
 1

Column Generation with Bi-directional Dynamic Pro-

gramming for Vehicle Routing and Scheduling Problem
with Semi-Soft Time Windows

Narath BHUSIRI1, Eiichi TANIGUCHI2 and Ali G. QURESHI3

1 Member of JSCE, Dept. of Urban Management, Kyoto University
 (C1-2-334 Bldg., Nishikyo-ku, Kyoto-city 615-8540, Japan)

E-mail:bhusiri.narath@at3.ecs.kyoto-u.ac.jp
2 Member of JSCE, Professor, Dept. of Urban Management, Kyoto University

(C1-2-335 Bldg., Nishikyo-ku, Kyoto-city 615-8540, Japan)
E-mail: taniguchi@kiban.kuciv.kyoto-u.ac.jp

3 Member of JSCE, Lecturer, Dept. of Urban Management, Kyoto University
(C1-2-334 Bldg., Nishikyo-ku, Kyoto-city 615-8540, Japan)

E-mail: aligul@ums.mbox.media.kyoto-u.ac.jp

Vehicle Routing Problem with Semi-Soft Time Windows (VRPSSTW) is a new extension of Vehicle
Routing Problem (VRP). In the VRPSSTW, vehicles are not strictly forced to serve customers only within
time windows. It is also possible to arrive earlier than time windows (waiting at no cost until time windows
begin) or to arrive later than time windows (with taking penalty costs into account). An exact column
generation algorithm involving new elementary shortest path problem with resource constraints and late
arrival penalties (ESPPRCLAP) as subproblem is used to solve the VRPSSTW to optimality. This paper
compares the results of using mono-directional and bi-directional dynamic algorithms for solving the
ESPPRCLAP.

 Key Words : column generation, semi-soft time windows, vehicle routing problem, exact algorithm

1. INTRODUCTION

Vehicle Routing Problem (VRP), defined as
NP-hard problem, is an effective route optimizing
tool in city logistics1),2). The VRP is required to de-
termine a set of minimum cost routes for an identical
set of vehicles to serve a set of known demand cus-
tomers. Each route starts and ends at the central depot
and visits a subset of customers along its route
without vehicle capacity violation. Each customer
must be served once.

Different variants of the VRP have been studied by
researchers, for instance, VRP with hard time win-
dows (VRPHTW)3),4) that strictly requires vehicles to
visit at any customer location within a specified time
interval (time windows or [

ia ,
ib]:

ia and
ib represent

the earliest and latest possible service start time at
each customer, respectively). Another variant called
VRP with soft time windows (VRPSTW)5) is consi-
dered by relaxing time windows. It is possible to visit
customers beyond time windows [

ia ,
ib] with some

early or late penalty costs.
Recently, a new variant of the VRP named vehicle

routing problem with semi-soft time windows
(VRPSSTW)1)6) has been extended from the
VRPHTW and the VRPSTW. Vehicles are allowed
to wait without any cost at customer locations until
the earliest service start time (

ia) in case of early

arrival or vehicles have to take linear penalty terms
into account if vehicles arrive later than time win-
dows (see Fig. 1). The latest possible service start
time of each customer is extended from

ib to
ib '. The

VRPSSTW takes advantages of offering more effi-
cient use of vehicles (compared to the VRPHTW)
and dealing with less complex cost structure (com-
pared to the VRPSTW).

Both exact and heuristic approaches have been
proposed to solve the VRPSSTW. Focusing on exact
algorithm presented first by Qureshi et al.6), a column
generation scheme based on a new subproblem,
namely elementary shortest path problem with re-
source constraints and late arrival penalties
(ESPPRCLAP), has been successfully developed.

 2

However, the authors reported that only up to
50-customer instances of some problem types in
Solomon's benchmark4) have been exactly solved
with reasonable computational time. This is because
the complexity of subproblem increases when re-
laxing time windows7).

Fig.1 Linear late arrival penalty function for the VRPSSTW.

This paper aims to improve the ESPPRCLAP

pricing subproblem in exact column generation to
efficiently solve large problem instances in Solo-
mon's benchmark set to optimality. Instead of using
mono-directional dynamic programming in sub-
problem1),6), the bi-directional dynamic programming
algorithm developed by Righini and Salani8),9) is
applied in this paper for handling with the
ESPPRCLAP subproblem.

