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    In this paper, we consider a traffic game where a group of self-interested agents tries to optimize their 

utility by choosing the route with the least travel time, and propose a payoff-based adaptive learning algo-

rithm  that converges to a pure Nash equilibrium in traffic games with a probability less than one. The 

model consists of an N-person repeated game where the players know their strategic space and their real-

ized payoffs, but are unaware of the information about the other players. The traffic game is essentially 

stochastic and described by stochastic approximation equations. An analysis of the convergence properties 

of the proposed algorithm is presented. Finally, using a single origin-destination network connected by 

some overlapping paths, the validity of the proposed algorithms is tested. 
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1. INTRODUCTION 
 

Traffic games having been considered in transpor-

tation research have been generally restricted to 

2-person games: traveler versus nature, two travelers, 

traveler versus authority and so on[1]. The N-person 

game was usually formulated in somewhat unnatural 

way where a single origin-destination pair for trips 

takes role as a single player.  

The purpose of this paper is to study the 

route-choice behaviors of users in a traffic network 

comprised of a number of discrete, interactive deci-

sion-makers, which in turn implies that the traffic 

game considered here is a N-person non-cooperative 

game. More specifically, we restrict our attention to 

congestion game in this paper. In a congestion game, 

each user is usually assumed to know one’s own 

payoff function and observe the other users’ behav-

iors. We call such a traffic game with this setting as 

informed user problem.  

In this paper however, we consider a more realistic 

and plausible congestion game where each user 

doesn't know even his payoff (or cost) function and 

the other agents' information (payoffs, actions, 

strategies) as well. The only information that each 

agent uses is the realized payoffs that are obtained by 

day-to-day travel experiences. This setting of the 

traffic game is referred to as a naive user problem. 

These two classes of users in traffic games are firstly 

introduced by Selten et al.[2] in their behavioral ex-

periments on travelers’ route-choice in traffic net-

works but in a slightly different way; each informed 

user does not know his payoff function, but is able to 

know in hindsight the realized payoff of alternative 

routes that he did not use. 

The learning process in the naive user problem is 

closer to the so-called reinforcement learning [3,4] 

though it differs in the way that simultaneous moves 

of more than three persons are involved in the game 

so that the process is inherently non-stationary. 

Leslie and Collins proposed the individual 

Q-learning algorithm and its extentions[5,6]. 

Cominettie et al. used almost the same approach as 

Leslie and Collins and prove that a logit learning rule 

converges to a unique equilibrium point under the 

condition of a dispersion parameter (hereafter we call 

it as a logit-parameter) included in the logit choice 

model[7]. The individual Q-learning algorithms and 

the algorithm adopted by Cominettie et al are called 

the payoff-based algorithms where only the payoff 

evolution process is allowed and no updating of 

mixed strategies is included. These approaches are 

available for finding equilibria of traffic games with 

non-atomic users.  

On the other hand, Marden et al. proposed pay-

off-based algorithms for the naive user problem with 
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atomic users and prove that their procedure converge 

to a pure Nash equilibrium with at least probability 

p<1[8].  

  The main objective of this paper is to propose a 

unified learning algorithm that is applicable to both 

the naive user problem and the informed user prob-

lem within the same framework. Our approach is 

different from Marden et al. ‘s method in 1) that our 

algorithm does not rely on a weakly acyclic as-

sumption, 2) that it uses user-dependent and 

time-variant exploration rate based on  -logit model 

instead of a constant one and 3) that individual choice 

behavior is expressed by mixed strategy as a function 

of the estimated payoffs not by fixed and constant 

probabilities. Our approach is also different from 

Leslie and Collins’s weakly fictitious play in that 

mixed strategy dynamics is not based on fictitious 

play and that the logit parameter is sequentially de-

termined based on realized regrets. We restrict our 

attention to congestion games, but it can apply to 

non-atomic user cases. The algorithm only requires a 

finite number of users given a fixed action space and 

does not require minimum path search. We will show 

that the algorithm converges to a pure Nash equilib-

rium with at least probability p<1 .  

Since our approach treats each agent as an indi-

vidual decision-maker, different from the traditional 

traffic models, the approach is able to give an insight 

to the theoretical background into recently developed 

transportation planning packages like MATSim 

(Multi-Agent Transport Simulation) and 

TRANSIMS (TRansportation ANalysis and SIMu-

lation System). 

