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便益計測の代表的手法の一つである資産価値法では，資産としての不動産の価格をヘドニック・アプロ

ーチによって推定する方法が採られることが多い．言うまでもなく不動産データは，位置座標を持った空

間データであり，位置に起因する空間的自己相関が存在する．近年，空間計量経済学と呼ばれる分野にお

いて，このような空間データの特性を考慮した『空間ヘドニック・アプローチ』を用いて分析を行う研究

事例が蓄積されてきた．空間計量経済学のモデルは，データ間の自己相関関係を空間重み行列によって特

定化する点に特徴があるが，その選択は多くの場合主観的であり，結果がその選択に依存するという点に

本質的な課題がある．本研究では，リバーシブルジャンプMCMC法とsimulated annealing（焼きなまし法）

を用いて，空間計量経済モデルにおいて重み行列と説明変数の自動選択を行う方法を考案し，ヘドニック

モデルへの適用を行った． 
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1. Introduction 

 

The application of a hedonic approach to real estate data plays an 

important role in real estate market analysis. The recent progress of 

geographic information systems (GIS) has provided access to detailed 

attributes of real estate properties, including traditional transportation 

accessibility, land use control information, and considerable environ-

mental information; hence, numerous potential variables are now 

available to a study. However, considering numerous explanatory 

variables in a regression model may lead to the problem of 

multicollinearity; therefore, in practice, model selection procedures 

using the test statistics (e.g., t-value), information criteria (e.g., 

Akaike’s Information Criterion (AIC)), or Bayesian posterior model 

probabilities are routinely employed (e.g., Kitagawa, 1997; Leeb and 

Pötscher, 2005; Claeskens and Hjort, 2008; Magnus et al., 2010).  

Another important aspect of real estate is spatial autocorrelation. 

Because real estate values and attributes are geographically distributed, 

such spatial characteristics of data must explicitly be modeled to 

obtain reliable estimates (e.g., Pace et al., 1998). One of the major 

research fields that considers the spatial autocorrelation is spatial 

econometrics (Anselin, 1988; LeSage and Pace, 2009). Applying 

spatial econometric models to the hedonic approach is often termed 

the “spatial hedonic approach” and has become popular in regional 

science and GIScience. Can (1990) is the first researcher to have 

introduced the spatial econometric technique to the hedonic approach; 

this work has been followed by numerous works on spatial hedonic 

approaches (Can, 1992; Brasington and Hite, 2005; Tsutsumi and 

Seya, 2008, 2009; Anselin and Lozano-Gracia, 2009; Koschinsky et 

al., 2011). The representative spatial econometric models are the 

spatial lag model (SLM) and the spatial error model (SEM) (e.g., 

Anselin and Bera, 1998). It is noteworthy that the former is occasion-

ally referred to as the spatial autoregressive model (e.g., LeSage and 

Pace, 2009) and the latter is known as the simultaneous autoregres-

sive model in the spatial statistics literature (see Arbia, 2006 for a 

discussion of the model name).  

It might be true that spatial econometrics has achieved remarkable 

success (Anselin, 2010); practical difficulties in applying spatial econ-

ometric models include the specification of the spatial weight matrix 

(SWM), which affects the final analysis results. Some simulation 

studies have suggested that information criteria such as AIC are useful 
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when selecting weight matrices (e.g., Stakhovych and Bijmolt, 2008), 

but if many model candidates exist (e.g., when the selections of the 

explanatory variables are performed simultaneously), then the com-

putational burden of calculating such criteria for each model is large. 

For example, suppose that the numbers of possible explanatory varia-

bles and SWMs are denoted as K and L, respectively; thus, the num-

ber of model candidates S is S=2K×L. Clearly when K assumes a large 

value, it is impossible to compute the AIC for each model within a 

reasonable computational time (e.g., K=L=20 yields T=20,971,520). 

The present study develops an automatic model selection algo-

rithm using the technique of reversible jump Markov Chain Monte 

Carlo (RJMCMC) combined with simulated annealing, which is the 

natural extension of the trans-dimensional simulated annealing 

(TDSA) algorithm by Brooks et al. (2003) to the spatial econometric 

model. The performance of our algorithm is examined with the well-

known Boston housing dataset.  

This paper comprises the following sections. Section 2 reviews the 

spatial econometric techniques, specifically focusing of the SWM 

specification, and Section 3 introduces the TDSA of Brooks et al. 

