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Urgency and perishability are highlighted during relief operation after the 2011 great east Japan earth-

quake. Perish rate becomes higher because of several reasons including poor preserving facilities. This 

paper presents a dynamic programming model to optimize decisions (i.e., “how much and when to order”) 

for replenishing a perishable item facing declining demand and urgency. An exponential distribution of 

declining demand is adopted. The results of the model for exponential distribution demand is compared with 

that for linear declining demand. The proposed model exhibits a variation in replenishment intervals and 

order quantity. Herewith, total cost of inventory changes for urgency and perishability. In addition, the trend 

of delayed satisfied demand in planning horizon have patterns that do not depend on parameter values rather 

depends on declining demand distribution type.  
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1. INTRODUCTION 
 

Mathematical modeling for disaster logistics (DL) 

was introduced couple of decades ago by Knott 

(1988). Altay and Green (2006) and Galindo and 

Batta (2013) provided a holistic review of the Oper-

ational Research/Management Science (OR/MS) 

models for DL until recent years. Both resources 

iterated the importance of mathematical models for 

DL. We have identified two issues that has not 

gained attention properly. First, relief demand de-

clines over time. DL mathematical models consider a 

constant or uniform distributed demand throughout 

the relief operation period. However, the demand for 

relief items declines and the relief operation termi-

nates when demand becomes too little (theoretically 

when the demand becomes zero). 

Another important aspect of post-disaster scenar-

ios is “urgency,” which represents the degree of 

effectiveness of a relief item at the time of delivery. 

It is natural to think that higher urgency product 

should be delivered earlier. Moreover, the urgency 

for a particular relief item is not constant over time. 

This phenomenon is observed after 2011 GEJE. 

There was high demand for blanket aftermath of the 

2011 GEJA. However after couple of weeks the 

weather warmed up and the urgency of blanket goes 

down. But the donors sent a large amount of blanket 

to affected areas. The authorities in affected areas 

faces difficulties in processing of the leftover blan-

kets. Sheu (2007 and 2010) introduced a novel ap-

proach of relief allocation depending on relief ur-

gency. 

These two unrecognized issues are applied for a 

perishable item. A perishable item is subject to a 

continuous loss in their masses or utilities throughout 

their lifetime due to decay, damage, spoilage, and 

plenty of other reasons. In practice, perishability is 

relevant to several relief items, such as fruits, medi-

cine, blankets, and others. Some relief items (i.e., 

fruits) perish because of their characteristics and 

others perish because of improper warehouse facili-

ties. 

Beamon and Kotleba (2006) developed an opera-

tional model of inventory ordering strategies in 

which demand is characterized as uniformly distrib-

uted. Lodree and Taskin (2008) formulated the in-

ventory planning problem encountered by donor 
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organizations using variants of the news-vendor 

model. Proactive actions to maintain inventory levels 

are compared with financial investment in an in-

surance policy. Demand is described as having a 

uniform distribution in the model. Das and Hanaoka 

(2014) extended the relief inventory model to con-

sider stochastic demand and lead time for a 

large-scale disaster. Above mentioned two issues are 

interconnected and influence inventory management. 

One of the major concerns of inventory management 

is deciding on when and how much to order to 

minimize the total cost. This paper aims to develop a 

dynamic programming model for a perishable relief 

item using the following assumptions: a constant 

perish rate, declining demand, allowing backlogging 

with penalty, and considering the urgency. The so-

lutions to the model determine an optimal replen-

ishing schedule during a finite planning horizon to 

ensure minimum total cost associated with the in-

ventory system. The proposed model exhibits varia-

tions in both the replenishment cycle length and the 

ordered quantities. 

The remainder of the paper is structured as fol-

lows. Section 2 consists of several sub-sections that 

explain the proposed model and a solution algorithm. 

Section 3 presents a numerical analysis using the 

proposed model and reports the results. Section 4 

presents the conclusion of the paper and the sum-

mary of the study outcomes.  

 

 

2. METHODOLOGY 
 

Consider a large-scale earthquake has damaged a 

vast area. Relief items available in the affected areas 

are either destroyed by the earthquake or quickly 

depleted, necessitating the rapid deployment of relief 

items to reduce further human suffering. A manager 

plans for distributing a relief item in damaged area 

through a planning horizon, H. In the proposed sys-

tem, no inventory is held at the beginning and at the 

end of replenishment cycle [j,k] along the planning 

horizon. The cycle starts with accumulating short-

ages from time j until time p, at which point a re-

plenishment is scheduled. In this study, [j,p] is called 

the out of stock duration and the quantity of relief 

item during this period is called delayed satisfied 

demand. The quantity of the relief item received at 

time p equals the sum of the demand backordered 

during period [j,p] and the demand requirement in 

period [p,k]. The relief item is considered with a 

constant perish rate (θ) over time. Perishability of 

units occurs only when the item is effectively in 

stock, and no replacement of perished units occurs.  