2. COLUMN GENERATION

Column generation (or Dantzig-Wolfe decompo-
sition or branch-and-price algorithm) decomposes
the VRPSSTW problem into 1) a set covering master
problem 2) the ESPPRCLAP as its subproblem. To
calculate the extended latest allowable service start
time at any customer (

ib ' , refer to Fig. 1) as well as

the comprehensive VRPSSTW mathematical model
can be found in Qureshi et al.1),6).

The set covering master problem aims at finding a
set of least cost routes that services all customers.
While the ESPPRCLAP subproblem generates the
feasible routes subject to semi-soft time windows and
capacity constraints. The set covering master prob-
lem can be stated as below;

min
p

Pp
p yc



 (1)

s.t. 1



Pp

pip ya Ci (2)

 1,0py Pp (3)

where C denotes a set of customers, P is a set of

feasible routes, cp is cost of route pP, yp is a binary
variable having value 1 if route pP is selected and 0
otherwise and

ipa is the number of times route pP

visits customer iC. The objective (1) is to minimize
the overall cost of routes. The overall costs include
fixed vehicle cost, traveling cost and late arrival pe-
nalty cost (if necessary).

The pricing subproblem consists of determining a
set of feasible routes with negative reduced cost. The
reduced cost of route is the sum of the reduced cost of
all arcs in the route and the reduced cost of each arc
can be computed using (4)

)2/()2/(jiijij cc   Vi (4)

let V be the vertex set including depot (vertex 0)

and customer set (with vertices 1,2,...,n), cij is the cost
of arc (i,j), i,j V and

i is dual variables corres-

ponding to (2) in master problem. Please be noted
that dual variable at depot vertex is initially 0
(

0 =0).

(1) ESPPRCLAP subproblem

The general idea of bi-directional dynamic pro-
gramming8),9) to solve the ESPPRCLAP subproblem
is that labels are simultaneously generated from both
forward and backward path directions subject to
semi-soft time windows and capacity constraints.
Forward path direction starts from initial depot and
move forward to customer i. This represents the path
from depot to i. While backward path direction starts
from terminal depot and move backward to customer
j representing path from j to depot.

Applying critical resource rule8),9) in order to re-
duce a number of labels generated, path extension in
both directions are only extended when critical re-
source consumption does not exceed a half of the
total available resource. In the ESPPRCLAP, critical
resource is the time (T) resource, where T can be
found as the maximum possible arrival time at ter-
minal depot (T = min {b0, (maxi C {bi' + Ѳi +
tti0})}) , let Ѳi be service time at iC and tti0 be tra-
veled time from customer i to terminal depot).

Finally, partial paths from both directions are
joined if satisfying all feasibility conditions. The
steps of bi-directional dynamic programming algo-
rithm for solving the ESPPRCLAP can be briefly
outlined as follow;
a) Forward path extension

Forward time windows [
ia ,

ib '] are associated with

each vertex iV. Note that at depot vertex, b0=b0'.
Three involved resources are consumed during path
extension indicating by ґ (time), qac (demand) and S

 3

(unreachable vertices). All resources are initially set
to 0. When path is extended from i to j, these re-
sources are updated as follow

 ґ * = max{ґ + Ѳi + ttij, ja } (5)

qac = qac + qi (6)

Also to update S resource, some vertices are set to
1 if they have already been visited or they are be-
coming unreachable vertices due to violating con-
straints. Forward path extension (from i to j) is
feasible only if ґ ≤bj', ґ ≤T/2,

ja ≤T/2 and qac is not

larger than vehicle capacity. Cost updating along
forward path extension is done similar to Qureshi et
al.1),6).
b) Backward path extension

Backward time windows [Ai ,Bi'] ,calculated by
adding forward time windows with service time,
represent the range of time at each vertex iC when
service can be terminated. All resources (qac

bw, Sbw)
except ґbw (time) are initialized and updated by the
same rules as forward extension. The particular up-
dated rule of ґbw when path extended from j to i is as
follow;

 ґbw * = max{ґbw + Ѳj + ttij , T- Bi'} (7)

Backward path extension from j to i is feasible

only if ґbw ≤ T- Ai , ґ
bw≤T/2, Bi'≤T/2 and qac does not

exceed vehicle capacity. Late arrival penalty cost
corresponded to vertex j has to be considered in case
of T- Bj ≤ ґbw ≤ T- Aj .