This paper is organized as follows. In section 2, we 

provide the notation and definition for the model. 

Section 3 reviews some related work, the theoretical 

background and model assumptions. In section 4 we 

present our simulations and its results. Section 5 

presents some concluding remarks. 

 

 

2. NOTATION AND DEFINITION 
 

The sets {1, , , , }I i N ,
 

{1, , , ,i iA k M

}, i I  , represent the set of players and the set of 

actions of player i . The action set 
iA  is also referred 

to as the choice set. We interchangeably use a nota-

tion 
i ia A and 

ik A . We use the conventional 

notation 
i ia A   to represent the action taken by 

the opponents of i ,
ia
, and the action set of the 

opponent,
iA
. The action profile is a vector denoted 

by 
1( , , , , )i Na a a A a , or ( , )i ia a A a  

where 
1 NA A A   . We denote the system 

states by ( , )t t tx x  which includes a common 

knowledge for all players, tx , and the private infor-

mation, t . The set contains all the possible states 

of the transportation system under analysis. In this 

analysis, such sets are assumed finite, non-empty, 

non-unitary and time-invariant sets.  

The payoffs (or utilities) of player i in a one-shot 

game are determined by the function 

:iu A  

Suppose that at the end of each stage, player i ob-

serves a sample 
i

tU which is a realized payoff that 

player i
 
receives at stage t . We assume that private 

information appears additively in the profit function

( , , )i i i

tu x a a
. That is,  

( , , ) ( )i i i i i i

t t t t t tU u x a a a  , 

where  ( )iu  is a real-valued function and ( )i i

ta  is 

a component of the private information vector 

1( , , , , )i

i i i i T

t t jt M t
     which are random vari-

ables defined over a probabilistic space with density. 

The random utility model is sometimes described 

without public information:   

( , ) ( )i i i i i i

t t t t tU u a a a   

Consider a discrete time process 0{ }t tU  of vectors. 

At each stage t , a player having observed the past 

realizations 1 1, , tU U  , chooses an action ta in .A  

The outcome at that stage is ( , ),t t t tU x a a A and 

the past history is  

1 1 1 1 1 1 1{( , , ), ,( , , )}t t t tx U a x U a     . 

We refer to 
i

t as the private history of player i

which is the available information gathered by player 

i up to stage t . The set of all possible private histo-

ries of player i at stage t  is denoted by
i

t . A be-

havioral strategy (or policy) 
1( , , )N    is 

specified by 1( ) ( )t A    which is a probability 

distribution of ta given the past history 1t . More 

formally, a vector of behavioral strategies of player i  

at stage t  is defined as: 

: ( )i i i

t t A  
 

We denote 
i to be the set of possible behavioral 

strategies of player i  and let 
1 N     be the 

set of all behavioral strategy profiles. Given any 

behavioral strategy
1( , , )N   , a set of se-

quences of probability distributions 0{ }it t   for all 

i I is generated according to the set of sequences 
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of 
1

1{( , )}t

s s sa U 


given the initial values 

0a and 0U . 

A mixed strategy ( )i i

t a represents the probability 

that player i chooses action 
ia at time t , i.e., 

( ) Pr[ ]i i i i

t ta a a    

Definition 1. (State Independent Behavioral Strat-

egy)  Define the private history of player i which is 

independent of the system state ( , )t t tx x  . That is, 

1 1 1 1 1{( , ), ,( , )}t t th U a U a    

A behavioral strategy   specified by 

1( ) ( )th A    is then referred to a state inde-

pendent behavioral strategy. 

Definition 2. (Stationary Behavioral Strategies) 

  The behavioral strategy is called time-invariant or 

stationary if for all i I and for 0t s  , 

( ) ( )i i i i

s s t t     

In the stationary, state independent process, it holds 

that ( )i i i i

t t     .
          

 

Assumption 1. (Announced Payoffs) 

Central authority observes the realized past payoffs 

up to time 1 0t   that are announced to all users in 

hindsight so that at time t user can know the previous 

action values: 

1 1 1 1( (1), , ( ), ( )), 1i i i i i i

t t t tU U a U m t     U . 

Assumption 2. (Anticipated Payoffs) 

Central authority observes the realized past actions 

up to time 1 0t    that are announced to all users in 

hindsight that , 

( ) ( (1, ), , ( , ), ( , ))i i i i i i i i i i

t t t t t t ta u a u a a u m a   u

and by taking into account the frequencies each user 

anticipates the expected payoffs of each action. 

