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Vehicle Routing Problem with Semi-Soft Time Windows (VRPSSTW) is a new extension of Vehicle 
Routing Problem (VRP). In the VRPSSTW, vehicles are not strictly forced to serve customers only within 
time windows. It is also possible to arrive earlier than time windows (waiting at no cost until time windows 
begin) or to arrive later than time windows (with taking penalty costs into account). An exact column 
generation algorithm involving new elementary shortest path problem with resource constraints and late 
arrival penalties (ESPPRCLAP) as subproblem is used to solve the VRPSSTW to optimality. This paper 
compares the results of using mono-directional and bi-directional dynamic algorithms for solving the 
ESPPRCLAP. 
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1. INTRODUCTION 
 

Vehicle Routing Problem (VRP), defined as 
NP-hard problem, is an effective route optimizing 
tool in city logistics1),2). The VRP is required to de-
termine a set of minimum cost routes for an identical 
set of vehicles to serve a set of known demand cus-
tomers. Each route starts and ends at the central depot 
and visits a subset of customers along its route 
without vehicle capacity violation. Each customer 
must be served once.  

Different variants of the VRP have been studied by 
researchers, for instance, VRP with hard time win-
dows (VRPHTW)3),4) that strictly requires vehicles to 
visit at any customer location within a specified time 
interval (time windows or [

ia ,
ib ]: 

ia and 
ib  represent 

the earliest and latest possible service start time at 
each customer, respectively). Another variant called 
VRP with soft time windows (VRPSTW)5) is consi-
dered by relaxing time windows. It is possible to visit 
customers beyond time windows [

ia ,
ib ] with some 

early or late penalty costs.  
Recently, a new variant of the VRP named vehicle 

routing problem with semi-soft time windows 
(VRPSSTW)1)6) has been extended from the 
VRPHTW and the VRPSTW. Vehicles are allowed 
to wait without any cost at customer locations until 
the earliest service start time (

ia ) in case of early 

arrival or vehicles have to take linear penalty terms 
into account if vehicles arrive later than time win-
dows (see Fig. 1). The latest possible service start 
time of each customer is extended from 

ib  to 
ib '. The 

VRPSSTW takes advantages of offering more effi-
cient use of vehicles (compared to the VRPHTW) 
and dealing with less complex cost structure  (com-
pared to the VRPSTW). 

Both exact and heuristic approaches have been 
proposed to solve the VRPSSTW. Focusing on exact 
algorithm presented first by Qureshi et al.6), a column 
generation scheme based on a new subproblem, 
namely elementary shortest path problem with re-
source constraints and late arrival penalties 
(ESPPRCLAP), has been successfully developed. 
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However, the authors reported that only up to 
50-customer instances of some problem types in 
Solomon's benchmark4) have been exactly solved 
with reasonable computational time. This is because 
the complexity of subproblem increases when re-
laxing time windows7).  

 

 
Fig.1 Linear late arrival penalty function for the VRPSSTW.  

 
This paper aims to improve the ESPPRCLAP 

pricing subproblem in exact column generation to 
efficiently solve large problem instances in Solo-
mon's benchmark set to optimality. Instead of using 
mono-directional dynamic programming in sub-
problem1),6), the bi-directional dynamic programming 
algorithm developed by Righini and Salani8),9) is 
applied in this paper for handling with the 
ESPPRCLAP subproblem. 

  
 

2. COLUMN GENERATION 
 

Column generation (or Dantzig-Wolfe decompo-
sition or branch-and-price algorithm) decomposes 
the VRPSSTW problem into 1) a set covering master 
problem  2) the ESPPRCLAP as its subproblem. To 
calculate the extended latest allowable service start 
time at any customer (

ib ' , refer to Fig. 1) as well as 

the comprehensive VRPSSTW mathematical model 
can be found in Qureshi et al.1),6). 

The set covering master problem aims at finding a 
set of least cost routes that services all customers. 
While the ESPPRCLAP subproblem generates the 
feasible routes subject to semi-soft time windows and 
capacity constraints. The set covering master prob-
lem can be stated as below; 

min       
p

Pp
p yc



                           (1) 

s.t.      1



Pp

pip ya      Ci                     (2) 

 1,0py     Pp                        (3) 

 
where C denotes a set of customers, P is a set of 

feasible routes, cp is cost of route pP, yp is a binary 
variable  having value 1 if  route pP is selected and 0 
otherwise and 

ipa  is the number of times route pP 

visits customer iC. The objective (1) is to minimize 
the overall cost of routes. The overall costs include 
fixed vehicle cost, traveling cost and late arrival pe-
nalty cost (if necessary).  

