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1. Introduction 

 

Understanding and predicting travel patterns and travel demand 

is important for transport providers, in particular those of public 

transport services. Assuming that choice is based on the utility 

concept, random variation in behaviour is usually dealt with by 

including stochastic factors into the model, leading to random 

utility models. In particular in transit networks random variation 

and route selection are, however, often difficult to distinguish. 

A passenger might alter his/her route choice on subsequent days 

not because of any learning process but because of service 

inherent uncertainties. This random variation can be usefully 

described with the concept of hyperpaths and strategy
1), 2)

. 

Whereas for drivers usually a change in route is explained with 

a (perceived) change in attractiveness of the road conditions
3)

.  

Though there is ample of literature discussing that different 

passenger groups attach different values to on-board travel time, 

waiting time, transfers or seat availability, this issue has not 

been much reflected in hyperpath based transit assignment 

models. Obviously, different values will result in different path 

sets. Generally, passengers will avoid being fixed to a specific 

line and rather increase their choice set (with some lines that are 

potentially longer) in order to reduce their expected waiting 

time. Kurauchi et al
4)

 provide evidence for this with a stated 

preference survey. Fonzone et al
5)

 extend this line of research 

by providing further evidence for differences in hyperpaths 
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among passenger groups based on a survey asking respondents 

to describe their actual travel patterns as well as asking them to 

choose their strategy in hypothetical bus networks. It appears 

that only some passengers choose the hyperpaths predicted by 

the Spiess and Florian model; a significant number of 

passengers appear to prefer simple choice sets. Furthermore, the 

choice of strategy seems to be influenced by the actual 

experiences made by the passenger during their daily commute. 

Both of these studies have used “artificially” collected data for 

the estimation of hyperpaths, i.e. transit passengers have been 

asked to recall their travel patterns and to answer hypothetical 

choice situations. Through the advance in smartcard data 

nowadays there are improved possibilities though. A large 

number of cities have introduced such systems offering 

possibilities for better understanding of passenger behaviour, 

service planning and evaluation
6)

. For our purposes, of 

importance is that such data store the actual lines boarded by 

passengers over longer time periods. This allows us to observe 

their actual choices and make some implications about their 

strategy. This forms the motivation for this paper. Our objective 

is to develop a model that estimates the choice set of passengers 

in dense networks where it is often optimal to form complex 

choice sets. Since choice sets are latent we assume that we can 

construct these by observing passengers repeated choice when 

they travel from the same origin to the same destination. We 

obtain such time series route choice data from the bus service 

provider of a local city in Japan and provide some example 

results for different OD pairs where we could observe that 

different passengers have taken different routes to reach the 

same destination. 

 

2. Logit Hyperpath Choice Set Generation 

with Random Bus Choice 

(1) Transit hyperpath characteristics 

Hyperpath generation is a dynamic programming approach 

where the traveller sequentially chooses the shortest path1). The 

advantage is that the choice set at each node becomes, in many 

cases, manageable. In the context of transit passengers, where 

choices are made at stops, usually there not more than 5 or 6 

lines that one might consider, unless at some major hubs in 

large metropolitan networks. This means that for our problem 

the universal choice set is easily obtainable but that generating 

them by the traveller considered options is the main issue.  

In contrast to discrete choice approaches frequency-based 

transit assignment choice sets are generated truly endogenously. 

Following the seminal work of Spiess and Florian2) the above 

defined hyperpaths are created by solving a linear program at 

each node. The problem can be solved with a variant of 

Dijkstra’s shortest path algorithm by backward search from the 

destination. We emphasise two important aspects of choice set 

generation for high frequency transit networks. These are 

reflected in the work of Spiess and Florian but are not captured 

within the above described choice set generation methods. 

Transit Choice Characteristic (TCC) 1: Whereas the transit 

passenger has full control over the selection of the choice set, 

(s)he might leave the choice of a specific option from among 

the choice set to some degree “up to nature”. Especially in the 

absence of countdown information passengers might take a 

strategy of taking whichever bus comes first. This means that 

the choice depends to some degree on the (unknown) arrival 

time of the bus and only partly on utility maximisation at this 

2nd choice level. 

Transit Choice Characteristic (TCC) 2: The utility of a 

choice within a set is depending on the choice set itself. This is 

the case for passengers at bus stops due to the expected waiting 

time effect. The more choices are included in the choice set, the 

shorter the total expected waiting time becomes. Therefore 

passengers will include fast but infrequent transit lines into their 

choice set if the risk of potentially long waiting times can be 

compensated by including also other buses with potentially 

longer on-board travel times into their choice set. Focusing on 

the fast bus only would be too risky. 

