
 1

A fast node-directed multipath algorithm:

Dijkstra-Hyperstar

Jiangshan Ma1, Daisuke Fukuda2 and Jan-Dirk Schmöcker2

1Ph.D. Candidate, Dept. of Civil and Environmental Eng., Tokyo Institute of Technology
 (Ookayama, Meguro-ku, Tokyo 152-8552, Japan)

E-mail:ma.js@plan.cv.titech.ac.jp
2Member of JSCE, Associate Professor, Dept. of Civil and Environmental Eng., Tokyo Institute of Technology

 (Ookayama, Meguro-ku, Tokyo 152-8552, Japan)
fukuda@plan.cv.titech.ac.jp

3Member of JSCE, Associate Professor, Dept. of Civil Eng., Kyoto University
 (Katsura Campus, C1-2-431, Kyoto 615-8540, Japan)

schmoecker@trans.kuciv.kyoto-u.ac.jp

Abstract: This paper studies the speed of three link-to-link multipath algorithms with the purpose of
improving their applicability for route navigation. These previously established algorithms are the
original Spiess & Florian coding of the strategy approach for transit passengers and two derivations of it,
the so-called Hyperstar-Dijkstra (HPD) algorithm and the Hyperstar (HS) algorithm. The latter firstly
applied the strategy approach to route navigation. A new speed-up algorithm, named Dijkstra-Hyperstar
(DHS), is proposed by utilizing, firstly, Dijkstra shortest distances as heuristics and, secondly, the idea of
a node directed search which reduces the link set to be checked. This is achieved by “dynamically”
confining the link set by gradually extending it to include those from newly updated node. The second
improvement can also be independently applied to the original Spiess & Florian (for transit network) or
Adapted Spiess & Florian (ASF, for road network) algorithms without heuristics. The performances
among these four algorithms are compared in synthetic networks and a significant improvement in
running time can be attained with the newly proposed DHS algorithm. Applications to both transit
assignment as well as route navigation are discussed.

 Key Words : Adapted Spiess & Florian (ASF), Hyperstar (HS), Hyperpath-Dijkstra (HPD), Dijkstra-
Hyperstar (DHS), Node directed search, Route navigation

1. INTRODUCTION

Shortest path algorithms, digital maps and
positioning technologies have made vehicle
navigation come true and the market has been
spreading. The cost to produce navigation
equipment is continuously decreasing so that there
is a fast growing number of global positioning
system (GPS) integrations with many IT products
such as mobile phones, personal digital assistants
(PDA) and, nowadays, digital cameras. The
traditional in-vehicle route navigation equipment
has been challenged by these GPS-integrated
terminals. To keep their market position, specialized
services are added to vehicle route navigation
equipment. These are often based on real traffic
data, in many cases with the aim to provide more
alternative routes to meet with various driver

preferences.
In present navigation systems, the A-star shortest

path algorithm introduced by Hart et al. (1968) and
Pearl (1984) has a pivotal role. As a heuristic
version of Dijkstra’s algorithm (Dijkstra, 1959) the
speed-up of searching by A-star is remarkable but it
may not guarantee the shortest path if the heuristic
estimations surpass the real distances. Besides, since
the heuristic of A-star is based on external
information, the exact time complexity is entirely
unforeseen. The estimation accuracy of the rest
distance from the current node to the destination is a
key issue for the efficiency of A-star: On the one
hand, if the correlation of the distance estimation
with the crow-fly distance is too weak, the time
complexity of the algorithm is not significantly
improved; on the other hand, if the correlation is too
strong, the risk of non-optimal solutions may occur
(Hofmann-Wellenhof, 1995).

 2

An ideal heuristic will always return the actual
minimum cost to reach the goal (Wichmann, 2004).
A perfect knowledge of the remaining distance will
reduce the nodes involved in the A-star search and
guarantee the shortest path availability at the same
time. In real applications, the Euclidean distance is
widely adopted as the heuristic number for tile-
based maps. A popular way for digital map based
dynamic vehicle navigation is to carry out routing
by a Dijkstra algorithm first from the reverse
direction (from the destination to the origin) and
then en-route rerouting by A-star algorithm with the
shortest distance heuristics generated in the first step
(e.g. Ben-Akiva et al. 1997).

Both, Dijkstra and A-star algorithms, only
generate the shortest path according to the pre-
determined cost index. In traffic networks, this
index can be either road distance, travel time or a
combination taken further factors into account (e.g.
generalized cost). However, there are at least three
issues that make it difficult to apply a single shortest
path suggestion to route navigation:

Firstly, travel times and other aspects determining
the attractiveness of a route are often uncertain,
which means the recommended shortest path may
also change during a journey. Secondly, travelers
have different preferences, which means the
suggested route might not be the one preferred by
the traveller. Thirdly, from a network perspective,
there is a potential risk that suggesting single routes
causes congestion if the market penetration of
navigation devices is high (e.g. Ben-Akiva et al.
1997). For all these reasons, it is suggested that
multiple route navigation is preferred for the benefit
of users and/or the traffic system. In some
commercial applications today, hence multiple paths
are provided by showing users the shortest path for
different preferences (distance, money, travel time,
etc.). Commercial applications that consider the
potential delay of links to suggest a-priori a route set
bundle, are, however, to our knowledge not yet on
the market.