To avoid generating labels that cannot lead to the
optimal solution, the same dominance rule developed
by Feillet et al.10) is implemented on both forward
and backward path extensions.
c) Joining of forward and backward path exten-
sions

Forward and backward partial paths must be
joined together to become complete paths. The fea-
sibility conditions that have to be satisfied during the
joining are: 1) no vertex can be visited by both for-
ward and backward paths 2) qac + qac

bw is no larger
than vehicle capacity and 3) ґ + ґbw≤ T.

3. RESULTS AND DISCUSSIONS

In this section, the exact solutions of the
VRPSSTW using column generation algorithm with
mono-directional dynamic programming (hereafter
referred as case 1) and using column generation with
bi-directional dynamic programming (hereafter re-
ferred as case 2) are summarized in Table 1. Due to

arbitrary limits and in order to simplify the problems,
bi' in both cases are particularly relaxed to 10 minutes
for every customer instead of using maximum bi'
based on formulation. All solutions were run on
MATLAB (version R2009) and Solomon's bench-
mark4) R1 type of instances were selected to test the
algorithms.

In Table 1, a few 25-customer, 50-customer and
75-customer instances of Solomon R1 type have
been solved to optimality for both case 1 (represented
by white rows) and case 2 (represented by gray
rows). Column[2] represents the number of branch
and bound nodes. Column[3] gives lower bound
obtained at the root node. Column[4] shows the op-
timal objective value while column[5] gives number
of vehicles needed. Column[6] shows the number of
iterations when the optimal integer solution is
reached. Column[7] gives the number of labels gen-
erated at root node. In case 2, both forward and
backward labels are generated (forward labels
/backward labels) while forward labels are only
generated in case 1. Column[8] and [9] report com-
putational time in seconds and the percentage of gap
between[3] and [4] respectively. Note that R104_50*
and R105_75* in case 1 are the best integer solutions
obtained from more than 5 hours of computational
time.

A comparison of both cases shows that case 1
requires less computational time when solving small
size (25 and 50 customers) of R101, R102 and R105
instances. All these Solomon instances have narrow
time windows and the complexity of problem de-
pends on the width of time windows. Thus, the sub-
problems in case 1 can be rapidly and easily handled
while the joining step in subproblem of case 2 needs
slightly more computational time.

In contrast, R103 and R104 instances that have
very wide time windows result in difficulty of han-
dling subproblems. Using bi-directional dynamic
algorithm (case 2) spends shorter computational time
to generate feasible paths in subproblem especially
for 50-customer of R103 and R104 instances. Case 2
also requires less computational time to solve large
size (75 customers) of some R1 instances. In addi-
tion, the gap between lower bound obtained at the
root node and the optimal solution in case 2 is smaller
(or equal) than case 1. This implies that lower bound
obtained in case 2 is better.

4. CONCLUSIONS

This paper attempted to handle the ESPPRCLAP
subproblem in the VRPSSTW by using bi-directional
dynamic programming. This paper also presented the

 4

solutions tested on Solomon R1 instances of using
column generation based bi-directional dynamic
programming compared to using column generation
based mono-directional dynamic programming.

Table 1 Summary of the VRPSSTW exact solutions

Instance

[1]

BB

[2]

LB

[3]

Z

[4]

K

[5]

Run

[6]

Label

[7]

Time
(s)
[8]

GAP
(%)
[9]