The pricing subproblem consists of determining a 
set of feasible routes with negative reduced cost. The 
reduced cost of route is the sum of the reduced cost of 
all arcs in the route and the reduced cost of each arc 
can be computed using  (4) 

       
)2/()2/( jiijij cc        Vi        (4) 

 
let V be the vertex set including depot (vertex 0) 

and customer set (with vertices 1,2,...,n), cij is the cost 
of arc (i,j), i,j V and 

i is dual variables corres-

ponding to (2) in master problem. Please be noted 
that dual variable at depot vertex is initially 0 
(

0 =0). 

  
(1) ESPPRCLAP subproblem 

The general idea of bi-directional dynamic pro-
gramming8),9) to solve the ESPPRCLAP subproblem 
is that labels are simultaneously generated from both 
forward and backward path directions subject to 
semi-soft time windows and capacity constraints. 
Forward path direction starts from initial depot and 
move forward to customer i. This represents the path 
from depot to i. While backward path direction starts 
from terminal depot and move backward to customer 
j representing path from j to depot.  

Applying critical resource rule8),9) in order to re-
duce a number of labels generated, path extension in 
both directions are only extended when critical re-
source consumption does not exceed a half of the 
total available resource. In the ESPPRCLAP, critical 
resource is the time (T) resource, where T can be 
found as the maximum possible arrival time at ter-
minal depot (T = min {b0, (maxi C {bi' + Ѳi + 
tti0})}) , let Ѳi be service time at iC and tti0 be tra-
veled time from customer i to terminal depot). 

Finally, partial paths from both directions are 
joined if satisfying all feasibility conditions. The 
steps of bi-directional dynamic programming algo-
rithm for solving the ESPPRCLAP can be briefly 
outlined as follow; 
a) Forward path extension 

Forward time windows [
ia ,

ib '] are associated with 

each vertex iV. Note that at depot vertex, b0=b0'. 
Three involved resources are consumed during path 
extension indicating by ґ (time), qac (demand) and S 
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(unreachable vertices). All resources are initially set 
to 0. When path is extended from i to j, these re-
sources are updated as follow    

 
  ґ * = max{ґ + Ѳi + ttij, ja }               (5) 

qac = qac + qi                                    (6) 
 

Also to update S resource, some vertices are set to 
1 if they have already been visited or they are be-
coming unreachable vertices due to violating con-
straints. Forward path extension (from i to j) is 
feasible only if ґ ≤bj', ґ ≤T/2,  

ja ≤T/2 and qac is not 

larger than vehicle capacity. Cost updating along 
forward path extension is done similar to Qureshi et 
al.1),6).  
b) Backward path extension 

Backward time windows [Ai ,Bi'] ,calculated by 
adding forward time windows with service time, 
represent the range of time at each vertex iC when 
service can be terminated. All resources (qac

bw, Sbw) 
except ґbw (time) are initialized and updated by the 
same rules as forward extension. The particular up-
dated rule of ґbw when path extended from j to i is as 
follow; 

 
  ґbw * = max{ґbw + Ѳj + ttij , T- Bi'}               (7) 

 
Backward path extension from j to i is feasible 

only if ґbw ≤ T- Ai , ґ
bw≤T/2, Bi'≤T/2 and qac does not 

exceed vehicle capacity. Late arrival penalty cost 
corresponded to vertex j has to be considered in case 
of  T- Bj ≤ ґbw  ≤ T- Aj . 

To avoid generating labels that cannot lead to the 
optimal solution, the same dominance rule developed 
by Feillet et al.10) is implemented on both forward 
and backward path extensions. 
c) Joining of forward and backward path exten-
sions 

Forward and backward partial paths must be 
joined together to become complete paths. The fea-
sibility conditions that have to be satisfied during the 
joining are: 1) no vertex can be visited by both for-
ward and backward paths 2) qac + qac

bw is no larger 
than vehicle capacity and 3) ґ + ґbw≤ T. 

 
 

3. RESULTS AND DISCUSSIONS 
 

In this section, the exact solutions of the 
VRPSSTW using column generation algorithm with 
mono-directional dynamic programming (hereafter 
referred as case 1) and using column generation with 
bi-directional dynamic programming (hereafter re-
ferred as case 2) are summarized in Table 1. Due to 

arbitrary limits and in order to simplify the problems, 
bi' in both cases are particularly relaxed to 10 minutes 
for every customer instead of using maximum bi' 
based on formulation. All solutions were run on 
MATLAB (version R2009) and Solomon's bench-
mark4) R1 type of instances were selected to test the 
algorithms. 

In Table 1, a few 25-customer, 50-customer and 
75-customer instances of Solomon R1 type have 
been solved to optimality for both case 1 (represented 
by white rows) and case 2 (represented by gray 
rows). Column[2] represents the number of branch 
and bound nodes. Column[3] gives lower bound 
obtained at the root node. Column[4] shows the op-
timal objective value while column[5] gives number 
of vehicles needed. Column[6] shows the number of 
iterations when the optimal integer solution is 
reached. Column[7] gives the number of labels gen-
erated at root node. In case 2, both forward and 
backward labels are generated (forward labels 
/backward labels) while forward labels are only 
generated in case 1. Column[8] and [9] report com-
putational time in seconds and the percentage of gap 
between[3] and [4] respectively. Note that R104_50* 
and R105_75* in case 1 are the best integer solutions 
obtained from more than 5 hours of computational 
time.  