In research papers, the K-shortest path algorithm
is well studied and often utilized to generate
multiple route alternatives from the whole network
(e.g. Eppstein, 1994, 1998; Jiménez, 1999, 2003).
Popular algorithms, entailing path removing and
path deviation were tested and compared by Santos
(2006) who also proposed a new path deviation K-
shortest path algorithm. A possible problem of K-
shortest paths algorithms is that they are route-based
and suggested paths may significantly overlap.
Therefore, algorithms are often modified by some
constraints before being applied to traffic networks.
The typical way is to compute a sufficiently large
path set first and then delete the disqualified paths

by checking the constraints. For example, Zijpp et
al. (2005) proposed a constrained K-path algorithm
that finds the feasible routes and can be applied in
combination with a wide class of constraints. To
speed up the K-shortest path enumeration, Chen et
al. (2007) integrated the A-star heuristic into the K-
shortest path finding process. By setting different
constraints such as max distance, travel time,
historical probability to hit a failed link and some
other factors, more reliable paths are attainable.
Similarly aiming to provide reliable route
navigation, Kaparias and Bell (2009) took the route
reliability directly as a route constraint and
compared the proposed guidance with those from
existing commercial route navigation equipment.
Considering the turn constraints and route
similarity, Yongtaek and Hyunmyung (2005)
proposed a link-based multipath algorithm and
criteria of route dissimilarity were integrated into
the algorithm to create heterogeneous routes.
Though link-based, the algorithm of Yongtaek and
Hyunmyung is still classified as a K-shortest path
based algorithm, with the difference that the labeled
units are links instead of nodes.

Not only for route navigation but also for traffic
assignment path generation methods such as K-
shortest path algorithms are used. However,
different to path-based route choice modeling, for
example, Fosgerau et al. (2009) recently proposed a
link-based route choice model that considers the
route choice as a sequence of link choices. The idea
of link-to-link route choice is in fact similar to
strategy based route choice proposed for transit
assignment proposed by Spiess and Florian (1989)
and by Nguyen and Pallotino (1988) who also
introduce the term “hyperpath” to transit
assignment. A hyperpath refers to a set of paths any
of which is potentially optimal due to travel time
uncertainty on one or more links. In transit
assignment this uncertainty might be created by the
arrival time of vehicles. With the assumption that
one takes the first-coming vehicle from the set of
attractive paths, the optimal strategy that minimizes
the total expected in-vehicle travel time and waiting
time of transit passenger was formulated as a linear
programming problem.

Cominetti and Correa (2001) proposed a method
named Hyperpath-Dijkstra (HPD), which was
adapted from Dijkstra’s shortest path algorithm, and
declared a better theoretical time complexity than
Spiess & Florian’s original algorithm to determine
the same hyperpath. However, although they
mentioned the importance of an empirical
comparison, such a comparison between the two
algorithms has not been done by others so far.
Inspired by the Spiess & Florian Algorithm (SFA)

 3

for frequency-based transit assignment, Bell (2009)
adapted this algorithm to road networks with
uncertain travel times by defining the link frequency
as the reciprocal of maximum delay. Consequently,
the Adapted Spiess & Florian algorithm (ASF) for
road network was introduced. (Note that SFA and
ASF are of no difference except their model
interpretation. SFA deals with transit networks and
ASF deals with road networks.) Bell (2009) also
proposed an A-star-like heuristic version named
Hyperstar (HS) algorithm and suggested its
application to route navigation in road networks.

Without requiring any path enumeration, the HS
algorithm provides us with a novel solution to
multipath navigation and link-to-link multipath
navigation, which could be more appropriate to
represent drivers’ actual behavior. However, as an
algorithm of polynomial time complexity, its speed
is mostly dependent on the number of links, which
is different from Dijkstra algorithm’s dependence on
the number of nodes. In traffic networks, the
number of links generally far exceeds the number of
nodes and therefore it is necessary to conceive a
better link searching strategy to accelerate the
algorithm. The HPD algorithm considers the node-
link topology which in general leads to an improved
time complexity. This is even though, just as
Dijkstra’s algorithm, the HPD algorithm searches
every node to obtain the hyperpath. The HS
algorithm is a heuristic algorithm that is claimed to
be faster than the Spiess & Florian algorithm,
though again to our knowledge empirical
comparisons have not been carried out so far. A
main reason might be that the Spiess and Florian as
well as the HPD algorithm are mainly intended for
transit assignment where the efficiency requirement
is not as stringent. However, since Bell (2009)
started applying these algorithms in the navigation
filed, their efficiency becomes a rigorous problem.
By our testing results in large networks, it can be
found that the HS algorithm is still far from
satisfying the required speed for navigation
applications, albeit it is better than the ASF
algorithm. The HPD is much better than these two
but we believe could be more intelligent: It searches
all the nodes in the network regardless of the OD
pair, which brought about our intention to find a
better algorithm to attain a higher efficiency.

