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Abstract: This paper studies the speed of three link-to-link multipath algorithms with the purpose of 
improving their applicability for route navigation. These previously established algorithms are the 
original Spiess & Florian coding of the strategy approach for transit passengers and two derivations of it, 
the so-called Hyperstar-Dijkstra (HPD) algorithm and the Hyperstar (HS) algorithm. The latter firstly 
applied the strategy approach to route navigation. A new speed-up algorithm, named Dijkstra-Hyperstar 
(DHS), is proposed by utilizing, firstly, Dijkstra shortest distances as heuristics and, secondly, the idea of 
a node directed search which reduces the link set to be checked. This is achieved by “dynamically” 
confining the link set by gradually extending it to include those from newly updated node. The second 
improvement can also be independently applied to the original Spiess & Florian (for transit network) or 
Adapted Spiess & Florian (ASF, for road network) algorithms without heuristics. The performances 
among these four algorithms are compared in synthetic networks and a significant improvement in 
running time can be attained with the newly proposed DHS algorithm. Applications to both transit 
assignment as well as route navigation are discussed. 
 
   Key Words : Adapted Spiess & Florian (ASF), Hyperstar (HS), Hyperpath-Dijkstra (HPD), Dijkstra-
Hyperstar (DHS), Node directed search, Route navigation 

 

1.  INTRODUCTION 
 

Shortest path algorithms, digital maps and 
positioning technologies have made vehicle 
navigation come true and the market has been 
spreading. The cost to produce navigation 
equipment is continuously decreasing so that there 
is a fast growing number of global positioning 
system (GPS) integrations with many IT products 
such as mobile phones, personal digital assistants 
(PDA) and, nowadays, digital cameras. The 
traditional in-vehicle route navigation equipment 
has been challenged by these GPS-integrated 
terminals. To keep their market position, specialized 
services are added to vehicle route navigation 
equipment. These are often based on real traffic 
data, in many cases with the aim to provide more 
alternative routes to meet with various driver 

preferences.  
In present navigation systems, the A-star shortest 

path algorithm introduced by Hart et al. (1968) and 
Pearl (1984) has a pivotal role. As a heuristic 
version of Dijkstra’s algorithm (Dijkstra, 1959) the 
speed-up of searching by A-star is remarkable but it 
may not guarantee the shortest path if the heuristic 
estimations surpass the real distances. Besides, since 
the heuristic of A-star is based on external 
information, the exact time complexity is entirely 
unforeseen. The estimation accuracy of the rest 
distance from the current node to the destination is a 
key issue for the efficiency of A-star: On the one 
hand, if the correlation of the distance estimation 
with the crow-fly distance is too weak, the time 
complexity of the algorithm is not significantly 
improved; on the other hand, if the correlation is too 
strong, the risk of non-optimal solutions may occur 
(Hofmann-Wellenhof, 1995).  
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An ideal heuristic will always return the actual 
minimum cost to reach the goal (Wichmann, 2004). 
A perfect knowledge of the remaining distance will 
reduce the nodes involved in the A-star search and 
guarantee the shortest path availability at the same 
time. In real applications, the Euclidean distance is 
widely adopted as the heuristic number for tile-
based maps. A popular way for digital map based 
dynamic vehicle navigation is to carry out routing 
by a Dijkstra algorithm first from the reverse 
direction (from the destination to the origin) and 
then en-route rerouting by A-star algorithm with the 
shortest distance heuristics generated in the first step 
(e.g. Ben-Akiva et al. 1997).  

Both, Dijkstra and A-star algorithms, only 
generate the shortest path according to the pre-
determined cost index. In traffic networks, this 
index can be either road distance, travel time or a 
combination taken further factors into account (e.g. 
generalized cost). However, there are at least three 
issues that make it difficult to apply a single shortest 
path suggestion to route navigation: 

Firstly, travel times and other aspects determining 
the attractiveness of a route are often uncertain, 
which means the recommended shortest path may 
also change during a journey. Secondly, travelers 
have different preferences, which means the 
suggested route might not be the one preferred by 
the traveller. Thirdly, from a network perspective, 
there is a potential risk that suggesting single routes 
causes congestion if the market penetration of 
navigation devices is high (e.g. Ben-Akiva et al. 
1997). For all these reasons, it is suggested that 
multiple route navigation is preferred for the benefit 
of users and/or the traffic system. In some 
commercial applications today, hence multiple paths 
are provided by showing users the shortest path for 
different preferences (distance, money, travel time, 
etc.). Commercial applications that consider the 
potential delay of links to suggest a-priori a route set 
bundle, are, however, to our knowledge not yet on 
the market.  

In research papers, the K-shortest path algorithm 
is well studied and often utilized to generate 
multiple route alternatives from the whole network 
(e.g. Eppstein, 1994, 1998; Jiménez, 1999, 2003). 
Popular algorithms, entailing path removing and 
path deviation were tested and compared by Santos 
(2006) who also proposed a new path deviation K-
shortest path algorithm. A possible problem of K-
shortest paths algorithms is that they are route-based 
and suggested paths may significantly overlap. 
Therefore, algorithms are often modified by some 
constraints before being applied to traffic networks. 
The typical way is to compute a sufficiently large 
path set first and then delete the disqualified paths 

by checking the constraints. For example, Zijpp et 
al. (2005) proposed a constrained K-path algorithm 
that finds the feasible routes and can be applied in 
combination with a wide class of constraints. To 
speed up the K-shortest path enumeration, Chen et 
al. (2007) integrated the A-star heuristic into the K-
shortest path finding process. By setting different 
constraints such as max distance, travel time, 
historical probability to hit a failed link and some 
other factors, more reliable paths are attainable. 
Similarly aiming to provide reliable route 
navigation, Kaparias and Bell (2009) took the route 
reliability directly as a route constraint and 
compared the proposed guidance with those from 
existing commercial route navigation equipment. 
Considering the turn constraints and route 
similarity, Yongtaek and Hyunmyung (2005) 
proposed a link-based multipath algorithm and 
criteria of route dissimilarity were integrated into 
the algorithm to create heterogeneous routes. 
Though link-based, the algorithm of Yongtaek and 
Hyunmyung is still classified as a K-shortest path 
based algorithm, with the difference that the labeled 
units are links instead of nodes.  