(2003). Section 4 applies the TDSA to the SLM, and Section 5 exam-

ines the performance of our algorithm. Finally, Section 6 concludes 

this paper. 

 

2. Spatial econometric techniques 

 

(1) spatial lag model 

The present paper focuses on the SLM, which is expressed as  

   XWyy  , ),(~ 2I0 N , (1) 

where y is the N×1 vector of dependent variables, X is the N×K ma-

trix of exogenous explanatory variables,  is the K×1 corresponding 

parameter vector,  is the disturbance term, 0 denotes the N×1 vector 

whose element is given by 0, 2 is the variance of error, I is the N×N 

identity matrix, W is the N×N SWM, and is the corresponding 

scalar parameter. The parameters of this model are usually estimated 

by the maximum likelihood method, the generalized method of mo-

ments, or the Bayesian MCMC; for more details, see Lee (2007), 

LeSage and Pace (2009), and Elhorst (2010). 

 

(2) spatial weight matrix specification 

For logical and identification purposes, the following assumptions 

are typically made for SWMs. First, W should be exogenous and 

invariant over time for the purpose of identification (Manski, 1993; 

Rincke, 2010) or parameter interpretation (LeSage and Pace, 2011). 

Kostov (2010) discussed that one reason for the popularity of the 

SWMs based on geographical distances is that their exogeneity is 

automatically ensured. Second, the diagonal elements of W are usual-

ly set to zero in order to prevent from predicting itself. Third, W is 

usually normalized so that the rows sum to unity (e.g., Fingleton, 

2009). 

Although the specification of W is a crucial step in spatial econo-

metric models (e.g., Smith, 2009; Stakhovych and Bijmolt, 2009; 

LeSage and Pace, 2010), Anselin (2002) suggested that there is little 

formal guidance when choosing the correct spatial weights for the 

given application. Stakhovych and Bijmolt (2009) divided the litera-

ture on SWMs into three categories: (i) treating weights matrices as 

completely exogenous constructs, (ii) letting the data determine them, 

and (iii) estimating them.  

The first approach is using geographical relations of observations 

or spatial units, such as k nearest neighbors or inverse distance. Here, 

distance is not limited to Euclidean distance, and many general dis-

tance measures can be used. LeSage and Polasek (2008) employed a 

transportation network to provide distance. The second approach is to 

use data to define SWMs. Getis and Aldstadt (2004) employed G 

statistics (Getis and Ord, 1992; Ord and Getis, 1995) to construct 

SWMs. Aldstadt and Getis (2006) employed the AMOEBA proce-

dure, and Mur and Paelinck (2011) employed a p-median approach. 

Relatively few studies took the third approach. Bhattacharjee and 

Jensen-Butler (2005) estimated the SWM non-parametrically, while 

Fernández-Vázquez et al. (2009) used the maximum entropy ap-

proach. The other interesting approaches are summarized in Harris et 

al. (2011). It is also important to note that some alternative methods 

that do not use W have evolved, such as spatial filtering (Griffith, 

2003; Tiefelsdorf and Griffith, 2007), the semi-parametric approach 

(Robinson, 2008), the spatial-HAC estimator (Kelejian and Prucha, 

2007), and structural equation modeling (Folmer and Oud, 2008).  

The focus of this paper is the selection of the correct SWM from 

the many candidates. This selection step is required for categories (i) 

and (ii). Indeed, Bayesian techniques are useful for both variables and 

SWMs selection (Hepple, 1995a, b; LeSage and Fischer, 2008; 

Crespo, Cuaresma, and Feldkircher, 2010; Cotteleer et al., 2011), but 

they require the specification of the prior distributions (such as 

Zellner’s g-prior) of the model parameters, and the model selection 

results are not always robust to the prior specification (see Seya and 

Tsutsumi, 2012). Stakhovych and Bijmolt (2008) suggested that 

applying a SWM selection procedure based on information criteria 

increases the probability of identifying its true specification. However, 

as stated above, if many model candidates exist, the computational 

burden of calculating such criteria for each model may be large.  

 

3. Trans-Dimensional simulated annealing 

 

(1) Fixed dimensional simulated annealing 

Following Brooks et al. (2003), this paper first introduces the tradi-
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tional fixed dimensional SA (FDSA), which does not allow for 

movement across the competing models. Given the objective func-

tion f() that we wish to minimize over the p-dimensional vector of , 

the corresponding Boltzmann distribution admits a density 

}/)(exp{)( TfbT   . The FDSA algorithm is summarized as 

follows (Andrieu et al., 2003; Brooks et al., 2003): 

 

[1] Assume the current state T and . 