( ) ( (1, ), , ( , ), ( , ))i i i i i i i i i i

t t t t t t tu u a u m     u π

 Definition 3. (Informed User with Announced Pay-

offs)  Each traveler does not know his/her payoff 

function and those of other travelers as well but all 

the action values 
i

tU are informed in hindsight. 

Definition 4. (Informed User with Anticipated 

Payoffs)  Each traveler know his/her payoff function 

and observe actions taken by other travelers but 

doesn’t know those of other travelers. Each traveler 

can estimate the expected payoffs that he/she would 

receive by taking other actions,
 

i

tu . 

Definition 5. (Naive User) Each traveler doesn’t 

know his/her payoff function and those of other 

travelers as well. The only information available to 

him/her is the realized payoff that he/she has used at 

that day, ( )i i

tU a . 

In standard game theory, each player is assumed to 

have belief that her opponents’ behave independently 

accordingly to mixed strategies so that the average 

payoff in the mixed strategy space is written as: 

( ) [ ( )] ( ) ( )i i i j j

A j I

u u u a 
 

  
a

π a a  

Nash equilibrium is achieved when each player plays 

a best response to the opponent strategies, so that  

 
* *( ) max ( , )

i i

i i i i

a A
u u a  


  

Definition 6. (Pure Nash Equilibrium) A pure Nash 

equilibrium of a game is defined as an action profile 

that satisfies the conditions: 

* *( ) max ( , )
i i

i i i i

a A
u a u a a


  

Definition 7. (Potential Games) A finite n -player 

game with action sets 
1

{ }
n

i i
A


and utility functions 

1
{ }

n

i i
u


is a potential game if, for some potential 

function 
1

: ... ,
n

A A     

 
( , ) ( , )

( , ) ( , ),

i i i i i i

k l

i i i i i i

k l

a a u a a

a a a a

u

 

 

 

 


 (2.1) 

for every player, for every i j i j
a A
 
 and for every 

, .
i i i

k l
a a A  It is a generalized ordinal potential game 

if, for some potential function 
1

: ... ,
n

A A     

( , ) ( , ) 0

( , ) ( , ) 0,

i i i i i i

k l

i i i i i i

k l

a a u a a

a a a a

u

 

 

 

  

 
 (2.2) 

for every player, for every i j i j
a A
 
 and for every 

, .
i i i

k l
a a A  

 

 

3. TRAFFIC GAMES 
 

(1) Flow and Cost  

We begin with flow conservation equations in traf-

fic games with non-atomic flow. For simplicity 

purposes, we restrict our attention to a single ori-

gin-destination (O-D) pair connected by paths 

(routes). The action set {1, , , }k MA corre-

sponds to the set of paths. Path flows are denoted by a 

M-dimensional vector 1( , , , )k Mh h hh . A set 

of paths available to player i  is denoted by ,iA i I .  

Let L  be a set of links, and { },{ }
k

f   be the flow 

on link L  and an element of link-path incidence 

matrix, respectively. To avoid confusion, we use 
i

k

and ( , ),i i ik a k A   interchangeably. The same 

rule is applied to a payoff and the empirical distri-

bution. The number of times path k is visited by 

player i  at time t is a 0-1 variable and defined by 
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,

1

1
{ }

t
i i

k t s

s

z a k
t 

 I
    

          (3.1) 

where
 

{ }1 is the indicator function that takes the 

value of 1 if the statement in the parenthesis is true, 

and zero, otherwise. Therefore, a path-flow and a 

link-flow at t are defined using 1( , , )i i i

Mz zz  as 

follows: 

,

, ,

, , ,

,

,

i

i i

k t t

k A

i

p t k t

i I

k k t t

k A

z h

z h k A

h f









  

  





 L

       (3.2) 

 

Link travel time on L at time t is given by re-

al-valued non-decreasing functions, ( )fC . Travel 

time of path k A  is defined as:  

( ) ( ( ))k t p tc c



L

h f h .      (3.3) 

Then, we define the payoff of path k as

( ) ( )i i

k ku c h h . Thus, the payoff function is no 

longer continuous with respect to the flow. A traffic 

game with atomic flow is proposed by Rothenthal [9]
 

and is well known as the congestion game. Conges-

tion game is a kind of potential game[10], and has a 

pure strategy Nash equilibrium. 