We develop a model that captures the above two transit 

characteristics and captures (person group specific) evaluation 

of the importance of travel time and weighting time already in 

the choice set generation. As will be shown in the following we 

therefore take the “opposite approach” compared to Nguyen et 

al. In the approach presented here the choice set generation is 

stochastic (based on utilities) and the choice of a line itself is 

deterministic (based on line frequencies only). In contrast in 

Nguyen et al1), the choice set generation is deterministic (based 

on the efficiency principle) whereas the choice of a line from a 

choice set is stochastic (based on utilities).  

(2) General Framework of choice at a stop 

Given our transit characteristic TCC1 and TCC2 we require a 

joined modelling approach of choice set and choice since the 

traveller has only control over the choice set. Once the choice 

set is determined the choice probabilities are given by the 

service arrivals. Therefore, partly following the decision 

framework and notation in Swait7) the choice probability P(i,n) 

can be described as 

    knk

Kk

CQCiPniP
i

  


),(  (1) 

where i denotes the chosen option from a bus stop, n the 

“person type” and   the time period in which the traveller 

departs. Consideration of time is required since we consider that 
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the service level varies during different periods of the day due 

to changes in the service frequency as well as due to longer 

travel times by congestion during peak hours. Further, Ck 

represents the choice set or “nest” and Qn describes the 

attractiveness of the choice set as explained below. K denotes 

the number of choice sets and Ki the choice sets that include 

choice i.  

The conditional choice probability for our bus choice problem 

of an option (i.e. bus line) from the choice set is formulated as 

     ijCjjuEaiuEaCiP kjik  ;)()(Pr)(  (2) 

where ai denotes the waiting time until bus i arrives at the stop 

and E(u(i)) the expected disutility of choosing option i from the 

current stop once the bus arrives (i.e. ignoring the waiting time 

at this stop). This equation hence fulfils our above stated TCC1. 

The passenger can estimate E(u(i)) according to his/her taste but 

ai is out of the passenger’s control.  Following Spiess and 

Florian2) we simplify (2) by assuming that a) buses arrive with 

exponentially distributed headways and b) that passengers only 

know the service frequency (no countdown information). In that 

case, and considering that service headways differ during the 

day, the above formulation reduces to 

 



kCj

jik ffCiP  )(  
 (3)  

where fiτ denotes the service frequency of option i during 

departure time interval τ. Note that we assume in (1) that this 

equation is only applied if i is included in Ck.  Equation (3) 

illustrates that the lower choice problem is dependent only on 

the service frequency and is independent of personal 

characteristics of the decision maker. 
 

In line with nested choice models as well as Swait’s 

“Generation Logit” we assume that the selection probability of a 

choice set is determined by a general cost or inclusive value 

associated with this nest / choice set. We assume a dispersion 

parameter  and logit choice structure leading to  

       


K

r rnknkn IICQ
1
expexp     (4) 

 

Accordingly the inclusive value should reflect the perceived 

disutility of choosing this choice set Ck. Eq. (5) hence includes 

on-board travel time, waiting time and expected number of 

transfers. In line with TCC2, however, one needs to consider 

that these attributes depend on the choice itself. This is in 

contrast to other nested discrete choice models where the utility 

of a nest can be determined as the logsum of the utility of the 

options within a nest. We therefore obtain the nest specific 

expected values Tkτ, Wkτ, and Ykτ for travel time, waiting time 

and expected number of transfers respectively. We further 

include specifically path set size as a value for the inclusive 

value. This is based on findings in Kurauchi et al4) that some 

passenger groups seem to prefer simple hyperpaths per se. In 

other words, even if including an additional line would reduce 

the overall expected travel time, some passengers might prefer 

to limit their choice set, possibly to avoid having to track and 

check the arrival of multiple lines at the stop. 

 
kznkynkwnktnkn CYWTI      (5)  

(3) Expected values for service attributes 

Following our assumption of a frequency-based service we 

obtain the expected nest specific service attributes as weighted 

average over the likelihood of taking a service within the choice 

set as in Equations (6) to (8). 