[2] Propose ),(
~

v g , where v  is drawn from a proposal 

q(v) and g denotes any function such that  }~),,({ vvgg . 

[3] Accept the move to 
~

with probability  














)()(

)~()
~

(
,1min)

~
,(

v

v

qb

qb

T

T


 . 

[4] Repeat steps 2 and 3 for a specified number of iterations R. 

[5] Lower the temperature T according to some predetermined 

schedule to “freeze” the chain at a point of minimum mass, and re-

peat steps 2–4 until some stopping criterion is met. 

 

The final parameter   will approximate the minimum of f(). SA 

can avoid the local minima by allowing the move not only to the 

higher probability state but also to the lower probability state with 

probability )
~

,(  . FDSA is one of the most-used algorithms to 

minimize an objective function, which is adopted by the general op-

timization function optim of the R statistical language as an option. 

For more details regarding the FDSA, see Brooks and Morgan 

(1995) and Pham and Karaboga (2000). 

 

(2) Trans-dimensional simulated annealing 

The TDSA algorithm extends the FDSA algorithm to simultane-

ously consider the problem of model choice and parameter estimation. 

When we move between the competing models to identify the model 

that minimizes the objective function, we need to match the dimen-

sions of the models for a meaningful comparison. Green’s (1995) 

RJMCMC does so with the Jacobian. RJMCMC is a generalization 

of the Metropolis-Hastings (MH) algorithm (Hastings, 1970), to 

which a move across parameter spaces of different dimensionalities 

was introduced, while retaining a detailed balance. RJMCMC is a 

general algorithm and includes the MCMC model composition 

(MC3) approach, which is used in the Bayesian model averaging 

literature (Raftery et al., 1997; Hoeting et al., 1999), as is its special 

cases (Clyde, 1999). Johnson and Hoeting (2011) applied RJMCMC 

to the selection of a geostatistical model (see Cressie and Wikle, 

2011). LeSage and Parent (2007) employed the MC3 approach for 

averaging the SLM and SEM estimates. LeSage and Fischer (2008) 

and Cotteleer et al. (2011) extended the LeSage and Parent’s (2007) 

algorithm by appending the SWMs selection step. Brooks et al. 

(2003) combined RJMCMC with SA, which they termed TDSA. 

This subsection introduces their proposed TDSA algorithm. 

Let the observed data y be generated by a model M1, M2, … in-

dexed by sM. Corresponding to model Ms, there is the parameter 

vector 
sp

s  with corresponding likelihood function Ls(y|s). 

Then, suppose that we wish to minimize of some general function f(s, 

Ms) that is defined over both the parameter and model spaces. If we 

take 

 sssss pLMf 2)}|(ln{2),(   y , (2) 

then we obtain AIC. The associated Boltzmann distribution can be 

defined as 

 }/),(exp{),( TMfMb ssssT   . (3) 

Brooks et al. (2003) noted that at temperature T=1, the Boltzmann 

distribution corresponds to a Bayesian posterior with a flat prior over 

the parameter space but to a prior for model Ms proportional to      

exp(–ps/T).  

Next, suppose that we wish to move ),( ss M to ),( ~~ ss M , 

where typically ss pp ~ . The TDSA algorithm can be summarized 

as follows: 

 

[1] Assume the current state T and ),( ss M . 

[2] Propose ),(),( ~~~ vsssss gM   , where v  is drawn from a 

proposal )(~ vssq  and where g denotes a function that satis-

fies ssssss gg  }~),,({ ~~ vv . In other words, 

)~dim()dim( ~ vpvp ss  .  

[3] Accept the move to ),( ~~ ss M with probability  

)),(),,(( ~~ ssss MM   
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 where ssj ~ denotes the probability of proposing the new model s~ . 

[4] Repeat steps 2 and 3 for a specified number of iterations R. 

[5] Lower the temperature T according to some predetermined 
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schedule, and repeat steps 2–4 until some stopping criterion is met. 