R101_25 2 5554 5841 7 10 891/- 1.1 4.9

R101_25 2 5554 5841 7 6 105/96 1.4 4.9

R101_50 1 7958 7958 9 11 6693/- 6.8 0

R101_50 1 7958 7958 9 8 385/299 8.6 0

R101_75 29 11686 11931 14 176 30015/- 324.9 2.1

R101_75 8 11927 11931 14 34 843/713 253.3 0.03

R102_25 3 4561 4986 6 20 4737/- 5.9 8.5

R102_25 2 4561 4986 6 8 438/649 14.0 8.5

R102_50 15 6507 6939 8 88 40953/- 255.6 6.2

R102_50

16 6516 6939 8 37 4878/

3051

281.6 6.1

R102_75 15 9406 9570 11 109 104866/- 1257.4 1.7

R102_75

14 9414 9570 11 45 8475/

7058

1165.3 1.6

R103_25 1 3445 3445 4 17 17678/- 24.2 0

R103_25

1 3445 3445 4 7 1595/

1532

22.1 0

R103_50 13 5508 6046 7 111 225008/- 3718.3 8.9

R103_50

13 5615 6046 7 44 18492/

12656

382.3 7.1

R104_25 2 2997 3400 4 31 86375/- 285.8 11.9

R104_25

13 3036 3400 4 19 3601/

3152

199.0 10.8

R104_50* 1 - 39775 50 12 308328/- 50279 -

R104_50 2 4639 5098 6 7 86618/

54932

1840.6 9.0

R105_25 3 3886 4250 5 18 2992/- 3.7 8.6

R105_25 2 3886 4250 5 7 280/213 9.6 8.6

R105_50 41 6421 6917 8 156 18950/- 132.6 7.2

R105_50

23 6443 6917 8 45 1669/

853

184.4 6.9

R105_75* 52 8731 10331 12 301 72018/- 1142.5 15.5

R105_75

38 8723 9582 11 92 3971/

3529

369.1 9.0

The obtained results show that solving large size

of instances as well as solving instances with very
wide time windows by column generation with

mono-directional one need more computational time
requirement. This is because a number of labels
generated in subproblem is dramatically high when
size of instances increase. The solution approach to
optimality also needs many iterations and very large
size of branch and bound tree. Using column gener-
ation with bi-directional dynamic programming has
significant advantages over these cases. It leads to the
reduction of labels generated in subproblem and
computational time.

5. FUTURE WORK

This paper studied a variant of route optimizing
tool, named the VRPSSTW. The overall cost as well
as the number of vehicles used is optimized (mini-
mized). The order of customers along the route is also
optimally done. However, only single depot is
represented in the system. Considering to be more
realistic, more than one depot will be concerned
(multi-depot vehicle routing problem) and the num-
ber of depots and their locations will be optimized
(location routing problem).

6. REFERENCE

1) Qureshi, A. G., Taniguchi, E. and Yamada, T. : Exact

solution for vehicle routing problem with semi soft time
windows and its application, Procedia Social and Beha-
vioral Sciences, Vol. 2, pp. 5931-5943, 2010.

2) Taniguchi, E., Thompson, R. G., Yamada, T. and Duin, R.
V. : City logistics: Network modeling and intelligent
transport systems, Pergamon, Oxford, 2001.

3) Kohl, N., Desrosiers, J., Madsen, O. B. G., Solomon, M. M.,
Soumis, F. : 2-path cuts for the vehicle routing problem with
time windows, Transportation Science, Vol. 33, pp.
101-115, 1999.

4) Solomon, M. M. : Algorithms for the vehicle routing and
scheduling problems with time window constraints, Oper-
ation Research, Vol. 35, pp. 254-264, 1987.

5) Ioannou, G., Kritikos, M. and Prastacos, G. : A problem
generator-solver heuristic for vehicle routing with soft time
windows, Omega; The International Journal of Manage-
ment Science, Vol. 31, pp. 41-53, 2003.

6) Qureshi, A. G., Taniguchi, E. and Yamada, T. : An exact
solution approach for vehicle routing and scheduling prob-
lems with soft time windows, part E45, Transportation
Research, pp.960-977, 2009.

7) Desrochers, M., Desrosiers, J. and Solomon M. M. : A new
optimization algorithm for the vehicle routing problem with
time windows, Operation Research, Vol. 40, pp. 342-354,
1992.

8) Righini, G. and Salani, M. : New dynamic programming
algorithms for the resource constrained elementary shortest
path problem, Networks; An International Journal, Vol. 51,
pp. 155-170, 2008.

9) Righini, G. and Salani, M. : Symmetry helps: Bounded
bi-directional dynamic programming for the elementary
shorest path problem with resource constraints, Discrete

 5

Optimization, Vol. 3, pp. 255-273, 2006.
10) Feillet, D., Dejax, P., Gendreau, M. and Gueguen, C. : An

exact algorithm for the elementary shortest path problem

with resource constraints: Application to some vehicle
routing problems, Networks, pp. 216-229, 2004.