 



kk Ci

i

Ci

iik fftT 
 (6)  

 



kCi

ik fW  1  (7)  

 



kk Ci

i

Ci

iik ffyY 
 (8)  

where tiτ and yiτ denote the expected travel time and number of 

transfers respectively if the traveller is boarding line i at the 

current node. We emphasised that these values are for the whole 

path from the current boarding point to the destination and not 

just for the travel time until the next decision point. This implies 

that our choice problem has to be solved in a network context 

recursively backward from the destination. Only if the 

passenger’s strategy (choice likelihood of nests) at the 

downstream nodes is determined the expected travel time and 

the expected number of transfers can be determined. 

(4) Model properties 

We note that cross-nested logit models and Swait’s “generation 

logit” model include scale factors k for each nest. These are not 

included in our model as we assume that the sensitivity to 

choice on the lower level is not determined by utility but is 

fixed and given by the bus frequency. Therefore our model only 

includes the scale parameter  which can be interpreted as the 

sensitivity to utility for the hyperpath set choice. As in MNL 

choice models we can, however, fix one parameter among {, 

} and in the following choose this to be 8). 

Swait7) notes that the generation logit model collapses to the 

MNL model in case all k equal   and if all alternatives appear 

in the same number of choice sets. In contrast, our model does 

not collapse to the MNL since the lower choice probability is 

not determined by the utility. As boundary conditions we can 

only establish a special case. To better understand the properties 

of our model in the following we compare the MNL model with 

our proposed model assuming that only travel time and line 

frequency influence choice. 
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Consider choice between three lines at a stop. Line 1 is 

infrequent but fast (f1 = 5 services per hour, t1 = 20 min), Line 3 

is frequent but slow (f3 = 15, t3 = 30) and Line 2 is a 

compromise between both ((f2 = 10, t3 = 25). 

Figure 1 compares the predicted probability of a traveller 

choosing line 1 as a function of wait assuming travel_time = 0. At 

wait the MNL predicts that the traveller is equally likely to 

choose each line, whereas in our proposed “hyperpath logit” 

model considers that other lines are more frequent so that the 

choice of the fast line is only 0.25. With increasing importance 

of waiting time in both models the likelihood of taking Line 1 

reduces. Our proposed model is, however, less sensitive to wait. 

This is because the likelihood of choosing Line 1 only reduces 

on the “upper choice” level, i.e. the likelihood of choosing a 

hyperpath that includes Line 1. Figure 2 shows the similar 

effect for a decrease in travel_time assuming that wait = 0. With 

increasing importance of travel time in the choice the 

attractiveness of Line 1 increases, though in our proposed 

model less fast. Finally Figure 3 shows the effect of increasing 

the service frequency of Line 1 assuming wait = travel_time = 1. 

Our proposed model is more sensitive to an increase in service 

frequency, as frequency influence choice at the lower 

level/within the hyperpath as well as on the upper level as it 

increases the utility of hyperpaths that include Line 1. 

(5) Maximising the Likelihood Function 

For generality and notational simplicity we refer to the service 

characteristics that determine the nest attractiveness in (5) as 

Xaknτ and Yakτ where a denotes travel time, waiting time, number 

of transfers or nest size. Xaknτ hence denote the attributes that are 

estimated passenger group specific, whereas the values of 

attributes Yakτ are estimated for the whole sample.  The 

estimated probability that line i is chosen by sample s is then (9) 

where Ikn is determined with (10).  

  

 



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


















i

k
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K
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kn

Cj

j

i

I

I

f

f
niP

1
exp

exp
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








 (9)

 

  
b

bkb

a

aknankn YXI    
(10) 

Let us denote the observed choices as set S consisting of 

samples s. Each sample is associated with a person type n and a 

travel period .  With this formulation the likelihood function L 

in (11) and the log likelihood function L* (12) can be formulated 

as follows where n(s) and (s) denote the person types and 

travel period of sample s respectively.  δis is 1 if sample s 

chooses option i and 0 otherwise. 
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We aim to maximise (12) with respect to our parameters an. 

For this we establish the gradient and Hessian of this log 

likelihood function (see Schmöcker et al9) for details). 

Unfortunately, especially the Hessian takes a complex nonlinear 

form. Similar to other cross-nested logit models we cannot 

establish that our objective function is concave and hence test 

convergence with different initialisation for our parameters10). 