Godsill (2001) proposed another acceptance probability, defined as 
)),(),,(( ~~ ssss MM   
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ssssssssT
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. (4)
 

This acceptance probability explicitly includes the probability of 

proposing the move from s to s~  and that the proposal is made direct-

ly in the new parameter space s~  rather than via the dimension-

matching random variables v and v~ . In other words, this transfor-

mation corresponds to vs~  and v~s , which has a unity 

Jacobian. Thus, Godsill’s (2001) formulation can avoid the need for a 

Jacobian term.  

Brooks et al. (2003) suggested that the only difference between 

FDSA and TDSA is that in the latter, we minimize over both parame-

ters and models so that, at any temperature T, the distribution 

),( ssT Mb  is explored via a combination of MCMC updates for 

within-model moves and RJMCMC updates for moves across mod-

els. 

 

4.  Trans-dimensional simulated annealing for 

the spatial econometric model 

 

(1) Trans-dimensional simulated annealing applied to 

the linear regression model 

This subsection applies the TDSA algorithm to the linear regres-

sion model, which we term the basic model (BM). The BM under the 

model Ms is given by 

 sss   Xy , ),(~ 2I0 ss N  . (5) 

Godsill (2001) proposed partial analytic RJMCMC (PARJ) in which 

some of the parameters are shared among the models. We assume 

that error variance is common to all the models, that is, 22  s , 

whereas s differs for each model. Given the data y, the likelihood of 

the BM under Ms is given by 

 )2exp()2(),|,( 22/22   ss
N

ssL  y , (6) 

where )()( ssssss  XyXy  . The associated Boltzmann 

distribution can be defined as 

)/exp(),|,(),( /12 TpLMb s
T

ssssT   y
 

)/exp()2exp()( 22/2 TpT sss
TN      

}2)(exp{)( 222/)(2  TsKN s
TKN    

]2)}ˆ()ˆ({exp[)( 22/2  Tssssss
TK    XX  

 )/exp( Tps , (7) 

where yXXX ssss
1)(ˆ   and )ˆ)(ˆ()( 12

sssss KNs  XyXy   . 

a) Within model move 

From eq. (7), we can easily obtain the conditional distribution of 

the error variance given the regression coefficients given by 

),|( 2
ssT Mb   

}2)(exp{)( 222/)(2  TsKN s
TKN    
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Similarly, the conditional distribution for the regression coefficients 

given the error variance is given by 

),|( 2
ssT Mb   

]2)}ˆ()ˆ({exp[)( 22/2  Tssssss
TK    XX  
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N s
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where 12 )(  ssT XX . The within move proceeds by gener-

ating ),|(~ 2
1 ssT Mbv  and ),|(~ 2

2 ssT Mb v  and 

by setting ),(),,,()
~

,~( 2121
22 vv vvg ss     in step 2 of 

the annealing algorithm. We can skip step 3 because we are using 

Gibbs updates, and in this case the corresponding acceptance ratio in 

step 2 is 1 (see Brooks et al., 2003). 
b) Across (between) model move 

We apply the previously explained Godsill’ s (2001) acceptance 

ratio to avoid the calculation of Jacobian term for dimension match-

ing. Because we have assumed that the error variance is shared 

among the models, we can take the ),|( 2
ssT Mb  for the pro-

posal q. Thus, we can avoid the trial–and-error tuning of the proposal 

distribution. We also use a discrete random walk for ssj~  (Johnson 

and Hoeting, 2011). First, one of the explanatory variables is chosen 
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with probability 1/K; if it is already in sM , it is removed from sM~ , 

and if it is not in sM , it is added. Thus, 1/ ~~ ssss jj . 

 

(2) Trans-dimensional simulated annealing applied to 

the spatial lag model 

This subsection applies the TDSA algorithm to the SLM. The 

SLM under the model Ms is given by 

 sssss   XyWy  , ),(~ 2I0 ss N  . (10) 

We assume that the error variance and the spatial parameter are 

common to all the models, that is,  s and 22  s , whereas 

SWM and s differ for each model. This assumption is similar to the 

setting of Johnson and Hoeting (2011), who assumed that 

geostatistical parameters (nugget, range, partial-sill, and anisotropic 

parameters) are shared between the models but that regression coeffi-

cients differ. Given the data y, the likelihood of the SLM under Ms is 

given by 

),,|( 2
ssL y = 

 )2exp(||)2( 22/2   sss
N  WI , (11) 

where )()( ssssssss  XyWyXyWy  

)()( ssssss  XyAXyA  , and ss WIA  . The 

associated Boltzmann distribution can be defined as 

)/exp(),|,(),( /12 TpLMb s
T

ssssT   y   

)/exp()2exp(||)( 2/12/2 TpT sss
T

s
TN    WI

 