Not only for route navigation but also for traffic 
assignment path generation methods such as K-
shortest path algorithms are used. However, 
different to path-based route choice modeling, for 
example, Fosgerau et al. (2009) recently proposed a 
link-based route choice model that considers the 
route choice as a sequence of link choices. The idea 
of link-to-link route choice is in fact similar to 
strategy based route choice proposed for transit 
assignment proposed by Spiess and Florian (1989) 
and by Nguyen and Pallotino (1988) who also 
introduce the term “hyperpath” to transit 
assignment. A hyperpath refers to a set of paths any 
of which is potentially optimal due to travel time 
uncertainty on one or more links. In transit 
assignment this uncertainty might be created by the 
arrival time of vehicles. With the assumption that 
one takes the first-coming vehicle from the set of 
attractive paths, the optimal strategy that minimizes 
the total expected in-vehicle travel time and waiting 
time of transit passenger was formulated as a linear 
programming problem. 

Cominetti and Correa (2001) proposed a method 
named Hyperpath-Dijkstra (HPD), which was 
adapted from Dijkstra’s shortest path algorithm, and 
declared a better theoretical time complexity than 
Spiess & Florian’s original algorithm to determine 
the same hyperpath. However, although they 
mentioned the importance of an empirical 
comparison, such a comparison between the two 
algorithms has not been done by others so far. 
Inspired by the Spiess & Florian Algorithm (SFA) 
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for frequency-based transit assignment, Bell (2009) 
adapted this algorithm to road networks with 
uncertain travel times by defining the link frequency 
as the reciprocal of maximum delay. Consequently, 
the Adapted Spiess & Florian algorithm (ASF) for 
road network was introduced. (Note that SFA and 
ASF are of no difference except their model 
interpretation. SFA deals with transit networks and 
ASF deals with road networks.) Bell (2009) also 
proposed an A-star-like heuristic version named 
Hyperstar (HS) algorithm and suggested its 
application to route navigation in road networks.  

Without requiring any path enumeration, the HS 
algorithm provides us with a novel solution to 
multipath navigation and link-to-link multipath 
navigation, which could be more appropriate to 
represent drivers’ actual behavior. However, as an 
algorithm of polynomial time complexity, its speed 
is mostly dependent on the number of links, which 
is different from Dijkstra algorithm’s dependence on 
the number of nodes. In traffic networks, the 
number of links generally far exceeds the number of 
nodes and therefore it is necessary to conceive a 
better link searching strategy to accelerate the 
algorithm. The HPD algorithm considers the node-
link topology which in general leads to an improved 
time complexity. This is even though, just as 
Dijkstra’s algorithm, the HPD algorithm searches 
every node to obtain the hyperpath. The HS 
algorithm is a heuristic algorithm that is claimed to 
be faster than the Spiess & Florian algorithm, 
though again to our knowledge empirical 
comparisons have not been carried out so far. A 
main reason might be that the Spiess and Florian as 
well as the HPD algorithm are mainly intended for 
transit assignment where the efficiency requirement 
is not as stringent. However, since Bell (2009) 
started applying these algorithms in the navigation 
filed, their efficiency becomes a rigorous problem. 
By our testing results in large networks, it can be 
found that the HS algorithm is still far from 
satisfying the required speed for navigation 
applications, albeit it is better than the ASF 
algorithm. The HPD is much better than these two 
but we believe could be more intelligent: It searches 
all the nodes in the network regardless of the OD 
pair, which brought about our intention to find a 
better algorithm to attain a higher efficiency.  

The purpose of this paper is hence to propose and 
verify the idea of improving the speed of the HS 
algorithm with the aim of applicability for multipath 
navigation. There are two modifications to the 
original HS algorithm: First, the heuristic distances 
required for the A-star algorithm are generated by 
running Dijkstra’s algorithm from the origin so that 
the links involved in the search tend to be reduced. 

Second, a node-directed link selection is adopted by 
utilizing the pre-stored topology information so that 
the link selection process only involves those links 
that have been updated. This so-called node-directed 
link selection maintains the link list dynamically by 
taking advantage of the connecting information 
among nodes and links. In line with Bell (2009), 
assuming a relative low rate of navigation in use 
during a certain time interval, we will mainly focus 
on the speed improvement for navigation instead of 
the effect of navigation to the network that is 
involved in dynamic traffic assignment topics.  

The rest of this paper is organized as follows. In 
Section 2, the previously proposed three algorithms 
to create hyperpaths are outlined. Because of the 
similarity between HS and ASF, these two 
algorithms are illustrated together. Section 3 
presents the speed-up methods which lead to the 
proposed Dijkstra-Hyperstar (DHS) algorithm. The 
empirical performance comparisons among these 
four algorithms are illustrated in Section 4. Finally, 
in Section 5, some conclusions are drawn regarding 
applications for route guidance as well as transit 
assignment.  