The objectives of the proposed model are to iden-

tify the locations of p along the planning horizon and 

order quantity at each p. In other words, it aims to 

determine the optimal sequence of replenishment 

point p that minimizes total costs. The total cost 

consists of holding, shortage, operational, and setup 

costs. Per unit costs for holding, shortage and oper-

ational cost are H0, P0 and C0 respectively. The setup 

cost for each order is A0. Inventory is continuously 

reviewed and replenishment is instantaneous; i.e., 

replenishment capacity is infinite and lead time is 

zero. Relief item shortage is completely backordered 

and incurs a shortage cost (or penalty cost). The 

realized shortage cost depends on urgency that has 

two parameters gamma (γ) and mu (μ).  

The demand decreases exponentially during the 

planning horizon of length H: 
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where a0 and a1 are constant. 

 

(1) Holding cost 
Let us consider the inventory level at time t, I(t), 

during a cycle, that is, ktj  . This inventory level 

declines gradually by the combined effect of demand 

and the perish rate. Note that no perishability effect 

occurs if no inventory is on stock. Therefore, the vari-

ation of I(t) with respect to time is: 

 

)()(
)(

tDttI
dt

tdI
  , ktj   

(2) 

 

By multiplying e
t  on both sides of eq (2), inte-

grating by parts and replacing the demand function 

by eq (1) results in (Benkherouf, 1995): 
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Now, H0 represents the holding cost per unit time. 

Therefore, the holding cost (HC) for a cycle is writ-

ten as: 
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Eq (5) becomes easy to integrate. 

 

(2) Shortage cost 

If relief items cannot be delivered to victims on 

time, the system incurs a shortage cost. This cost is 
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larger when urgency value is high. We introduce 

“realized shortage cost” by incorporating urgency, 

and this realized shortage cost changes with urgency. 

The realized shortage cost of a particular relief item 

is higher when that item has a higher urgency. If the 

shortage cost per unit item is P0 and shortage quantity 

is S, the realized shortage cost is equal to:   

 

SPeiSPRS t
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Where RS(P0, S) represents the realized shortage 

costs incurred and 1+γe-µt represents the urgency 

with parameters γ and µ. It shows that urgency de-

clines gradually, which indicates that urgency starts 

declining in the aftermath of a hazard. Therefore, 

urgency in the temporal dimension is required for 

designing inventory planning. 

The shortage quantity is satisfied after arrival of 

relief at the next replenishment point. The shortage 

quantity can be imagined as delayed satisfied de-

mand, and is given at time t by: 

 

Quantity,  
t

j
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Now, P0 is the shortage cost per unit attributable to 

relief item shortage. Because we assume that ur-

gency decreases exponentially in Eq (7), realized 

shortage cost also changes accordingly. The highest 

realized shortage cost is incurred during the after-

math of a disaster.  
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Eq (9) is easy to integrate.  

 

(3) Operational cost 

A cycle starts with accumulating shortages from 

time j to time p, at which time replenishment is 

scheduled. The total amount of relief items ordered 

at time p equals the sum of the demand backordered 

during period [j,p] and the demand requirement in 

period [p,k].  

 

Ordered quantity, )()()( PSPIPQ   (10) 

 

Now, C0 is the operational cost per unit.  
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After replacement with eq (7) and eq (3) 
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Eq (12) becomes easy to integrate. 

 

(4) Total cycle cost 

Total cycle cost (W) consists of realized shortage 

cost (RS), holding cost (HC), operating cost (OC), 

and setup cost (A0): 
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Now, replacement with eqs (5), (9), and (12) for 

further computation. 

For given j and k, the optimal replenishment point p 

in the cycle is differentiated. Because the value of p 

depends on the value of j, we replace k=j+α and 

p=j+β, where α>β. After replacing the k and p values, 

we differentiate with respect to β and the outcome set 

equal to zero for locating β:  
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After several algebra operations on eq (14): 
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Because obtaining a closed-form solution to eq (15) 

is difficult, the replenishment point p (p=j+β) is 

estimated using a numerical search technique. A 

bisection algorithm is used to find the location of β* 

(hence, p* for given j). 