}2)(exp{)( 222/)(2  TsKN s
TKN  

 

]2)}ˆ()ˆ({exp[)( 22/2  Tssssss
TK    XX

 

 T
ss Tp /1||)/exp( WI  ,  (12)

 

where yAXXX sssss
1)(ˆ  , )ˆ)(ˆ()( 12

sssssss KNs  XyAXyA   . 

a) Within model move 

Eq. (12) shows that we can easily obtain the conditional distribu-

tion of the error variance given the regression coefficients and the 

spatial parameter, given by 

),,|( 2
ssT Mb  

}2)(exp{)( 222/)(2  TsKN s
TKN    
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Similarly, the full conditional distribution for the regression coeffi-

cients given the error variance and the spatial parameter is given by 

),,|( 2
ssT Mb 

]2)}ˆ()ˆ({exp[)( 22/2  Tssssss
TK    XX  

 












 
 


,

2T
N ss


yAX

, (14) 

where 12 )(  ssT XX . The spatial parameter is sampled 

using a random walk MH algorithm (Kakamu, 2009; Seya et al., 

2012). 

Sample cz ~ , )1,0(~ Nz , 

where c is called the tuning parameter. The tuning parameter c was 

incremented or decremented when the acceptance rate moved below 

0.30 or above 0.50, leading to an acceptance rate of approximately 

0.40 after a burn-in period. The acceptance probability is calculated in 

the following manner: 
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The within move proceeds by generat-

ing ),,|(~ 2
1 ssT Mbv   , ),,|(~ 2

2 ssT Mb v , 

and ),,|(~ 2
3 ssT Mbv   and then set-

ting ),,(),,,,,()~,
~

,~( 321321
22 vvvvg ss vv     in 

step 2 of the annealing algorithm.  

b) Across (between) model move 

Because we have assumed that the error variance and the spatial 

parameter are shared among the models to avoid a long RJMCMC 

run, our across-model move is composed of the move across the 

explanatory variables and SWMs. The former is the same as in the 

BM case. That is, we randomly select one of the explanatory varia-

bles with probability 1/K; if it is already in sM , it is removed in sM~ , 

and if it is not in sM , it is added. We do not consider the drop and 
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add move in this study. We assume the ),,|( 2
ssT Mb  for the 

proposal q.  

For the latter move, the SWM candidates must be logically prede-

termined. We adopt a popular k-nearest-neighbors criterion. That is, 

we prepared 30 weighting matrices (from k = 1 to 30) and randomly 

choose one SWM from the candidate. Then the acceptance probabil-

ity is calculated in the following manner: 
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ss 
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5. Illustration of the proposed algorithm 

 

(1) Data 

To examine the performance of our proposed algorithm, we use 

the well-known Boston housing dataset. This dataset was originally 

provided by Harrison and Rubinfield (1978), and Gilley and Pace 

(1996) augmented the dataset with longitude-latitude of the observa-

tions. Pace and Gilley (1997) suggested that these data exhibit various 

problems common to many hedonic pricing or mass appraisal mod-

els. For example, not all variables exhibit the proper sign, that is, the 

AGE variable (see Table 1) is insignificant and positive, and a high 

positive spatial autocorrelation exists among the observations. Pace 

and Gilley (1997) constructed two hedonic pricing models based on 

BM and SEM with this dataset and found that SEM would success-

fully yield the significantly negative estimate of the AGE variable. 

This curious result may be caused by the impacts of spatially 

autocorrelated omitted variables on the included variables that were 

successfully incorporated into the model by using the SEM. Kostov 

(2010) indicated that this dataset is one of the most popular datasets, 

and it has stimulated a whole industry that has used this and other 

datasets to examine and compare alternative statistical methods. In-

deed, many studies have employed this dataset (e.g., Pace and Gilley, 

1997; Kostov, 2010; LeSage and Pace, 2004, 2010).  