Fig. 1. Influence of waiting time sensitivity on the MNL and 

our proposed “HL model” 

 

Fig. 2. Influence of travel time sensitivity on the MNL and our 

proposed “HL model” 

 

Fig. 3. Influence of service frequency on the MNL and our 

proposed “HL model” 
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In the following tests we use MatlabR for estimation of (12) as 

well as the calculation of t-values of our parameters and model 

fit statistics at convergence. 

 

3. Case Study with Smartcard Data 

(1) Data overview 

To check the validity of the proposed model, we use smartcard 

data obtained by a bus operator of a local city in Japan. The 

dataset includes 2,100,285 records made by 82,320 cards over 

two months from the beginning of September 2011 until the end 

of October 2011. The smartcard has been used mainly for the 

route bus services but also for some community-run bus 

services within this Prefecture. Therefore we picked up the 

records of route bus services within the city. Consequently, we 

have 2,005,421 trip records made by 44,310 cards. 

The bus company applies a flat-fare system in the central part of 

the city with a time-independent fixed cost per ride. Once the 

bus leaves the central area, an additional distance-based fare is 

applied. For this reason, passengers have to tap the smartcard 

twice, when boarding and alighting a bus. If passengers make 

transfer to other bus route, the fare on the subsequent bus is 

discounted if the transferring time is less than 45 minutes. 

Because of this fare structure, we can accurately identify the 

boarding and alighting bus stop. The advantage of our dataset 

compared to smartcard data from other cities can be 

summarised as follows; 

1) Card ID has been kept and individual behaviour can be 

tracked,  

2) the whole city is covered only by the bus services and there 

is no rail service,  

3) More than 70% of travellers use the smartcard data,  

4) Boarding and alighting bus stops can be identified since 

travellers have to tap at boarding as well as alighting, 

Since the smartcard data also contain date/time of boarding and 

alighting as well as route and bus ID we can therefore identify 

the data needed for our model. 

A fifth characteristic is that the bus service is schedule-based. 

This has the advantage that we can estimate the effect of the 

delay of service. It has the disadvantage though that our 

assumptions made in (3) and (5) are possibly too simplistic. If 

passengers know (and trust) the schedule the experienced 

traveller will not arrive random at the bus stop but time his/her 

arrival. This will have an effect on the expected waiting time 

and line choice probability (see Nökel and Wekeck11) for a 

detailed discussion on this.) 

(2) Data extraction 

From the journey dataset we pick up some OD pairs where there 

is choice between different routes and where we can observe 

repeated choices. This limits our data choice for this network 

fairly stringent as there are few OD pairs for which there are 

reasonable distinguishable alternatives and a significant number 

of observations.  We pick up the 3 OD pairs and construct the 

hyperpaths. The destination of all three ODs is the railway 

station as many passengers arriving here transfer to rail lines. 

Figures 4 a)-c) illustrate the ODs together with the chosen 

routes and their passenger share. We note that there are six 

chosen routes from Origin B to the station, leading to 63 (=26-1) 

choice sets. Table 1 summarises the service characteristics of 

all lines. For some lines the service attributes differ significantly 

depending on time of day. In particular line a2 is only operated 

in the morning peak hour. Limiting our sample further to those 

timer periods, where passengers face a choice, we obtained 

4,033 journeys made by 257 cardholders for OD a, 1,589 

journeys made by 122 cardholders for the OD b and 958 

journeys made by 123 cardholders for the OD c. Note that on 

none of these three routes we could find passengers who 

transfer and hence in the following we cannot estimate yn. For 

other OD pairs were one transfer is required there is no 

reasonable alternative route without transfer (or with more than 

one transfer) or sample sizes are very small, so that these data 

are not useful for our illustration. This shows a second 

disadvantage of our data set as this city is not as big and the bus 

network not as complex as that of other large metropolitan cities, 

so that transfer is often not required.  
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Fig. 4. Three OD pairs with share of passengers for each route 

 

Table 1. Summary of service characteristics of the lines 

OD a  a1 a2 a3  

 Serv. /Hour 9-17 4 1-3 

 Opeating Hrs. 5-23 6-7 6-20 

 Travel Time 18-26 18 26-31 

OD b  b1 b2 b3 b4 b5 b6 

 Serv. /Hour 1-3 7-9 7-8 3-5 2-3 3-4 

 Opeating Hrs. 6-20 6-23 6-23 6-22 6-19 6-23 

 Travel Time 10-14 14-16 14-23 12-17 17-23 28 

OD a  c1 c2  

 Serv. /Hour 4-7 1-4 
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 Opeating Hrs. 5-23 6-21 

 Travel Time 10-12 10-15 

(3) User groups 

In a separate analysis we firstly use all bus user data to establish 

whether we can distinguish some user groups. We use 

information such as whether the user holds a seasonal ticket, if 

yes what kind of seasonal ticket, as well as data on his/her 

“general aggregated” behaviour such as usual day of time 

travelled and number of trips per month. We further include a 

characteristic how often they make journeys that include 

transfers. We employ cluster analysis and find that we can 

distinguish four passenger groups described in Table 2. Details 

of this behavioural analysis are reported in Kurauchi et al4). 