 
 

2. ASF, HS, AND HPD ALGORITHMS 
 
In Spiess and Florian (1989), each link has a 

service frequency of which the inverse is assumed to 
describe the expected link waiting time. In Bell 
(2009), by analogy to Spiess and Florian’s model 
for transit networks, a road link is considered to 
provide a service that may be subject to a delay. Bell 
interprets the inverse of service frequency as the 
maximum delay. Higher service frequency, 
therefore, indicates a lower maximum delay which 
leads to higher travel time reliability. Drivers are 
assumed to aim to minimize their maximum 
exposure to delay and are hence developing a 
strategy potentially including a large number of 
alternative paths. With this new interpretation of the 
optimal strategy Bell (2009) attempts to solve the 
multipath problem for road network applications. 
Firstly, Bell suggests an adapted version of ASF, 
then, aiming to improve the efficiency of algorithm, 
and inspired by the well-known A-star algorithm, he 
added a heuristic variable into the ASF algorithm to 
improve the algorithm’s performance. This 
intelligent version was named Hyperstar (HS) and 
the algorithm requires neither iterative use of 
penalties, K-shortest path algorithm based path 
enumeration, nor Monte Carlo simulation, which 
means it a promising method for route navigation.  

Unlike Bell’s heuristic idea to improve the speed 
of the Spiess & Florian algorithm, Cominetti and 
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Correa (2001) focused on the maintenance of the 
node updating process and proposed the Hyperpath-
Dijkstra (HPD) algorithm. By iteratively 
manipulating the travel time from nodes to the 
destination and the set of solved nodes, it has a 
preferable theoretical time complexity of Oሺ݊ ∗
log	݊ ൅ ݉ ∗ logߜሻ where n and m are the number of 
nodes and links respectively and δ  represents the 
maximum number of outgoing links from a single 
node. The HPD algorithm does not maintain the 
links, thus some links may become no longer 
optimal when additional links from the currently 
updated node are checked.  Consequently, compared 
to the ASF or HS algorithm, it needs an extra 
process to recheck the hyperpath links from every 
current node.   

For formulation, consider a network graph Q 
which is represented with a set of nodes and links 
(N, L). Most of the following notation is consistent 
with Bell (2009).  

Define the following variables that are universally 
used in this paper: 
r: Origin node, 
s: Destination node, 
L: Set of links, 
TL: Set of temporary links, 
N: Set of nodes, 
H: Set of links containing the hyperpath 
between nodes r and s, 
 ௜: Subset of H containing the links outgoingܪ
from node i, 
UN: Set of updated nodes 
UL: Set of updated links, 
ω: The most recently updated node, 
S: Set of links which have been selected, 
 ,ାሺ݅ሻ: Set of outgoing links from node iܮ
 ,ሺ݅ሻ: Set of links leading into node iିܮ
i(a) Tail node of link a 
j(a) Head node of link a 
݀௔: Maximum delay on link a, 
 ,௔: Probability that link a is used݌
ܿ௔: Uncongested travel time on link a,  
 ௜: Expected travel time from node i to node sݑ
by pessimists who minimize maximum exposure to 
delay,  
݄௜: Potential at node i with respect to node r, 
 ௜: Shortest uncongested travel time from node݌ݏ
i to node r, 
 A large number whose size depends on the :ܯ
precision of computation. 

Table 1 Pseudo codes of ASF and HS algorithms 

Step 0: Variables initialization 
௜ݑ ← ∞; 	݅ ∈ ܰ െ ሼݏሽ;	ݑ௦ ← 0;	 

݂݅	݀௔ ൐ 0, ௔݂ ←
1
݀௔

, 	݁ݏ݈݁ ௔݂ ← 	;ܯ ௜݂ ← 0, ݅ ∈ ܰ; 

௜ݕ ← 0, ݅ ∈ ܰ െ ሼݎሽ;	ݕ௥ ← ܪ,1 ← ∅; ܮܶ	 ← ;ܮ

 ݄௜ ← ݄݁ݐ ݎܾ݁݉ݑ݊ ݀݅ݎ݂݃݋  ݏ݌ܽ݃
Step 1: Selecting step 
  ,ܮܶ	݊݅	݈݇݊݅	ݕݎ݁ݒ݁	ݎ݋݂
find link a with the minimum ݑ௝ሺ௔ሻ ൅ ܿ௔ ൅݄௜ሺ௔ሻ, ܶܮ െ ሼܽሽ 
Step 2: Updating step 
if  ݑ௜	 ൒ ௝ݑ ൅ ܿ௔		݄݊݁ݐ 

 if  ݑ௜	 ൌ ∞		ܽ݊݀	 ௜݂ ൌ  ݄݊݁ݐ	0
ߚ        ← ߚ		݁ݏ݈݁	1 ← ௜݂ݑ௜ 

௜ݑ ←
ቀߚ ൅ ௔݂൫ݑ௝ ൅ ܿ௔൯ቁ

௜݂ ൅ ௔݂
, ௜݂ ← ௜݂ ൅ ௔݂, ܪ ← ܪ ൅ ሼܽሽ 

if  ܶܮ ൌ ∅ or  ݑ௝ ൅ ܿ௔ ൅݄௜ ൐ ௥, go to step 3 else go to step 1ݑ

Step 3: Loading step 
for every link a ∈ ௝ݑ  in decreasing order of ܮ ൅ ܿ௔ ൅݄௜, 

 if a ∈ ܪ  then  ݌௔ ← ሺ ௔݂/ ௜݂ሻݕ௜  and ݕ௝ ← ௝ݕ ൅ ௔݌  else 

௔݌ ൌ 0.
 