In case of atomic flow, instead of (3.1) the follow-

ing definition on the flow at time t is used: 

, { }i i

k t tz a k I
                   

(3.4) 

 

(2) Congestion games with anticipated payoffs 

Congestion game is a special class of traffic game, a 

kind of weakly acyclic game[11] and has the prop-

erty that for any action a A , there exists a better 

reply path starting at a and ending at some pure Nash 

equilibrium of the game [8]. In congestion games, 

homogeneous players with the same payoff function 

are usually assumed.  

Now, we define a congestion game with payoffs 

( , ) ( , ) ( )
i

i i i i i i

a

u a a c a a C f 



              (3.5) 

where ,f L  is the number of users defined by 

(3.1) and (3.2) under action a A  and ( , )i i ic a a

represent the cost of action (route-choice) 
ia when 

other players take the action profile 
ia . We assume 

that link cost function is strictly increasing with re-

spect to the link flow. We define the potential func-

tion as shown in (3.6) to show that every finite con-

gestion game has a pure strategy (deterministic) 

equilibrium: 

1 1

( ) ( ) ( ) ( 1)
i i

f f
i

k k a

C k C k C f




   

     
a a

a              

(3.6) 

where 

{ }i j

j i I

f a

 

  1 . 

Then we have 

( , ) ( , ) ( 1) ( 1)
i i

i i i i i i i i

a b

c a a c b a C f C f   

 

                

(3.7) 

and ( , ) ( , ) ( , ) ( , )i i i i i i i i i ia a b a c a a c b a       . Thus, 

i ib A
 
is

 
an improvement action of player i  when 

( 1) ( 1)
i i

i i

a b

C f C f 

 

     and if there exists no 

improvement action for 
ia , the strategy is a pure 

Nash equilibrium.  

We call the operation defined by (11) as the 

swapping operation between the current route and 

alternative route. The swapping route implies that 

each player knows the cost function ( )C and ob-

serves the actions of other players { }if  . Thus, the 

learning algorithm for the congestion game is cate-

gorized into the traffic game for the informed user 

with anticipated payoffs because each traveler col-

lects samples and estimates the values of other ac-

tions while keeping other users’ strategies un-

changed. Therefore, the congestion game with an-

ticipated payoff allows for each user to keep track of 

the minimum-cost path. Furthermore, a weakly acy-

clic game implies that each user independently and 

sequentially search his minimum-cost path.  

 

(3) Congestion games with naive users 

Payoff Estimation under Non-stationary Envi-

ronment 

We consider the process such that the action profile 

and the resultant action values, 0 0 0{ , },{ , }a U a U t t t , 

are sequentially generated. Suppose that player i
only knows the realized payoff at each stage 0t 

0{ }it tU  . The action specific average payoff received 

by user i  up to t (excluded) is given by 
1

0

1
ˆ ( ) { }

( )

t
i i i

t s si
st

u k U a k
Z k





  1
          

(3.8) 

where

 

( )i

tZ k  denotes the number of visits to path k 

up to t defined as: 
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1

0

( ) { }
t

i i

t s

s

Z k a k




 I

 
Proposition 1.  The random sequences generated by 

(3.8) are approximated by following recursive equa-

tions: 

1
1 1 1

{ }
ˆ ˆ ˆ( ) ( ) ( ( ))

( )

i
i i i i it
t t t t ti

t

a k
u k u k U u k

Z k
 

  


  

1

       

       (3.9) 

where
 
for each i , 0{ }it t  is

 
a deterministic sequence 

satisfying  
2

0 0

, ( )i i

t t

t t

 
 

    
              

(3.10) 

and additionally 

1
0

i

t

i

t

as t


 
                  (3.11) 

Action Selection Rule and Mixed Strategy 

Now, we let  

,max 0 1max ( ),i i i i i

t s t s sU U a a A   
        

(3.12) 

be the maximum payoff that user i  has received up 

to time ( 1)t  . At the first stage 1t  , each user 

selects the base line action 
*

0

ik a . At subsequent 

time steps 0t  , each user selects his base line ac-

tion 
*k with probability 1

i

tw or switch to a new 

random action 
*( )i

ta k with probability 
i

tw ,i.e., 

*
with probability

is chosen randomly over with probability

(1 )i

t t

i i

t t

a k w

a A w

 