 

(5) Sequences of replenishment points 

The objective of the proposed model is to deter-

mine the optimal sequence of replenishment point p 

along the planning horizon H that minimizes total 

system costs. The optimal sequence of replenishment 
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points may be determined by solving the dynamic 

programming equations: 

 

)}*,,({ kpjWTCMinTC jk   (16) 

00 TC  (17) 

 

The forward recursive procedure is used to deter-

mine the minimal total cost over planning horizon H. 

To solve the model, a dynamic programming algo-

rithm is proposed by Chen (1998).  

 

 

3. DATA AND RESULTS 
 

A numerical example is presented to show the ef-

fect of different demand distributions, urgency and 

perishability of a relief item. The values used in the 

numerical example are useful for illustration pur-

poses but may not match values that might be esti-

mated by the ultimate users of the model.  

Parameters of demand function are ao and a1. The 

values of ao and a1 are set to 25 and 0.1, respectively. 

The planning horizon (H) is assumed to be fixed and 

set to a value of 50. Thus total demand in the plan-

ning horizon is 248.3 unit. Relief item perishes due 

to several reasons including poor preserving facili-

ties after a disaster. Perish rate (θ) is set to 0.002. It is 

natural to assume that the shortage cost per unit (P0) 

is higher than the holding cost per unit (H0). Note 

that the shortage cost per unit does not depend on 

urgency parameters. However, realized shortage cost 

is dependent on urgency parameter. Here, P0 and H0 

are set to 1 and 0.3 respectively. The operational cost 

per unit (C0) is set between P0 and H0. The value of 

C0 is equal to 0.5. The parameters for urgency (γ and 

µ) are set to 10 and 0.08, respectively. The value of 

gamma (γ) changes in different scenarios. Urgency is 

used to generate the realized shortage cost, policy 

makers can regulate the parameters of urgency. If γ is 

equal to zero, the value of urgency becomes one. 

Therefore, the realized shortage cost and the short-

age cost become identical values. Note that, different 

scenarios are created by altering the value of perish 

rate (θ) and gamma (γ). Table 1 presents a scenario 

description and the computational results for dif-

ferent scenarios. The perish rates for scenarios 1 to 3 

are varied and the urgency parameter (γ) value is kept 

fixed. In contrast, scenarios 1, 4, and 5 have char-

acteristics of different urgency parameter (γ) values 

for a fixed perish rate (θ). Finally, the ordering fixed 

cost (A0) is equal to 30.  

According to Table 1, total cost and out of stock 

are the highest for higher perish rate. A comparison 

between scenarios 1, 4, and 5 reveals that the total 

out of stock duration is shorter and the quantity 

perished is larger for higher urgency values. On the 

other hand, total out of stock duration is longer for 

higher perish rate (in scenario 1, 2, and 3). Therefore, 

the model rationally responds to a changing envi-

ronment.  

Now, we define service level (SL) as in eq (18): 

 

rizonPlanningHo

DurationOutofStock
SL 1  

(18) 

 

Fig.1 presents the computed SL for each scenario. 

The service level changes with the combined effects 

of γ and θ. The service level becomes higher for 

larger gamma value. It shows that policy maker can 

impose larger value of gamma for improving service 

level. 

To elaborate detailed results, we present the 

outcomes of scenario 1 in Table 2. It has nine (9) 

cycles. The start and the end points for each cycle 

period are tabulated in the second column in Table 2. 

Cycle lengths are different during the planning 

horizon. Generally length of cycle period become 

longer sequentially. Table 2 shows the relief items’ 

arrival time (p*) after the start of each cycle. The 

replenishment point in each cycle is also tabulated in 

the third column.  

 
Fig.1 Service levels in different scenarios 

 

Table 1 Description of scenarios and results 

Scenario 

description 
Results 

 

γ θ 

Total 

cost 

Out of 

stock 

Shortage 

cost 

Holding 

cost 

per-

ished 

quantity 

1 10 0.002 429.55 2.62 7.12 117.88 0.79 

2 10 0.011 434.11 2.90 8.79 118.98 4.36 

3 10 0.020 438.70 3.24 10.97 119.58 7.97 

4 15 0.002 431.61 1.99 5.49 121.56 0.81 

5 25 0.002 433.42 1.36 3.76 125.08 0.83 
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Generally, a longer cycle length leads to an item 

that perishes faster. Table 3 provides the holding cost, 

the shortage cost, the ordered quantity, and the per-

ished quantity for each cycle. 

To observe the effect of different declining demand 

and urgency, we conduct a sensitivity analysis and 

compare the results from four situations. Table 3 

presents the properties of the four types of situations. 