In Table 1, the ASF and HS algorithms are 
illustrated together for simplicity and their 
similarities and differences can be easily observed. 
If one omits the shadowed and underlined parts, the 
HS algorithm reduces to the ASF algorithm. In the 
HS the heuristic information hi of a node is set to be 
the number of grid gaps from the origin and the 
link-to-link path search is from the destination to the 
origin so that this heuristic information will reduce 
the search by selecting the search direction. In many 
shortest path problems, it is usual to search the 
Dijkstra shortest path at first and then use the A-star 
algorithm for possible subsequent searches to the 
same destination under slightly changed network 
conditions. Following this idea, the shortest distance 
will be used as the heuristic information in this 
paper.  

From the pseudo code illustrated in Table 1, the 
theoretical time complexity of the ASF algorithm 
can be analyzed as	Oሺ∑ ݅ଶሻ௠

୧ୀଵ , thus Oሺ݉ଷሻ whereas 
the time complexity of the HS algorithm is 
dependent on the heuristic information and 
unknown beforehand. Incorporating an 
improvement to the Dijkstra algorithm by utilizing 
prior queue data structures such as Fibonacci heap, 
the actual time complexity of the ASF algorithm can 
be reduced to 	Oሺ∑ ݅ ∗ log ݅௠

୧ୀଵ ሻ , thus Oሺ݉ ∗
ሺlog݉ሻଶሻ  (Cormen, 1991). Apparently, as 
mentioned in Cominetti and Correa (2001), the ASF 
algorithm should be much slower than HPD 
algorithm by comparing the theoretical time 
complexity. For a better understanding of the HPD 
algorithm the pseudo code is illustrated in Table 2. 

  
Table 2 Pseudo codes of HPD algorithm 

Step 0: Variables initialization 
௜ݑ ← ௜ܪ,∞ ← ∅, ∀ ݅ ∈ ܰ െ ሼݏሽ, ௦ݑ ← 0;  

௔݂ ← 1/݀௔	݂݅	݀௔ ൐ 0, 	݁ݏ݈݁ ௔݂ ←  	;ܯ

௜݂ ← 0, ݅ ∈ ܰ;	 
௜ݕ ← 0, ݅ ∈ ܰ െ ሼݎሽ, ௥ݕ ← ܪ,1 ← ∅,ܷܰ ← ∅ 
Step 1: Updating step 
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1.1 Generating hyperpath set for each node 
While ܷܰ ് ܰ,  
  node updating 
ܰ	݊݅	݁݀݋݊	ݕݎ݁ݒ݁	ݎ݋݂    െ ܷܰ,   	௝ݑ	݊݅݉	݄ݐ݅ݓ	݆	݁݀݋݊	݂݀݊݅

ܽ	݈݇݊݅	݄ܿܽ݁	ݎ݋݂	  ∈  ሺ݆ሻିܮ
     ݂݅	݅ሺܽሻ ∈ ܰ െ ሼݏሽ	, ௜ݑ	݄݊݁ݐ ← ௝ݑ ൅ ܿ௔	 
௜ሺ௔ሻݑ	݂݅          ൐ ௝ሺ௔ሻݑ ൅ ܿ௔  

	௜ݑ	݂݅              ൌ ∞		ܽ݊݀	 ௜݂ ൌ ߚ	݄݊݁ݐ	0 ← ߚ		݁ݏ݈݁	1 ← ௜݂ݑ௜ 

௜ݑ	             ←
ቀఉା௙ೌ ൫௨ೕା௖ೌ൯ቁ

௙೔ା௙ೌ
, ௜݂ ← ௜݂ ൅ ௔݂, ௜ܪ ← ௜ܪ ൅ ሼܽሽ 

   link re-check 
ܾ	݈݇݊݅	݄ܿܽ݁	ݎ݋݂   ∈  ௜ሺ௔ሻܪ

௜ݑ	݂݅           ൑ ௝ሺ௕ሻݑ ൅ ܿ௕                      

௜ݑ	     ←
ቀఉି௙್൫௨ೕሺ್ሻା௖್൯ቁ

௙೔ି௙್
, ௜݂ ← ௜݂ െ ௕݂, ௜ܪ ← ௜ܪ െ ሼܾሽ 

       	ܷܰ ← ܷܰ ൅ ሼ݆ሽ 
1.2 Combining hyperpath set 
݅	݁݀݋݊	݄ܿܽ݁	ݎ݋݂ ∈ ܪ ,ܰ ← ܪ ൅ܪ௜ 

Step 2: Loading step 
 for each link a ∈ ௝ݑ  in decreasing order of ܮ ൅ ܿ௔ , 
     if a ∈ ௔݌ then ܪ ← ሺ ௔݂/ ௜݂ሻݕ௜ and ݕ௝ ← ௝ݕ ൅ ௔݌ ௔ else݌ ൌ 0.

 
Bell (2009) tested the ASF and HS algorithms in 

a synthetic 8 by 8 grid network with 64 nodes and 
224 links (both directions). In the network, i and j 
are node IDs and ܿሺ௜,௝ሻ	is the undelayed travel time 
which is the same for both directions of a link. R 
represents the maximum delay that is generated 
from a random number between 0 and 1. (See Fig.1) 

 
The performances of ASF and HS algorithms are 

compared by the number of selected links (See 
Table 3). The table shows the links selected in Step 
1 of the HS which accounts for most of the running 

time under 3 different maximum delay levels. The 
result of scenario 3 corresponds to Fig.1. Scenario 2 
generates less links because of its lower maximum 
delay than Scenario 3. Scenario 1 ignores the 
potential delay and only generates the shortest path. 
One may refer to Bell (2009) for more detailed 
information. 