The variable 
i

tw will be referred to as the user’s ex-

ploration rate following Marden et al.[8], and is de-

termined by 
*1 (1 ( )),

( )
(1 ( )) / ( 1),

i i i

t t ti i

t i i i
t

a if a k
a

a otherwiseA

 


 

   
 

 

                   
(3.13)

 
where

 
 
 

ˆexp ( ) /
( )

ˆexp ( ) /
i i

i i i

ti i

t i i i

t

b A

u a
a

u b










             

(3.14) 

with 

 

1 1

1
( ),i i i i i i i

t t t t t t tR where R U U
t

       

     
(3.15) 

The next action of user i  is determined by comparing 

the actual payoff received, ( )i i

tU a ,with the maxi-

mum received payoff ,max

i

tU
 
and is updated as fol-

lows: 

,max

1 *

,max

, ( )

, ( )

i i i i

t t ti

t i i i

t t

a U a U
a

k U a U


 
 

              

(3.16) 

Equation (3.14) is the logit model with parameter 

defined by (3.15). The variable 
i

tR  will be called as 

the user’s regret because it is the same definition as 

the unconditional regret based on realized payoffs 

introduced by Hart and Mas-Collel[12]. We will 

refer the adaptive learning process defined by 

(3.9)-(3.16) as adaptive learning algorithm with 

ELRP (Epsilon Logit with Regret Parameter). 

Remark 1: Leslie and Collins[6] suggest that a 

suitable choice of learning parameters would be to 

choose ( )
ii

t t C    , where the rate (0.5,1]i  is 

chosen differently for each player. 

Remark 2: An alternative scheme for updating the 

logit- parameter  is shown in Singh et al.[13], 

which is derived from the assumption that the re-

sponse function (3.14) is bounded below by a suita-

ble decreasing sequence such as / it A
 . Leslie and 

Collins[6] following Singh et al. used the following 

recursive formula for updating 
i : 

ˆ ˆmax ( ) min ( )
, (0,1]

log

i i

i i

t ti k A k A
t

u k u k

t
 


 


 

 However, it requires player i
 
to know

 
the maximum 

and minimum values of payoffs at stage t . On the 

other hand, the regret-based parameter is only de-

pendent to the realized payoffs and its mean. 

Before accounting for our mixed strategy updating 

scheme, we show how to derive the logit-type of the 

action selection function. Following Fudenberg and 

Levine[14], we assume that player i  chooses strat-

egy 
i to maximize  

( ) ( , ) ( )i i i i i iV u     
          

(3.17) 

where 0  is a smoothing parameter and 

: ( )i iA   is a private information of player i , 

which is a smooth, strictly differentiable concave 

function. A typical example of the private infor-

mation function is the entropy function 

( ) ( ) log ( )i i

i i i i i i

a A
a a   


  . 

With this specification, we define the smooth best 

response function  

ˆ( ) argmax ( ) ( ) ( )i i
i i

i i i i i i i i i

a A
a u a


    



   

             

 (3.18)  

,which leads to the following logit functions: 

 
 

ˆexp ( ) /
( )

ˆexp ( ) /
i i

i i i

i i

i i i

b A

u a
a

u b









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You should note that our maximization program, 

(3.17), is different from the original, (3.18), and that 

it is necessary for   

0, . .ˆ ( ) ( , )i i i i i

t t
as t a su a u a    

 
to show the equivalency between (3.17) and (3.18) . 

If the adaptive learning process is stationary, then it 

is well known in reinforcement learning[3,4] that  

 ˆ ( ) [ ] . .i i i

t tu a U t a s   

However, in the non-stationary environment 

where the behavioral strategies are time-dependent 

and simultaneously changes, we need a further con-

dition which requires the probability distributions to 

converge to the best responses. In association with 

that issue, Leslie and Collins [6] prove that if the 

mixed strategies ( )i i

t a for each user i  and 
i ia A

are bounded below, then for a large t and for the 

estimated payoffs updated by (3.9)-(3.11) it holds 

almost surely that 

ˆ ( ) ( , ) 0
t t t

i i i i i

s s su a u a                    (3.19) 

where 0{ }t ts   is the sequence of times when action k 

is played by user i . 

We assume that each user uniformly assigns a 

probability, / iw A , to each action at each time step, 

furthermore assigns the remaining value, (1 )w  to 

the baseline action. This implies that each user se-

lects each action at most with probability 

/ ( 1)i iw A A  , given a sufficiently small posi-

tive value  . In order for the exploration rate w  to 

be user dependent and decreasing sequence in time, 

we define it as  
*(1 ( )) / ( 1)i i i i

tw k A A     

Then, we have equations (3.13). Since it can be ex-

pected that assigning probability to the baseline ac-

tion is getting larger as t  , the probability of 

selecting actions that does not increase the user’s 

payoff is getting lower.  