With four user groups this means that in total we estimate 12 

parameters (tn, wn and zn for all clusters). 

 

Table 2. Characteristics of the four distinguished user groups. 

User group Characteristic of user group 

Commuter Hold commuter pass, travel often and mostly 

during weekday, include a large number of 

students. 

Elderly Hold elderly season pass, travel not often, 

mostly during day time, make almost no trips 

that include transfers. 

Irregular Passengers that fairly often make journeys that 

include transfers (23.6% of all journeys). 

Fairly few total journeys. Irregular OD 

patterns. 

Other Not passholders, fairly few total journeys, very 

few journeys that include transfers. 

(4) Estimation results 

Tables 3 and 4 illustrate our model results for the three OD 

pairs shown in Figure 5. Travel time and waiting time 

parameters all have the expected sign. We further note that the 

model fit varies significantly depending on the OD pair. With 

larger choice set the model fit reduces as one would expect. In 

particular for OD b there are six lines with often fairly similar 

travel times so that a passenger arriving at the stop without prior 

knowledge of the exact departure time will be indeed likely to 

choose the line whichever comes first explaining our lower 2. 

(We remind that our model fit measure is an index of the model 

estimating the specific chosen line correctly, not the choice set, 

since this is obviously not measureable.) 

For OD a we estimate two models; in the first one we include a 

group independent waiting time parameter as well as choice set 

size. We find that choice set size is not at all significant for this 

OD pair as well as for all other OD pairs so that we omit it for 

other estimations. A reason for this is likely the strong 

correlation with our waiting time parameter. We secondly find 

that group specific estimates of waiting in general lead to 

slightly better model fit. Further, we find some fairly consistent 

differences in the waiting time estimates across the OD pairs. 

Older persons appear to value waiting time more than 

commuters. As a result of this we estimate probability for older 

persons to choose choice sets including more lines higher than 

for commuters (Table 4). We believe there are two 

explanations for this, which we cannot distinguish with data 

available to us. Firstly, older persons might indeed prefer to 

spend time in the bus than at the bus stop. Secondly, commuters 

might have more accurate knowledge of the precise departure 

time of the services. Therefore they target their arrival time at 

the bus stop to the arrival of the faster bus services, meaning 

that service frequency is less of a criterion for their line choice. 

We finally note that we find that the parameter estimates to 

some degree vary depending on the starting point of our 

parameter estimates in the maximisation of our log likelihood 

function due to the above discussed issue that our optimisation 

might be trapped in local optima.  

 

Table 3. Model Estimation Results 

 

OD a 

 

beta t-value beta t-value 

Travel time t -10.7 -18.6 -183.0 -1062 

Waiting time wn  

Commuter 

-10.8 -6.83 

-62.7 -351.1 

Elderly -75.7 -862.0 

Irregular -69.7 -173.0 

Other -79.6 -474.9 

Choice set size zn -1.61 -0.23 - 

sample size 4033 4033 

2 0.51 0.51 

LL(0) 2385.6 2385.6 

L* 1177.7 1174.1 

 

OD b OD c All OD pairs 

 

beta t-value beta t-value beta t-value 

Travel time t -43.9 -57.1 -65.8 -441.3 -87.6 -218.6 

Waiting time wn  

Commuter -3.58 -5.98 -1.48 -3.74 -33.8 -219.4 

Elderly -34.0 -523.8 -26.8 -420.2 -46.6 -427.3 

Irregular -0.59 -0.07 -1.20 -1.59 -34.1 -35.1 

Other -2.99 -1.16 -18.5 -124.7 -48.1 -256.2 

Choice set size zn - - - 

sample size 1589 958 6580 

2 0.15 0.31 0.27 

LL(0) 2701.1 576.9 5663.5 

L* 2305.5 394.9 4137.0 

 

