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servicing arcs become very important. It is because one section may block other sections. Only adjacent 

arcs can be connected with each other, while for distant arcs have no way to be connected before the 
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   Key Words : debris collection, disaster, blocked access, possibility access, CVRP, CARP, 

transformation, tabu search  

 

 

1. INTRODUCTION 

 
    We study a variant of the undirected Capacitated 

Arc Routing Problem (CARP)1,2). This problem is 
motivated from debris collection operation after 

disaster. In this paper, the sequences in visiting and 

servicing arcs become very important. It is because 
one section may block other sections. Only adjacent 

arcs can be connected with each other, while for 

distant arcs have no way to be connected before the 

blocked access between them being removed. The 
other problem that similar with our problem is winter 

gritting operation3-8). The fundamental difference 

between debris collection operation after disaster and 
winter gritting operation is the pointing of 

intervention. In debris collection operation after 

disaster, because some access are blocked by the 

debris, sequence in visiting and servicing arcs at the 
previous structure will influence aggregate 

accessibility at the next structure. Whereas in winter 

gritting operation, the timing of an intervention is of 
prime importance. That is, if the intervention is too 

early or too late, the cost in material and time sharply 

increases. 
    The CARP is NP-hard (non-deterministic 

polynomial-time hard). It was first addressed with 

relatively simple heuristics, like the path-scanning 9), 

construct strike10), and greedy11) heuristics. Then, 
they have been improved over time using 

metaheuristics like the tabu search11-22). Many 

surveys1,2,23-26) can be found, explaining many CARP 
variants. 

    In this study, the underlying CARP to our debris 

collection operation will be transformed into the 

Capacitated Vehicle Routing Problem (CVRP). 
There exist some efficient methods to tranform 

CARP into CVRP27-29). CARP and CVRP are in fact 

closely related, the main difference being that in the 
CARP customers are set of arcs while in the CVRP 

customers are set of nodes.  

    The paper is organized as follows. The problem is 

first introduced in Section 2. Then, its transformation 
into an equivalent node routing problem is described 

and the resulting mathematical formulation is  

presented in Section 3. The tabu search approach for 
solving this problem and instance problem are 

reported in Section 4. Finally, the conclusion follows 

in Section 5. 
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2. PROBLEM DESCRIPTION 
 

    CARP can be defined on an undirected graph G = 

(V, A), in which V is the set of nodes and A is the set 

of arcs. A is partitioned into a subset of required arcs 
A1, which must be serviced, and another subset of 

arcs A2, required to maintain connectivity. Each 

required arc a ∈ A1 is associated a demand z(a), a 

travel cost tc(a), and a service cost sc(a). The other 

arcs in subset A2 have a travel cost tc only. Usually, 

the service cost is greater than the travel cost because 
it takes more effort to service an arc than to only 

simply travel along the arc. 

    A set of identical vehicles K = {1… m} are placed 
at a central depot node. These vehicles with capacity 

Qk, are available to service the required arcs. Each 

vehicle services a single route that must start and end 
at the depot. The vehicles are only allowed to move 

from or to adjacent arcs. However for distant arcs, 

some of arcs blocked, so those are not allowed to be 

visited before removing the blockage first. The 
objective is to service all required arcs in the graph at 

least cost with feasible routes, where the cost is 

related to the number of vehicles used, the travel cost 
and the service cost. In our case, all of the service 

cost sc is assumed to be 0, and also fix vehicle cost fc 

is assumed to be 0. So the cost involved is only travel 

cost. But if not so, we can add the service cost once 
the vehicle visit and service the required arc and add 

the fix vehicle cost everytime the vehicle starts from 

depot. 

 

 

3. PROBLEM FORMULATION 
 

    We make a transformation from ARP (Arc 

Routing Problem)  in graph G = (V, A) into an 

equivalent VRP (Vehicle Routing Problem) in a 
transformed graph G` = (V`, A`). In a well known 

transformation27), an arc a ∈ A in CARP is 

represented by three nodes in the equivalent CVRP. 
Since we anticipate large instance of debris 

collection operation, we will use the type of 

transformation ARP into VRP with  making two 
nodes for each required undirected arc28,29).  

