fig.3 bus trajectory when  = 1 without overtaking 

 

 

(3) Tests with various degrees of front-bus 

preference 

We illustrate the extreme case in previous section, 

and in this section, different degrees of front-bus 

preference are tested. Four kinds of evaluation 

indices are illustrated in Figures 4 and 5. Figure 4 

includes the total standard deviation of ∆(m,n) of 

the system and max standard deviation of ∆(m,n) 

among all the stops, which is to show the system 

regularity under different conditions. Figure 5 is to 

show the max ∆(m,n) of the system under different 

queue switching degree. The analysis of the test 

results are divided into 2 cases to unfold: overtaking 

and no-overtaking. 

(a) Overtaking is allowed 

 As is shown in Figures 4 and 6, two kinds of 

standard deviation of ∆(m,n) and max ∆(m,n) reach 

the minimum at point of  γ=0, maximum at and 

almost symmetric with respect to the point of 

𝛾=0.5. Besides, these three evaluation indices keep 

stability to some extent with the increase of 

front-bus preference. This can be explaind as 

follows: Several services are getting closer to each 

other after the initial delay is generated and 

overtaking is occurring. During this period, the 

system is disturbed gradually with the increase of γ 

until it hit the threshold of 0.5, then overtaking is 

activated to retrieve the service regularity from the 

over-shortened headways. To keep the front-bus 

preference low is an optimal measure and 

overtaking is a favourable counter-measure against 

comparatively high front-bus preference. 

(b) Overtaking is not allowed 

Except for max ∆(m,n), other indices also reach 

the minimum when all the passengers do not prefer 

to board the front bus, which confirms the above 

conclusion that it is better to ask passengers to get 

on the back bus. Compared with the overtaking 

case, it is clear to observe the significant increase in 

the total and max standard deviation of ∆(m,n), 

which proves the superiority of overtaking policy in 

maintaining the regularity of the bus service. When 

 >0.5, the higher the front-bus preference is, the 

more improvement could be obtained by overtaking 

policy. It is also interesting to notice that all the 

indices decrease to some extent when γ exceeds 

0.5 and approaches 1, which probably means the 

no-overtaking policy also can contribute to the 

service under some certain circumstances. 

 

 
 

Fig.4 total standard deviation and max one by stop of ∆(m,n) 

 

 

 
 

Fig.5 max ∆(m,n) of the system 

 

 

 

7. CONCLUSIONS AND FURTHER 

WORK 
 

(1) Conclusions 

This paper is aiming to explain the effect of 

passenger behaviour at stops on bus bunching. A 

passenger behavior parameter to denote the 

preference to board the front bus is introduced. We 

then discuss which arrival and departure patterns 

can occur at a bus stop and solve the resulting 

problems to obtain the bus dwell times.  

We evaluate the resulting service regularity given 

an initial disturbance to an early bus at one of the 

first stops along a corridor. For this we obtain the 

standard deviation and maximum headways 
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between two bus depatures. 

In our illustrative case study, we firstly focus on 

the extreme cases that all of the passengers will get 

on the front bus or none of them will board it. 

Overtaking policy is of significant necessity to be 

applied if passengers show no propensity to take the 

back bus or the layout of the stop makes passenger 

unable to take the back bus. 

In the case that no passenger prefers to board the 

front bus always provides the best service, and it is 

an optimal measure to keep the front-bus preference 

under a low degree. 

Finally, overtaking is a favourable 

counter-measure if front-bus preference is high. 

When it exceeds 0.5, the higher the front-bus 

preference is, the more improvement could be 

obtained by allowing for overtaking. 

 

(2) Further work 

We note that the front-bus preference degree of 

the passengers might differ depending on the 

position of passengers in the queue and whether 

they arrive before bus arrival or while the bus is 

boarding passengers. Such behaviour could be 

reflected with an additional parameter in our model. 

More importantly though, when buses are 

bunched at the stop, which bus the passengers will 

choose to board will also depend on the remaining 

space of the bus. Capacity issues as well as alighting 

issues are though neglected in this paper for 

simplicity and to be able to illustrate the effect of 

boarding behavior better. In further work, we are 

considering though adding the alighting process and 

capacity constraints to increase realism of the 

model. The 𝛾  parameter would then become a 

function of the available bus capacity. 

Finally, it would be interesting to apply this 

passenger choice model to a corridor served by 

several bus lines. 
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