Table 4. Examples of Estimated Choice Set Probabilities 

OD a,  

6-7am 

(a1
) 

(a2
) 

(a3
) 

(a1
, a2

) 

(a1
, a3

) 

(a2
, a3

) 

(a1
,a2

,a3
) 

Commuter 0.01  0.18  0.00  0.64  0.00  0.01  0.17  

Elderly 0.00  0.02  0.00  0.75  0.00  0.00  0.22  

Irregular 0.01  0.06  0.00  0.73  0.00  0.01  0.20  

Other 0.00  0.01  0.00  0.75  0.00  0.00  0.23  

OD c, 7-8am (c1) (c2) (c1,c2) 

Commuter 0.71  0.04  0.25  

Elderly 0.34  0.00  0.66  
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Irregular 0.71  0.04  0.25  

Other 0.47  0.01  0.52  

 

4. Conclusions 

    This paper presented a discrete choice model with explicit 

choice set generation aimed specifically at transit line choice at 

stops. A main feature of our model is that it is only on the upper 

level, the choice set formation, a RUM model. On the lower 

level the user is assumed to not control his/her choice but simp-

ly board which bus from the choice set arrives first. A second 

aspect of our model is that the inclusive value of the nest con-

siders the “hyperpath effect”. For example in the “generation 

logit” model of Swait (2001) the inclusive value of a nest is 

estimated as the log sum of the utilities of the options within the 

nest. We discuss that this is not appropriate in the transit case, 

in particular due to the reduced expected waiting time when 

several lines are included in the nest. 

Considering these transit characteristics hence leads to a model 

which cannot be reduced to other simpler discrete choice mod-

els easily. We illustrate that we expect passenger’s line choice 

to be more sensitive to service frequency and less sensitive to 

other factors, given similar user preferences. To estimate our 

model we establish the log likelihood function and its first and 

second order derivatives.  

Our model formulation was motivated by the common practice 

in frequency-based transit assignment models to assign passen-

gers to the shortest hyperpath in line with the “take whichever 

attractive line comes first” assumptions. We believe that our 

results, despite some shortcomings mentioned below, illustrate 

that these assumptions are often too simplistic. We present an 

approach to estimate the relative value of waiting time com-

pared to on-board time in order to find (person-group specific) 

attractive sets. With such calibrated hyperpaths the model accu-

racy of transit assignment models might improve. 

Smartcard data from a local city in Japan allow us to illustrate 

choice behaviour. In initial results we find that choice behaviour 

between passenger groups vary, in particular we find that older 

persons dislike waiting times relatively more compared to on-

board travel time and other person groups. We can observe that 

some passengers form smaller choice sets than the attractive set 

proposed if evaluating travel time and waiting time equally. We 

acknowledge that our model results should be considered with 

some care as some passengers might perceive the service as 

schedule-based rather than frequency based and hence our data 

might not fully fit our model assumptions. In other cities with 

less reliable bus services we would expect that passengers form 

larger choice sets, highlighting the need to estimate hyperpaths 

supply specific.     

This research can be continued in several directions. Firstly, a 

detailed analysis comparing our estimation results with that of 

other choice models has not been carried out yet. Secondly, 

convergence of our model estimates and sensitivity to model 

assumptions such as service regularity assumptions should be 

investigated in more detail. Thirdly, we do not consider panel 

effects in our model nor do we consider that users change pref-

erences depending on time of day. Fourthly, we need to discuss 

about the mathematical properties of the proposed model, espe-

cially about the uniqueness of the solution. We believe with 

nowadays more smartcard data becoming available our estima-

tions could be repeated in more complex networks. This would 

allow us to also estimate the impact of possible different num-

bers of transfers to reach the destinations on the choice set for-

mation. 
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交通ICカードデータを用いた公共交通hyperpathの推定 

 

シュマッカー ヤンディァク・嶋本寛・倉内文孝 

 
本研究では，交通ICカードデータを用いてバスの乗客の経路選択行動を推定した．乗客は，

それぞれの路線系統について，そのサービス特性を元に利用するかどうかを決定し，それら利

用してもよいと考える経路の集合（attractive set）のうちで，「最初に到着する系統」を利用す

るものとした．本稿では，モデルの特性と異なる乗客グループにおけるhyperpath選択の推定結

果を示す．その結果から，交通ICカードデータを活用した乗客配分モデルの改良について議論

した． 