    The transformation proposed by Longo et al.29), is 

described as follows. An arc (i, j) in A1 is associated 

with two nodes sij and sji, thus the resulting CVRP 
instance is defined on a complete undirected graph 

G` = (V`, A`), where: 

𝑉` =   𝑠𝑖𝑗, 𝑠𝑗𝑖 ∪ {𝑜}
 𝑖 ,𝑗  ∈𝐴

 (1a) 

 

Node 0 serves as the depot. The arc costs d and the 
demands z are defined Longo et al.29) as follows: 

 

   0 if (i, j) = (k, l)  
d (sij, skl)    =  d (i, j) if (i, j) = (l, k)  

   dist (i, k) if (i, j) ≠ (k, l),  

(i, j) ≠ (l, k) 

 

d (o, sij) =  dist (o, i),  (1b) 

 
Here dist (i, j) is the value of the shortest path from 

node i to node j in G. Eventhough it depends on 

whether the access between node i and node j is 

blocked or not, but we assume that for going back to 
depot (j = depot) the vehicle always can traverse the 

shortest path. The new demands are: 

𝑧 𝑠𝑖𝑗 = 𝑧 𝑠𝑗𝑖 =
1

2
𝑧(𝑖, 𝑗) 

(1c) 

 

The transformation fixes variable on all undirected 

arcs {(sij, sji) | (i, j) ∈ A} to 1. It means that CVRP 

solutions are only feasible where sij and sji are 

visited in sequence, either sij from or to sji. But in our 

case, a vehicle which load over capacity after visiting 
sij cannot move to sji in sequence and must go back 

to the depot, without even servicing sij. 

    After the transformation, we obtain a VRP with 
blocked access. This type of problem has never been 

addressed in the literature. Some variants of the 

Vehicle Routing Problem with Time Windows 

(VRPTW) can be reviewed in13,17,18,30,31) and a good 
review of different time constraint VRP can also be 

found in32). Our problem is without using time 

windows, considering time constraint is not 
appropriate to be implemented in urgent situation 

such as after disaster. 

    We use the same notation as in Tagmouti et al.3), 

where N`∈ V`, is the set of nodes that must be 

serviced. The depot is a single node, but duplicated 

into an origin depot o and a destination depot d in V`. 

As a new idea for the debris collection operation, we 
introduce a possibility access constraint on the nodes 

𝑝𝑖𝑗
𝑘 , (i, j) ∈ A`, k ∈ K, which are equal to 1 if vehicle k 

from node i can possibly visit and service node j, 0 

otherwise.  The decision variables are: (1) the binary 

flow variables on the arcs 𝑥𝑖𝑗
𝑘  (i, j) ∈ A`, k ∈ K, which 

are equal to 1 if vehicle k travels on arc (i, j) to 

service node j, 0 otherwise; and (2) the non-negative 

load variables 𝑄𝑖
𝑘 , i ∈ V` which specify the load of 

vehicle k just after servicing node i. Note that 𝑄𝑜
𝑘  = 

Qk , k ∈ K; d = tc + sc; and zo = zd = 0. The 

transformed CVRP can be formulated as follows: 
 
Min   

   𝑑𝑖𝑗 𝑥𝑖𝑗
𝑘

 𝑖 ,𝑗  ∈𝐴`𝑘∈𝐾

   

(2a) 

   

Subject to   

   𝑥𝑖𝑗
𝑘

𝑖∈𝑁`∪ 𝑜 𝑘∈𝐾

= 1 ; j∊ N` (2b) 
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   𝑥𝑜𝑗
𝑘

𝑗∈𝑁`𝑘∈𝐾

≤ 𝑚 

 

; K = {1… m} (2c) 

 𝑥𝑜𝑗
𝑘

𝑗 ∈𝑁`∪ 𝑑 

= 1 

 

; k ∊ K (2d) 

 𝑥𝑖𝑗
𝑘

𝑖∈𝑁`∪ 𝑑 

−  𝑥𝑗𝑖
𝑘

𝑗∈𝑁`∪ 𝑜 

= 0 

 

; k ∊ K  (2e) 

 𝑥𝑖𝑑
𝑘

𝑖∈𝑁`∪ 𝑜 

= 1 

 

; k ∊ K 

 

 

(2f) 

𝑥𝑖𝑗
𝑘  𝑄𝑖

𝑘 − 𝑧𝑗 − 𝑄𝑗
𝑘 ≤ 0 

 