We adopted the same variables to Kostov (2010), as indicated in 

Table 1. Following Kostov (2010), the natural logarithms of MEDV, 

DIS, RAD, and LSTAT are taken, while the squares of NOX and RM 

are taken to capture some of the underlying nonlinearities, resulting in 

ln(MEDV), ln(DIS), ln(RAD), ln(LSTAT), NOX2, and RM2. With regard 

to the descriptive statistics of the data, see Kostov (2010). The num-

bers of observations and the explanatory variables (including the 

intercept) are 506 and 14, respectively. Because we consider the 30 

different SWMs, the number of possible model candidates is 213× 30 

= 245760, where the intercept is always assumed to be in the model. 

 

(2) Simulation results 

 

Thus far, various cooling schedules for the annealing algorithms 

have been proposed. Brooks et al. (2003) suggested that when we set 

T=10t, acceptable performances seem to be achieved for  0.95 

and for R 500. Hence, following Brooks et al. (2003), we adopt this 

cooling schedule and set = 0.95. We take the initial temperature of 

T0=10, which is reduced every 1000 iterations (i.e., R=1000). We 

stopped the annealing procedure when sufficient cooling was attained 

( 02.0T ), which corresponds to the t=122 temperature reduction 

Table 1. Variable description (Kostov, 2010) 

 

Variable Description 

MEDV  Median values of owner-occupier housing in thousands of US dollars 
LON  Tract point longitude in decimal degrees 
LAT  Tract point latitude in decimal degrees 
CRIM  Per capita crime 
ZN  Proportion of residential land zoned for lots over 25 000 ft2 per town 
INDUS  Proportion of nonretail business acres per town 
CHAS  An indicator: 1 if tract borders Charles River; 0 otherwise 
NOX  Nitric oxides concentration (parts per 10 million) per town 
RM  Average number of rooms per dwelling 
AGE  Proportion of owner-occupied units built prior to 1940 
DIS  Weighted distance to five Boston employment centres 
RAD  Index of accessibility to radial highways per town 
TAX  Property-tax rate per US $10 000 per town 
PTRATIO  Pupil – teacher ratio per town 
B  Calculated as 1000(NBlack – 0.63)2 where NBlack is the proportion of Blacks 
LSTAT  Percentage of lower status population 
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(Fig. 1). Hence, the number of whole iterations is 122000. The pro-

gram is coded with the R statistical language.  

Table 2 provides the OLS estimates of the BM and ML estimates of 

the SLM in case that all of the explanatory variables are introduced. 

Here, the number of nearest neighbors k for constructing W is set to 

six because it minimized the log-likelihood (or maximized the AIC in 

Table 2. Parameter estimates of the BM and SLM 

 

Coef. t Coef. z 

INTERCEPT  4.558 29.5 2.186 12.1  
CRIM  –0.01186 –9.53 –0.007841 –7.77  
ZN  0.00008016 0.159 0.0004855 1.20  
INDUS  0.0002395 0.101 0.0009184 0.484  
CHAS  0.0914 2.75 0.009495 0.353  
NOX  –0.638 –5.64 –0.2844 –3.07  
RM  0.006328 4.82 0.007062 6.68  
AGE  0.00009074 0.172 –0.00006746 –0.160  
DIS  –0.1913 –5.73 –0.1605 –5.97  
RAD  0.09571 5.00 0.07873 5.12  
TAX  –0.0004203 –3.43 –0.0003609 –3.66  
PTRATIO  –0.03112 –6.21 –0.009155 –2.17  
B  0.0003637 3.53 0.0002742 3.28  
LSTAT  –0.3712 –14.8 –0.2494 –11.9  
Spatial parameter  0.5074 LR(187.5) 
Adjusted R2 0.800 
Log likelihood 243.7 
AIC –269.91(ML) –455.5 
Variance of error 0.0333 0.0214 

AIC for the BM is calculated using the ML estimates. 

 

Table 3. Parameter estimates of the model specified by the TDSA algorithm 

(In the column labeled as “Model,” 1 denotes included and 0 denotes not included in the model). 

Model Coef. 

INTERCEPT 1 2.277 

CRIM 1 –0.007979 

ZN 0
INDUS 0
CHAS 0
NOX 1 –0.2871 

RM 1 0.006779 

AGE 0
DIS 1 –0.1583 

RAD 1 0.07898 

TAX 1 –0.0003315 

PTRATIO 1 –0.01128 

B 1 0.0002737 

LSTAT 1 –0.2588 

Spatial parameter 0.5006 
Log likelihood 242.8

AIC –461.7
Residual variance 0.0226 
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the same sense because the numbers of adopted variables are fixed) 

(fig. 2). Note that the estimates of the AGE variable are positive for the 

BM but negative for the SLM (although they are not statistically 

significant). Also, the result of the LR test suggests that a high positive 

spatial lag dependence among the observations may exist. 