 
 

3. SPEED-UP ALGORITHM: DIJKSTRA-
HYPERSTAR (DHS) 
 

By inspecting the ASF algorithm, one can 
observe that the efficiency mainly depends on two 

    

i j ܿሺ௜,௝ሻ R 

1 2 1.5000 0.5313 

2 3 1.3610 0.7027 

3 4 1.7729 0.1717 

4 5 1.8187 0.6617 

5 6 1.8722 0.9257 

6 7 1.5820 0.9747 

7 8 1.5706 0.3410 

9 10 1.5597 0.7933 

10 11 1.4173 0.8680 

11 12 1.2747 0.8280 

12 13 1.1977 0.3443 

... ... ... ... 

    

Fig.1 Hyperpath generated in Bell’s synthetic road network (depicted from Bell, 2009) 

Table 3 Comparative selected links of the HS algorithm 
(depicted from Bell, 2009) 

Scenario 

ID 

Maximum 

delay (d) 

Number of selected links 

ASF HS 

1  0 219 79 

2  0.3R 222 111 

3  R 223 148 
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indices: the number of selected links and the number 
of links that are searched to find a selected link. 
Since the topological relations among nodes and 
links are available, the actually involved links in the 
searching process can be well managed dynamically 
or “on the fly” by utilizing the pre-stored 
information of the in- and outgoing links. In the 
following it will be shown that with a slightly more 
complicated management of the link set to be 
checked, the speed of the algorithm dramatically 
improves if the link updating step is directed so that 
a significant number of unnecessary link checks can 
be excluded from the searched area. Accordingly, 
two measures, improved heuristic distance 
estimation and the node-directed search, are taken to 
speed up the algorithm. 

As mentioned before, in Bell (2009), the grid gap 
number was adopted as the heuristic variable in his 
experimental grid network, i.e. the heuristic distance 
between two adjacent nodes in the network is 
estimated as 1. However, it is worth mentioning that 
all of the links of the experimental network are of 
great homogeneity and their link travel times are 
confined between 1 and 2 so that the heuristic 
estimation will not surpass the real distance. 
Without this condition, the heuristic grid gap may 
generate a non-optimal hyper-path. (A similar 
problem might occur when implementing the A-Star 
algorithm and estimating the heuristic estimates in 
another dimension than the route guidance advice, 
e.g. heuristic estimate is taking distance, but the 
shortest path in travel time is sought.)  

The usage of shortest distance as heuristic 
variable generally makes the algorithm faster but 
such efficiency improvement is far less important 
than confining the search set when selecting the link 
with minimum 	ሺݑ௜ ൅ ௝݄ ൅ ܿ௔ሻ . To confine the 
search set, a similar idea to the one used in the HPD 
algorithm is utilized. That is, the HPD uses a 
Dijkstra-like node label setting algorithm. However, 
unlike the HPD algorithm, we stick to link label 
setting as in the HS with the help of node label 
correcting at the same time. That is, after a link label 
is permanently set, the label of its tail node is 
corrected. By recording the most recently updated 
node the link updating will be limited to those 
outgoing from this node, which leads to a “node-
directed” search. The concept of this node-directed 
search is to keep the link selection search always 
confined within the updated link set. The updated 
node of the last updating step is the node whose 
incoming links will be updated and added to the 
updated links set. The elements in the links list will 
be dynamically added and removed within the 
running process so that the searched link set will be 
kept low. Compared to the HPD algorithm, the DHS 

is generally superior because it maintains the link 
set directly thus the link-checking step within Step 
1.1 of the HPD is unnecessary to ensure optimality 
of the resulted hyperpath. 

By utilizing the ideas mentioned above in 
connection with the HS algorithm, the number of 
selected links will keep unchanged but an obvious 
speed-up can be seen when testing the algorithm. In 
addition, this node-directed search can also be 
adopted in the ASF algorithm. In that case, the 
theoretical time complexity will decrease to the 
level of the HPD algorithm resulting in a much 
faster run time. Table 4 shows the pseudo code of 
DHS algorithm. To get a blind version of the DHS 
algorithm without heuristic information, i.e. a node-
directed ASF algorithm, one may just cross out the 
with shadow underlined lines of DHS algorithm.  

Table 4 Pseudo codes of DHS algorithm 

Step 0: Variables initialization 
௜ݑ ← ∞, ݅ ∈ ܰ െ ሼݏሽ, ௦ݑ ← 0;  

௔݂ ← 1/݀௔	݂݅	݀௔ ൐ 0, 	݁ݏ݈݁ ௔݂ ←  	;ܯ

௜݂ ← 0, ݅ ∈ ܰ;	 
௜ݕ ← 0, ݅ ∈ ܰ െ ሼݎሽ, ௥ݕ ← ܪ,1 ← ∅ 
߱ ← ܮܷ,ݏ ← ∅ 
Run Dijkstra algorithm, ݄௜ ←  ;௜݌ݏ
Step 1: Select link a 

for every link ܽ ∈   ,ሺ߱ሻିܮ
 ݂݅	ܽ ∉ ܵ	ܽ݊݀	ܽ ∉ ܮܷ	݄݊݁ݐ	ܪ ← ܮܷ ൅ ሼܽሽ 
find link a in UL with the minimum ݑ௝ሺ௔ሻ ൅ ܿ௔ ൅݄௜ሺ௔ሻ, 
ܮܷ	 ← ܮܷ െ ሼܽሽ, ܵ ← ܵ ൅ ሼܽሽ  