Marden et al. [8] proposed a simple payoff-based 

learning algorithm where person-independent, and 

time-invariant exploration rate w  is assumed and a 

constant action-selection rule is adopted, and prove 

that their payoff-based learning algorithm converge 

to an optimal Nash equilibrium of a finite N-person 

identical interest game with at least probability 1p   

for a sufficiently small w  and for all sufficiently 

large times t . Their method is characterized by the 

realized payoff-based model, not the estimated pay-

offs used in this paper which is robust. Our approach 

may be justified by Leslie and Collins’ result as 

discussed above.  

 

Proposition 2. Suppose that the congestion game has 

a unique Nash equilibrium. Then the action profile 

ta generated by the adaptive learning algorithm with 

ELRP converges to the pure Nash equilibrium with 

probability 1p   for a sufficiently small   and for 

all sufficiently large times t .  
 

 

4. SIMULATIONS 
 

The proposed algorithm is applied to a single 

origin-destination (O-D) network using linear and 

non-linear cost functions on the links, respectively. 

The network has 5 links and 3 routes, this translates 

to 3 actions available for each player. Players must 

traverse from node O to node D and must do this 

repeatedly until they converge to a pure Nash equi-

librium. The network models the complex interaction 

of players using the links and the proposed algorithm 

ensures that this complex interaction leads to an ef-

ficient use of the whole network. 

 

(1) Test network and link cost functions 

We use a Braess-network shown in Fig.1. We pay 

attention to the single O-D case where the flow 

conservation equation is described as 

1 2 3
,n h h h   where n is the number of trips and

,  {1, 2, 3}
i

h i   denotes the th
i  path flow.  

The following linear link cost functions are as-

sumed: 

1 1 2 2 3
,1  : 4  2 : 50  3 5, : 0link t x link t x link t    

3 4 4
 4 4, ,:x link t x and 

5 5
2 , 5 : 4link t x  where 

i
t  

is the travel time of link i and 
i

x  is the traffic flow on 

link .i  Under normal conditions, there exists a 

unique Wardrop equilibrium that is consistent with a 

pure Nash equilibrium in this network. For the 

non-linear link cost functions, it assumes the form of 

the Bureau of Public Roads (BPR) congestion (or 

volume-delay, or link performance) function, 

  4
(1 0.15( ) ),l

l l l

l

v
S v t

c
   where 

l
t  is the free flow 

travel time, 
l

v is the volume traffic on link l per unit 

of time, 
l

c is the capacity of link l  per unit of time 

and  l l
S v  is the average travel time for a vehicle on 

link .l  
 

(2) Traffic game simulation 

We consider a scenario using the network shown 

in Fig.1 in the form of a congestion game where 

players seek to traverse the node O to node D. Eight 
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players traversing the same route receives the same 

utility. Players (drivers) choose initial routes ran-

domly, and every day thereafter, adjust their routes 

using the proposed regret-based algorithm.   

Each simulation, shown in Fig.2 and Fig.3, ran for 

30 iterations. Details and further simulation results 

will be shown in the presentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

5. CONCLUDING REMARKS 
 

Congestion games has been studied for a long time. 

Surprisingly, it is recently that computational meth-

ods for finding quilibrium has been developed, es-

pecially for finding equilibrium under non-stationary 

environments. Our research is still an on-going pro-

ject, but, some new results were found. These are 

 

1) Algorithms that successfully converge to equilib-

rium for traffic games with atomic users possibility 

of success in finding equilibrium in non-atomic traf-

fic games. 

2)There exists a unified approach that enable us to 

create algorithms applicable to both the informed 

user problem and the naive user problem. 

3) In the case of congestion games with informed 

users, we can find a pure Nash equilibrium almost 

surely because the game is a weakly acyclic game. 

On the other hand, the traffic games with naive users 

usually falls in a connected internally chain- 

reccurent set. However, we can construct algorithms 

that converge to a Nash equilibrium point with high 

probability. 

4)Performance of the algorithm developed in this 

paper tends to override the algorithms developed by 

Marden et al. [8] or Cominettie et al. [7]. 
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