The TDSA outputs are shown in figs. 3 through 6. The acceptance 

rate for spatial parameter is0.456, and the computation time is 

13.08 hours. Because we directly coded the method with an interpret-

ed language (i.e., R) and not a compiled language (e.g., C++), a rela-

tively large computation time was required. 

Fig. 3 (a) provides a trace plot of the number of nearest neighbors k 

for W each time that the temperature is reduced (every 1000th itera-

tion). It is found that the chain converges rapidly to the best model (i.e., 

k=6) as the temperature is decreased. Figs. 4 and 5 provide the corre-

sponding plots of error variance and spatial parameter.  

Figs. 3 (b) and 6 provide the trace plot of the number of nearest 

neighbors k and the regression coefficients of CRIM and ZN variables 

in the first and the last 1000 iterations. Note that these variables fre-

quently move from one to zero when T is high (i.e., T=10), while they 

are frozen at one or zero when T is low (i.e., 02.0T ). Similar 

movement was obtained for the other variables. Table 3 presents the 

estimates of the model specified by the TDSA. We find that the vari-

ables whose coefficients are not statistically significant at a 5% level 

in table 2 are not selected, and therefore the AIC value is improved as 

compared to full model specification.  
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Figure 1. Cooling schedule 
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Figure 2. Log-likelihood (LL) value versus the  

number of nearest neighbors 
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Figure 3 (a). Trace plot of the number of the nearest neighbors versus  

number of temperature reductions for TDSA 
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Figure 3 (b). Trace plot of number of the nearest neighbors 

in the first and last 1000 iterations 
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Figure 4. Trace plot of the number of the error variance versus  

number of temperature reductions for TDSA 
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Figure 5. Trace plot of the number of the spatial parameter versus  

number of temperature reductions for TDSA 

 

 

6. Concluding remarks 

Although the specification of W is crucial step in spatial economet-

ric models, Anselin (2002) suggested that there is little formal guid-

ance when choosing the correct spatial weights for the given applica-

tion. Some simulation studies have suggested that the information 

criteria such as AIC are useful for the weight matrices selection, but if 

many model candidates exist, then the computational burden of cal-

culating such criteria for each model would be large. The present 

study developed an automatic model selection algorithm for the SLM 

using the TDSA algorithm. The performance of our algorithm is 

examined using the well-known Boston housing dataset. 

Our algorithm does not require any somewhat subjective prior set-

tings like the inclusion/exclusion probabilities of the stepwise regres-

sion. Moreover, this algorithm may still be feasible in a similar com-

putational time even when the number of explanatory variables or 

SWMs is much larger. LeSage and Pace (2010) noted that specifica-

tion of W is “the biggest myth” in spatial econometrics; hence, con-

tinued efforts should be devoted to this topic for the further evaluation 

of spatial econometrics. 
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Figure 6. Trace plot of the CRIM (TOP) and ZN (bottom) variables in 

the first and last 1000 iterations 

 (1 denotes included and 0 denotes not included in the model) 
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AUTOMATIC SELECTION OF A SPATIAL WEIGHT MATRIX IN SPATIAL 
ECONOMETRICS: APPLICATION TO A SPATIAL HEDONIC APPROACH 

 
Hajime SEYA, Morito TSUTSUMI, and Yoshiki YAMAGATA 

 
The application of a hedonic approach to real estate data plays an important role in property market analysis 
and urban planning. The recent progress of spatial econometrics offers a new technique called the “spatial 
hedonic approach,” which considers the element of spatial autocorrelation among property values and at-
tributes that are geographically distributed. The practical difficulties in applying spatial econometric models 
include the specification of the spatial weight matrix (SWM), which affects the final analysis results. Some 
simulation studies suggest that information criteria such as AIC are useful for the spatial weight matrices 
selection, but if many model candidates exist (e.g., when the selections of explanatory variables are per-
formed simultaneously), then the computational burden of calculating such criteria for each model is large. 
The present study developed an automatic model selection algorithm using the technique of reversible jump 
MCMC combined with the simulated annealing. The performance of this algorithm is verified using the 
well-known Boston housing dataset. 