Step 2: Update node i 
if  ݑ௜	 ൒ ௝ݑ ൅ ܿ௔		݄݊݁ݐ 

    if  ݑ௜	 ൌ ∞		ܽ݊݀	 ௜݂ ൌ ߚ	݄݊݁ݐ	0 ← ߚ		݁ݏ݈݁	1 ← ௜݂ݑ௜ 

௜ݑ    ←
ቀఉା௙ೌ ൫௨ೕା௖ೌ൯ቁ

௙೔ା௙ೌ
, ௜݂ ← ௜݂ ൅ ௔݂, ܪ ← ܪ ൅ ሼܽሽ, ߱ ← ݅  

if  ݑ௝ ൅ ܿ௔ ൅݄௜ ൐  ௥ , go to step 3 else go to step 1ݑ

Step 3: Load 
for every link a ∈ ௝ݑ  in decreasing order of ܮ ൅ ܿ௔ ൅݄௜, 
 if a ∈ ܪ  then  ݌௔ ← ሺ ௔݂/ ௜݂ሻݕ௜  and  ݕ௝ ← ௝ݕ ൅ ௔݌  else 

௔݌ ൌ 0.
 
In summary, there are two changes that contribute to 
improve algorithmic efficiency. One is the Dijkstra 
heuristic and the other is the node-directed search. 
Both of these improvements will not influence the 
resulting hyperpath . To illustrate this, the following 
three propositions are set. 
  Proposition 1. Dijkstra shortest path heuristic 
ensures the optimal solution. 
  Proof 1. The heuristic potentials have to satisfy the 
following inequality principle (Wagner and 
Willhalm, 2006): 

௝݄ ൑ ݄௜ ൅ ܿ௔, ∀ܽ ൌ ሺ݅, ݆ሻ ∈  (1)  ܮ
There are two possible situations: Either link a 

belongs to the shortest path ݌ݏ௝  or not. If link a 
belongs to ݌ݏ௝, we will have ݌ݏ௝ ൌ ௜݌ݏ ൅ ܿ௔. Since 
that shortest path is taken when initializing the 
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network, we have ௝݄ ൌ and ݄௜	௝݌ݏ ൌ ௜݌ݏ  such that 

௝݄ ൌ ݄௜ ൅ ܿ௔. Similarly, if link a does not belong to 
௝, it turns out that ௝݄݌ݏ ൏ ݄௜ ൅ ܿ௔ because the path 
r-i-j is another path rather than the shortest path r-j. 
Consequently, both situations satisfy the inequality 
principle, which ensures the optimal solution. □ 
  Proposition 2.  The node-directed search avoids 
the link re-check in the HPD algorithm. 
  Proof 2. In the HS algorithm, the initial link set to 
be searched is the whole link set and the selected 
link will be removed in every step until termination 
of the algorithm. The DHS instead initializes an 
empty link set to be searched and allows a gradual 
node-directed link addition. Only the added links 
will be checked in every iteration. As a consequence 
of the reduction in ݑ௜, some links which have been 
added to ܪ௜  in previous iterations may not be 
advantageous anymore and are removed through the 
link re-check in the HPD algorithm. By contrast, the 
DHS algorithm updates the link set directly and the 
labels of updated nodes are not affected by the link 
updating process so that u୧ will not reduce in later 
iterations and at any time ∀ܽ ∈ ௜ܪ  the hyperpath 
addition condition: ݑ௜	 ൒ ௝ݑ ൅ ܿ௔	  is always 
satisfied, so that there is no need for link re-check.  
  Proposition 3. The DHS and HPD result in the 
same hyperpath. 
  Proof 3. The hyperpath is determined by the 
summation of the selected links in each step. The 
other processes including the node-updating step 
and the loading step are the same except for the UN 
management in the node updating step of the DHS. 
Consequently, if the same link will be selected by 
the HS and DHS algorithms in every single link 
selection, the resulting hyperpath will be the same. 
Step 1 finds the link with minimum ሺu୧ ൅ h୨ ൅ cୟሻ 
among the links except those that have already been 
selected before. From proposition 1 it is apparent 
that the hyperpath result will not change if shortest 
distances are used as heuristic information. On 
condition that the HS adopts the shortest distance 
heuristic information, the only difference between 
the DHS algorithm and the HS algorithm is the 
gradual node-directed link addition. In the DHS, the 
UL set, which excludes the links that have never 
been updated and are hence are also never selected 
in the HS due to initialized infinite	u୧, is a subset of 
the TL set of HS. The UL is identical to the TL 
except for excluding links a that have a head node 
with uj(a)= ∞ and therefore the same link will be 
selected in each iteration. Consequently, DHS and 
HS generate the same hyperpath. Furthermore, since 
both the HS and HPD algorithms generate the same 
hyperpath with ASF, all four algorithms generate 
the same hyperpath.□ 
 

4. ALGORITHM PERFORMACE TESTS 
 
In this section, first, the same network with Bell 
(2009) will be tested and then the performances of 
ASF, HS, HPD and the proposed DHS are compared 
in larger synthetic networks with different 
topologies. All of the algorithms are coded in 
Microsoft C# with Visual Studio 2010 and the testing 
environment is Intel T6400 2.13GHz/4G 

RAM/Windows Vista. Only the result of tests on grid 
networks will be shown here for convenience because 
a similar result can be seen on other network 
topologies according to our performed tests. On the 8 
by 8 grid network as used in Bell (2009), we firstly 
compare the number of selected links (Fig.2). Due to 
the different structure of HPD from the other three 
algorithms, it will not be included in this comparison. 