A comparison of both cases shows that case 1 
requires less computational time when solving small 
size (25 and 50 customers) of R101, R102 and R105 
instances. All these Solomon instances have narrow 
time windows and the complexity of problem de-
pends on the width of time windows. Thus, the sub-
problems in case 1 can be rapidly and easily handled 
while the joining step in subproblem of case 2 needs 
slightly more computational time.  

In contrast, R103 and R104 instances that have 
very wide time windows result in difficulty of han-
dling subproblems. Using bi-directional dynamic 
algorithm (case 2) spends shorter computational time 
to generate feasible paths in subproblem especially 
for 50-customer of R103 and R104 instances. Case 2 
also requires less computational time to solve large 
size (75 customers) of some R1 instances. In addi-
tion, the gap between lower bound obtained at the 
root node and the optimal solution in case 2 is smaller 
(or equal) than case 1. This implies that lower bound 
obtained in case 2 is better.  

 
 

4. CONCLUSIONS 
 

This paper attempted to handle the ESPPRCLAP 
subproblem in the VRPSSTW by using bi-directional 
dynamic programming. This paper also presented the 
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solutions tested on Solomon R1 instances of using 
column generation based bi-directional dynamic 
programming compared to using column generation 
based mono-directional dynamic programming. 

 
Table 1 Summary of the VRPSSTW exact solutions  

 
Instance 

 
[1] 

BB 
 

[2] 

LB  
 

[3] 

Z 
 

[4] 

K 
 

[5] 

Run 
 

[6] 

Label 
 

[7] 

Time
(s) 
[8] 

GAP
(%)
[9] 

R101_25 2 5554 5841 7 10 891/- 1.1 4.9 

R101_25 2 5554 5841 7 6 105/96 1.4 4.9 

R101_50 1 7958 7958 9 11 6693/- 6.8 0 

R101_50 1 7958 7958 9 8 385/299 8.6 0 

R101_75 29 11686 11931 14 176 30015/- 324.9 2.1 

R101_75 8 11927 11931 14 34 843/713 253.3 0.03 

R102_25 3 4561 4986 6 20 4737/- 5.9 8.5 

R102_25 2 4561 4986 6 8 438/649 14.0 8.5 

R102_50 15 6507 6939 8 88 40953/- 255.6 6.2 

R102_50 

 

16 6516 6939 8 37 4878/ 

3051 

281.6 6.1 

R102_75 15 9406 9570 11 109 104866/- 1257.4 1.7 

R102_75 

 

14 9414 9570 11 45 8475/ 

7058 

1165.3 1.6 

R103_25 1 3445 3445 4 17 17678/- 24.2 0 

R103_25 

 

1 3445 3445 4 7 1595/ 

1532 

22.1 0 

R103_50 13 5508 6046 7 111 225008/- 3718.3 8.9 

R103_50 

 

13 5615 6046 7 44 18492/ 

12656 

382.3 7.1 

R104_25 2 2997 3400 4 31 86375/- 285.8 11.9 

R104_25 

 

13 3036 3400 4 19 3601/ 

3152 

199.0 10.8 

R104_50* 1 - 39775 50 12 308328/- 50279 - 

R104_50 2 4639 5098 6 7 86618/ 

54932 

1840.6 9.0 

R105_25 3 3886 4250 5 18 2992/- 3.7 8.6 

R105_25 2 3886 4250 5 7 280/213 9.6 8.6 

R105_50 41 6421 6917 8 156 18950/- 132.6 7.2 

R105_50 

 

23 6443 6917 8 45 1669/ 

853 

184.4 6.9 

R105_75* 52 8731 10331 12 301 72018/- 1142.5 15.5 

R105_75 

 

38 8723 9582 11 92 3971/ 

3529 

369.1 9.0 

 
The obtained results show that solving large size 

of instances as well as solving instances with very 
wide time windows by column generation with 

mono-directional one need more computational time 
requirement. This is because a number of labels 
generated in subproblem is dramatically high when 
size of instances increase. The solution approach to 
optimality also needs many iterations and very large 
size of branch and bound tree. Using column gener-
ation with bi-directional dynamic programming has 
significant advantages over these cases. It leads to the 
reduction of labels generated in subproblem and 
computational time. 

 
 

5. FUTURE WORK 
 

This paper studied a variant of route optimizing 
tool, named the VRPSSTW. The overall cost as well 
as the number of vehicles used is optimized (mini-
mized). The order of customers along the route is also 
optimally done. However, only single depot is 
represented in the system. Considering to be more 
realistic, more than one depot will be concerned 
(multi-depot vehicle routing problem) and the num-
ber of depots and their locations will be optimized 
(location routing problem).    
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