; k ∊ K, (i, j)∊ A` (2g) 

𝑥𝑖𝑗
𝑘 − 𝑝𝑖𝑗

𝑘 ≤ 0 

 

; k ∊ K, (i, j)∊ A` (2h) 

0 ≤ 𝑄𝑖
𝑘 ≤ 𝑄𝑘 

 

; k ∊ K, i∊ V` (2i) 

0 ≤ 𝑥𝑖𝑗
𝑘 ≤ 1 

 

; k ∊ K, (i, j)∊ A` (2j) 

0 ≤ 𝑝𝑖𝑗
𝑘 ≤ 1 

 

; k ∊ K, (i, j)∊ A` (2k) 

𝑥𝑖𝑗
𝑘 ∊  0, 1  

 

; k ∊ K, (i, j)∊ A` (2l) 

𝑝𝑖𝑗
𝑘 ∊  0, 1  

 

; k ∊ K, (i, j)∊ A` (2m) 

    The objective function (2a) minimizes the sum of 

travel costs. A fixed vehicle cost fc can also be added 

to the travel costs 𝑑𝑜𝑗 , j∊ V` if one wants to penalize 

the use of an additional vehicle, but in our case we set 
it as 0. Constraints (2b) require that each node in V` 

must be serviced once. Constraints (2c) limit the 

number of vehicles used. Constraints (2d)-(2f) are 
the flow conservation constraints. Constraint (2g) are 

for the feasibility of the loads. Constraints (2h) 

impose that each node in V` travels from or to 

possible node. Constraints (2i) ensure load values 
that do not exceed vehicle capacity Qk and are > 0. 

Constraints (2j)-(2m) are binary values for the flow 

variables and possibility access constraints. 

 

 

4. TABU SEARCH 
 

(1) Tabu Search Algorithm 

    In this study, we propose a tabu search heuristics 
to solve the CVRP problem, as tabu search or 

heuristics in general is more appropriate and faster to 

solve large problems practically. The tabu search 

scheme proposed here, is well documented in the 
literature 11-22). Tabu search has quickly become one 

of the best and most widespread local search methods 

for combinatorial optimization. It is deserved to say 

that tabu search has been greatly successful in 

solving some difficult problems. 

    The method performs an exploration of the 
solution area in a subset of the neighborhood N(s) by 

moving from a solution s at iteration k to the best 

solution s` at iteration k+1. Since s` at iteration k+1 

does not always have an improvement upon s at 
iteration k, a tabu mechanism is implemented to 

prevent the process from cycling over a sequence of 

solutions.  
    We put prohibited moves in the list called as tabu 

list T(s,k). Aspiration criteria A(s,k) is set as an 

exception, which says eventhough some moves are 

tabu, but as long as making improvement for the 
solution, then the tabu list can be violated.  

    The other mechanisms used in our tabu search are 

diversification and intensification. The 
diversification keeps track of past solutions and 

imposes penalty for the frequently performed moves. 

The intensification performs search around solution 
features historically found good. In Fig.1, we can 

show the basic algorithm of tabu search that 

reviewed in details in32). 

 

k = 1.  

Generate initial solution  

WHILE the stopping condition is not met DO  

    Identify N(s). (Neighborhood set)  

    Identify T(s,k). (Tabu set)  

    Identify A(s,k). (Aspirant set)  

    Choose the best s  ̀∈  N(s,k) = {N(s) - T(s,k)}+A(s,k).  

    Memorize s` if it improves the previous best solution  

    s = s .̀  

    k = k+1.  

END WHILE 

 

Fig.1 Basic Tabu Search Algorithm 

 

(2) Instance Problem 
    We test our model on a small problem instance, 

see Fig. 2. An instance with 6 nodes (node 1 = depot) 

and 9 arcs (all are required arcs), where: 

 V = {1, 2, 3, 4, 5, 6};  

 Qk = 30 ton; 

 Cost d(i, j) : d(1,2) = 8, d(1,4) = 3, d(2,3) = 7, 

d(2,4) = 6, d(3,4) = 4, d(3,5) = 5, d(3,6) = 5, 

d(4,5) = 4, d(5,6) = 6 ;  

 Demand z(i, j) : z(1,2) = 8 ton, z(1,4) = 3 ton, 

z(2,3) = 7 ton, z(2,4) = 6 ton, z(3,4) = 4 ton, z(3,5) 
= 5 ton, z(3,6) = 5 ton, z(4,5) = 4 ton, z(5,6) = 6 

ton.  

 sc = 0 and fc = 0, thus d = tc. 
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Fig.2 Capacitated Arc Routing Problem 

 

    The CARP of Fig.2 is transformed into a CVRP 
with number of nodes V` = 2n+1; n = number of arc. 