In Fig.2, it is clear that the proposed DHS 
algorithm selects significantly less links during the 
link selection step so that we can expect a speed-up 
in real running time. One may argue about the extra 
time required to run the Dijkstra shortest path 
algorithm in Step 0 of the DHS algorithm and doubt 
whether the run time of DHS is hence in fact faster. 
Therefore the CPU run time is tested in the 
following where the time required to run the 
Dijkstra algorithm is included in the DHS.  

To make run time differences large enough to be 
observable, tests are performed on a larger grid 
network. This larger grid network has a size of 50 
by 50, leading to 2500 nodes and 9800 links. The 
data table format is shown in Table 5. The 
uncongested travel time was randomly generated by 
uniform distribution within [30, 50] and then the 
congested travel time was generated by adding a 
new random variable within [15, 25] to the 
uncongested travel time. The difference of 
congested and uncongested travel times corresponds 
to the maximum delay in Bell (2009). 

We randomly tested the performance for different 
OD pairs where the tested node pairs are all 
randomly selected by a uniform random generator 

 
Fig.2 Comparison of the number of  

selected links in Bell (2009) network 
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that is available online (http://www.random.org/ 
integers/). In Table 6 the test scenarios are ordered 
by the shortest distances from the origin to the 
destination because it is reasonable to assume that 
the algorithm running time increases when the OD 
pairs are farther away considering that more link 
searches may be included. Fig.3 illustrates the 
relative positions of these OD scenarios in a 
rectangular coordinate system, for example, node 1 
as (1, 1) and node 2500 as (50, 50). Note that the 
codes of all algorithms are implemented with the 
same data handling structure and that they share the 

same codes as much as possible so that there will be 
no specific code bias for any algorithm. For 
convenience, the data structure we used is the 
adjacency list and the practical speed can be much 
faster by using other data structures such as heap 
structure. In any case, these factors have little effect on 
the performance comparison and the comparisons are 
fair. The following HS algorithm test results are all 
with the shortest distance information and the one 
with the grid gap information will not be discussed 
since it is slower and may cause deviated hyperpath. 

 
The result of our test is shown in Table 6. In our 

tests, the average run time of these 20 scenarios for 
the ASF algorithm was 7068.1ms, 6814.9ms for the 
HS algorithm, 298.1ms for the HPD algorithm and 
only 51.3ms for the proposed DHS algorithm. It 
turns out that the Dijkstra running time is almost 
negligible compared to the total running time of 
DHS in the scenarios that OD pairs are far away 
from each other and that the total run time of DHS 
is similar to the speed of running the Dijkstra 
algorithm if the destination is, in terms of grid 
distance, close to the origin. 

In most of the scenarios, the HS algorithm is 

faster than the ASF algorithm except for the last 
four scenarios where OD pairs are near the opposite 
corners of the network. This is because the heuristic 
information helps to direct the search to the origin. 
However, such a merit can improve the speed very 
limitedly when the OD pair scenario are in opposite 
corners. (Note that the link search is inversely from 
the destination to the origin.) Consequently, the 
scenario where HS algorithm is even slower means 
that the speed-up by heuristic information cannot 
compensate for the intrinsic additional run time 
consumption for adding the heuristics and the 
difference is not trivial. Considering that such 
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search scenarios are rare, the HS in general outperforms the ASF algorithm. 
 

Table 6 Test scenarios and results 

Scenario ID r (coordinate) s (coordinate) Shortest Distance 
Algorithm running time (ms) 

ASF HS HPD DHS 

1 763 (13,16) 707 (7,15) 260 751 137 311 7 

2 1926 (26,39) 1688 (38,34) 614 4227 1277 323 11 

3 683 (33,14) 1046 (46,21) 711 4008 1727 299 12 

4 42 (42,1) 991 (41,20) 731 5429 1563 287 10 

5 921 (21,19) 1665 (15,34) 768 5907 1982 302 13 

6 277 (27,6) 1173 (23,24) 810 7057 2172 311 14 

7 510 (10,11) 1417 (17,29) 860 7540 2642 310 16 

8 117 (17,3) 488 (38,10) 1002 7109 3649 285 24 

9 758 (8,16) 2056 (6,42) 1019 6297 3268 297 20 

10 2013 (13,41) 870 (20,18) 1058 9421 4174 313 26 

11 530 (30,11) 1297 (47,26) 1104 7542 4658 281 32 

12 399 (49,8) 1479 (29,30) 1482 10655 7897 310 61 

13 1455 (5,30) 633 (33,13) 1580 10449 8509 312 69 

14 241 (41,5) 2027 (27,41) 1735 11044 10238 289 65 

15 2400 (50,48) 2355 (5,48) 1753 9912 5656 297 26 

16 42 (42,1) 2488 (38,50) 1907 10804 9182 293 54 

17 1717 (17,35) 296 (46,6) 1991 10432 12040 284 102 

18 2132 (32,43) 305 (5,7) 2159 10532 13456 290 130 

19 144 (44,3) 1608 (8,33) 2293 10826 14662 280 178 

20 287 (37,6) 1951 (1,40) 2416 11340 14546 287 156 

Average  7068.1 6814.9 298.05 51.3 

      
In Fig.4 the performance comparison among 

these 4 algorithms is shown. Fig.4 implies that as 
the shortest distance increases, there is a trend that 
also the run time increases although the relationship 
is not a strict one because there is no strict linear 
relationship between the shortest distance and the 
algorithm run time. In contrast to the HS and DHS 
algorithms, the HPD algorithm almost keeps the 
same run time. By analogy to the Dijkstra shortest 
path algorithm and the A-star algorithm, the reason 
is clear: Like Dijkstra shortest path algorithm, no 