Type A represents the exponential declining demand 

and urgency are included in the computation. Simi-

larly Type B also include urgency but demand de-

clines linearly. Type C and D does not include ur-

gency in the computation (i.e,γ=0). Herewith, de-

mand function in Type C is exponential declining 

function and that in Type D is linear declining func-

tion. The differences of total demand between linear 

and exponential distribution is 0.5%. Note that per-

ish rate is set to 0.08. The planning horizon and other 

parameter values are kept same as before. 

Fron Fig. 2 to Fig. 5 illustrate the results of the 

four situations. An analysis of the four types of sit-

uations shows that the first and the last cycles have 

irregular shapes. The irregularity of the first cycle 

occurred because the value of the initial cost (TC0) is 

zero. The last cycle is irregular because the algorithm 

is based on a forward recursive procedure for a fixed 

time horizon. The model brings a zero inventory 

level after satisfying all of the demand in the last 

Table 2 Results of scenario 1 

Cycle Cycle 

period 

[j,k] 

p* Holding 

cost 

Shortage 

cost 

Ordered 

quantity 

perished 

quantity 

1 [0,2] 0.05 12.49 0.34 45.40 0.083 

2 [2,4] 2.06 10.15 0.31 37.17 0.068 

3 [4,6] 4.06 8.23 0.29 30.43 0.055 

4 [6,9] 6.11 14.11 0.57 35.65 0.094 

5 [9,12] 9.13 10.27 0.51 26.41 0.068 

6 [12,16] 12.20 12.48 0.73 24.91 0.083 

7 [16,21] 16.31 11.95 0.87 19.94 0.080 

8 [21,27] 21.46 9.43 0.89 13.88 0.063 

9 [27,50] 28.25 28.77 2.62 15.31 0.19 

Total   117.88 7.13 249.1 0.781 

 
Fig.2 Inventory level for Type A 

 
Fig.3 Inventory level for Type C 

 
Fig.4 Inventory level for Type B 

 
Fig.5 Inventory level for Type D 

 

Table 3 Properties of four types of situations 

Type Properties Mathematical explanation 

A Exponential de-

clining demand 

and urgency in-

corporated 

etD t1.025)(  ,θ=0.08, and 

γ=2 

B Linear declining 

demand and ur-

gency incorpo-

rated 

ttD 2.010)(  ,θ=0.08, and 

γ=2 

C Exponential de-

clining demand 

and no urgency 

etD t1.025)(  ,θ=0.08, but 

γ=0 

D Linear declining 

demand and no 

urgency   

ttD 2.010)(  ,θ=0.08, and 

γ=0 
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cycle. 

Among the four types of situations, the total 

number of replenishment points is smaller while 

demand distribution is exponentially distributed. In 

the comparison between Type A and C, the total 

number of replenishment point is larger when ur-

gency is incorporated. Similarly Type B has more 

replenishment points than Type D. 

For linear demand declining function (for Type B 

and D), the quantity of delayed satisfied demand 

shows opposite trend. The delayed satisfied demand 

increases gradually while urgency is considered 

(Type C). However, the satisfied demand decreases 

while urgency is not incorporated (Type D). On the 

other hand, for exponential declining demand func-

tion, the quantity of delayed satisfied demand fol-

lows similar trend (Type A and C). 

From the analysis, it is found that declining de-

mand properties, urgency and perishability have 

significant influence on decision making on relief 

ordering policy. It is also found that there is tradeoff 

between perish rate and post disaster cost. Therefore, 

policy makers can invest money for improving fa-

cilities such as perish rate become smaller. It will be 

helpful for reducing the total cost by decreasing 

perished quantity. Since available relief after a dis-

aster is limited, it is essential for adopting policies 

for decreasing perish rate. In addition, policy maker 

has sufficient control on urgency value to meet suf-

ficient service level in relief distribution.  

 

 

4. CONCLUSION 
 

This proposed dynamic programming model in-

corporated urgency and perishability for decision 

making on relief ordering. The replenishment inter-

vals vary for different parameters however there is a 

trend in variation. The service level also changes 

between replenishment cycles. As a result, the model 

generates a better solution than other optimization 

models with fixed order intervals and/or fixed ser-

vice level. The model is compared for two demand 

distributions and different urgency parameter 

(gamma) values. 

The results of the study lead to the following 

conclusions. Urgency and perishability has signifi-

cant influence on relief ordering. These issues affect 

the system service level. A decision maker must plan 

for relief ordering considering the possible wastage 

due to perishability. 

Although the model presented is flexible, the main 

restrictions to its practical implementation are two-

fold: continuous review of the stock is assumed and 

the shape of the urgency function is not known with 

certainty. Fortunately, organizations are making 

efforts to collect relief operational data, allowing for 

a true urgency function to be generated in the future. 

Herewith, we have not incorporated the disposal cost 

for perished item.   
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