After being transformed, graph tuns into VRP with 

number of nodes V` = 19, and node 1 still serves as 
depot. The transformation introduces nodes sij and 

sji for all required arcs (i, j ) ∈ A, as shown in Fig. 2, 

where: 

 V`= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

16, 17, 18, 19}; 

 Demand z : z2 = 4 ton, z3 = 1.5 ton, z4 = 4 ton, z5 

= 3.5 ton, z6 = 3 ton, z7 = 3.5 ton, z8 = 2 ton, z9 = 

2.5 ton, z10 = 2.5 ton, z11 = 1.5 ton, z12 = 3 ton, 
z13 = 2 ton, z14 = 2 ton, z15 = 2.5 ton, z16 = 2 ton, 

z17 = 3 ton, z18 = 2.5 ton, z19 = 3 ton. 

 

 
 

Fig.3 Capacitated Vehicle Routing Problem (transformed) 

 

    The final transformed instance, a constrained 
CVRP instance with 19 nodes, is defined over a 

complete graph with the costs between nodes 

presented in Table 1, calculated by the equation (1b). 

 

Table 1 Cost Matrix of Capacitated Vehicle Routing Problem  

 

 
 
    The new idea, that we proposed in this study, is 

possibility access matrix i.e., a constraint, on whether 

it is possible or not, the vehicle can move from one 
node to another. If vehicle k want to move from i to j, 

so node i and j must be either adjacent or nodes other 

than i and j that must be visited by vehicle k, in order 
to move from i to j, have to have demand z = 0 (they 

must have been serviced before). The possibility 

access matrix would always change from original 

and previous positions, everytime a vehicle service 
demand in each required node. It is because the 

blocked access condition will change, everytime 

demands on a node have been serviced.  
    We start with finding an initial solution, using a 

greedy heuristic11). The greedy heuristic attempts to 

construct a feasible solution moving from the current 
point. The idea is fairly simple, starting at the depot, 

a vehicle simply choose the closest customer at each 

iteration until all customers are visited. The vehicle 

goes back to depot only if all customers are visited; 
or loads exceed the vehicle capacity; or no possible 

way to move without visiting depot. Cost obtained is 

69 and the route is 1 – 2 – 4 – 5 – 7 – 8 – 13 – 11 – 3 – 

12 – 6 – 1 – 14 – 16 – 15 – 9  – 10 – 18 – 19 – 17 – 1.  
    Then, we continue using tabu search to solve VRP 
to find a better solution than the initial solution and 

finally found a better and the best solution for the 

debris collection operation after disaster VRP 

problem. Cost obtained is 63 and the route is 1 – 2 – 4 

– 5 – 7 – 8 – 13 – 11 – 3 – 1 – 6 – 12 – 14 – 16 – 15 – 9  

– 10 – 18 – 19 – 17 – 1. 

 
 

5. CONCLUSIONS 
    The debris collection operation after disaster is a 

new CVRP problem and not much research has been 

done in this topic. The uniqueness of this kind of 
CVRP problem is due to the limited access from one 
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section to another, as a result of the blocked access 

by debris. Therefore a modification in classical 

CVRP is required to solve this kind of problem. It is 
committed by adding a new constraint, which is 

mentioned in this study as possibility access 

constraint. This constraint sets whether a vehicle 

possibly moves from one node to another in a 
particular structure.  

    This problem is solved by using a tabu search, 

considering that in practice of debris collection 
operation after disaster would involve large 

instances. Practically, metaheuristics such as tabu 

search are more appropriate and faster to solve such 

problems.  Future research will now focus on giving 
scale of priority for the access to be serviced, because 

in this study, the entire access have same scale of 

priority. Furthermore, solving the problem with 
multi-depot and split delivery could be choosen as 

other directions of research to get a better solution. 
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