matter where the OD pairs are, the HPD algorithm 
will always cover all of the nodes before 
termination. Furthermore, Fig.5 shows the run time 
of the HS algorithm and DHS separately and one 
may find that the increasing trends in run time the 
further apart the OD pairs are in terms of shortest 
distance, are quite similar for both algorithms. It can 
be explained with the facts that both adopt the 
shortest distance as the node heuristic information 
and that the DHS algorithm is a constrained link 
search version of the HS algorithm.  
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Finally, one may question whether the observed 

differences in run time also hold for networks with 
different topologies. We carried out another test on a 
synthetic radial network which contains one central 
node, 50 radial links and 50 connecting cycles (2501 
nodes and 10000 links). Test results on this network 
also show that the proposed DHS is faster than the 
other algorithms, especially compared with ASF or 
HS algorithm. The same random OD pairs as the 
former tests are tested. The average run time for the 
ASF algorithm on the radial network is 11232 ms, 
9249 ms for HS algorithm and 305 ms for the HPD 
algorithm. The average run time of the proposed 
DHS algorithm is only 21ms. The similarly 
increasing trend between HS and DHS also holds. 
The general speeds on the radial network for ASF 
and HS algorithms are a little slower; it may be 
explained mainly by the fact that the radial network 
increases the number of links to 10,000. The run 
time of the HPD algorithm is almost identical 
compared with that in the grid network. This is 
because the run time of the HPD algorithm is 
mainly constrained by the number of nodes and 
there is only one node more in the grid network. 

However, we may find that the run time of DHS 
algorithm is much faster than that on the grid 
network. In the radial network, the shortest distance 
is less than that of grid networks because the cycles 
shorten the distance, thus the node-directed strategy 
will lead to much less links to be searched. That is, 
it may be concluded that heuristic information and 
node-directed strategy contribute more to the speed-
up on radial networks than on grid networks. 
Because the performance comparisons are similar to 
that of the grid network, for brevity, the detailed test 
results will not be shown in this paper but are 
available if requested. 

 
 

5. DISCUSSION AND CONCLUSIONS 
 
The multipath-routing strategy to “minmax 

exposure to delay” seems a reasonable assumption 
not only for transit passengers but also for road 
users. Whereas for transit passengers it is fairly 
obvious to assume that they fear delayed service 
arrivals, the precise assumption on what exactly 
road drivers fear is more of a topic for discussion. 
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The focus of this paper is on the performance of 
multi-path route guidance algorithms, though, and 
we chose to follow Bell’s assumptions about the 
hyperpath chosen by drivers in road networks. The 
DHS algorithm is proposed as an approach to obtain 
this hyperpath faster.  

The HPD algorithm has a very similar name to 
our DHS algorithm, the idea is different: Hyperpath-
Dijkstra has a structure resembling Dijkstra’s 
algorithm; the dominant loop is controlled by the 
number of solved nodes instead of solved links. 
Although it is impossible to compare the efficiency 
between HPD and DHS algorithm in theoretical 
time complexity because of the heuristic 
characteristic of the DHS algorithm, we showed the 
lower run time of the DHS algorithm through tests 
on artificial grid and radial networks. In most cases, 
the DHS outperformed the HPD algorithm 
significantly and even in the worst case it is still 
almost twice as fast as the HPD algorithm.  

The proposed DHS algorithm is an efficiency 
improved version of the original Spiess & Florian 
algorithm inspired from the on-the-fly concept: The 
link set to be searched is extended on the fly by 
gradually finding the lastly updated node; the pre-
stored node-link topology is hence well used for 
maintaining the updated link set dynamically. Note 
that this requires some more memory space 
resources, in terms of pre-stored node look-up 
tables. Since run-time improvement is believed to be 
crucial for route guidance applications though, our 
significant run time improvements mean that it is 
worth doing so, especially because hard disk drives 
are much cheaper than processors. The algorithm is 
still potential to be improved by adopting more 
complicated, but also more efficient data structures, 
such as Fibonacci heap if necessary. 

It is worth mentioning that the speed-up methods 
proposed in this paper are not limited to road 
networks but also can be adopted for transit 
networks if maximum delay is interpreted as service 
frequency. We are not declaring a comparatively 
superior multipath algorithm to the K-path 
algorithm or other types of multipath algorithm here 
but only trying to improve the efficiency of the 
known frequency (or maximum delay) based link-
to-link multipath algorithm so that it will be much 
more potentially eligible to be adopted in navigation 
fields. Besides being useful for route guidance, the 
proposed algorithm may also be applied within 
traffic assignment. In this paper, the effect of 
navigation to network equilibrium solutions was not 
studied but is a topic of further research. Further, 
our plan is to test the algorithm on a real network 
and compare the generated paths with the collected 
route choice data so that the applicability of this 

algorithm and the underlying assumptions on user 
behaviour to observed route choice data can be 
explored.   
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