The purpose of this paper is hence to propose and
verify the idea of improving the speed of the HS
algorithm with the aim of applicability for multipath
navigation. There are two modifications to the
original HS algorithm: First, the heuristic distances
required for the A-star algorithm are generated by
running Dijkstra’s algorithm from the origin so that
the links involved in the search tend to be reduced.

Second, a node-directed link selection is adopted by
utilizing the pre-stored topology information so that
the link selection process only involves those links
that have been updated. This so-called node-directed
link selection maintains the link list dynamically by
taking advantage of the connecting information
among nodes and links. In line with Bell (2009),
assuming a relative low rate of navigation in use
during a certain time interval, we will mainly focus
on the speed improvement for navigation instead of
the effect of navigation to the network that is
involved in dynamic traffic assignment topics.

The rest of this paper is organized as follows. In
Section 2, the previously proposed three algorithms
to create hyperpaths are outlined. Because of the
similarity between HS and ASF, these two
algorithms are illustrated together. Section 3
presents the speed-up methods which lead to the
proposed Dijkstra-Hyperstar (DHS) algorithm. The
empirical performance comparisons among these
four algorithms are illustrated in Section 4. Finally,
in Section 5, some conclusions are drawn regarding
applications for route guidance as well as transit
assignment.

2. ASF, HS, AND HPD ALGORITHMS

In Spiess and Florian (1989), each link has a

service frequency of which the inverse is assumed to
describe the expected link waiting time. In Bell
(2009), by analogy to Spiess and Florian’s model
for transit networks, a road link is considered to
provide a service that may be subject to a delay. Bell
interprets the inverse of service frequency as the
maximum delay. Higher service frequency,
therefore, indicates a lower maximum delay which
leads to higher travel time reliability. Drivers are
assumed to aim to minimize their maximum
exposure to delay and are hence developing a
strategy potentially including a large number of
alternative paths. With this new interpretation of the
optimal strategy Bell (2009) attempts to solve the
multipath problem for road network applications.
Firstly, Bell suggests an adapted version of ASF,
then, aiming to improve the efficiency of algorithm,
and inspired by the well-known A-star algorithm, he
added a heuristic variable into the ASF algorithm to
improve the algorithm’s performance. This
intelligent version was named Hyperstar (HS) and
the algorithm requires neither iterative use of
penalties, K-shortest path algorithm based path
enumeration, nor Monte Carlo simulation, which
means it a promising method for route navigation.

Unlike Bell’s heuristic idea to improve the speed
of the Spiess & Florian algorithm, Cominetti and

 4

Correa (2001) focused on the maintenance of the
node updating process and proposed the Hyperpath-
Dijkstra (HPD) algorithm. By iteratively
manipulating the travel time from nodes to the
destination and the set of solved nodes, it has a
preferable theoretical time complexity of Oሺ݊ ∗
log	݊ ݉ ∗ logߜሻ where n and m are the number of
nodes and links respectively and δ represents the
maximum number of outgoing links from a single
node. The HPD algorithm does not maintain the
links, thus some links may become no longer
optimal when additional links from the currently
updated node are checked. Consequently, compared
to the ASF or HS algorithm, it needs an extra
process to recheck the hyperpath links from every
current node.

For formulation, consider a network graph Q
which is represented with a set of nodes and links
(N, L). Most of the following notation is consistent
with Bell (2009).

Define the following variables that are universally
used in this paper:
r: Origin node,
s: Destination node,
L: Set of links,
TL: Set of temporary links,
N: Set of nodes,
H: Set of links containing the hyperpath
between nodes r and s,
 : Subset of H containing the links outgoingܪ
from node i,
UN: Set of updated nodes
UL: Set of updated links,
ω: The most recently updated node,
S: Set of links which have been selected,
 ,ାሺ݅ሻ: Set of outgoing links from node iܮ
 ,ሺ݅ሻ: Set of links leading into node iିܮ
i(a) Tail node of link a
j(a) Head node of link a
݀: Maximum delay on link a,
 ,: Probability that link a is used
ܿ: Uncongested travel time on link a,
 : Expected travel time from node i to node sݑ
by pessimists who minimize maximum exposure to
delay,
݄: Potential at node i with respect to node r,
 : Shortest uncongested travel time from nodeݏ
i to node r,
 A large number whose size depends on the :ܯ
precision of computation.

Table 1 Pseudo codes of ASF and HS algorithms

Step 0: Variables initialization
ݑ ← ∞; 	݅ ∈ ܰ െ ሼݏሽ;	ݑ௦ ← 0;	

݂݅	݀ 0, ݂ ←
1
݀

, 	݁ݏ݈݁ ݂ ← 	;ܯ ݂ ← 0, ݅ ∈ ܰ;

ݕ ← 0, ݅ ∈ ܰ െ ሼݎሽ;	ݕ ← ܪ,1 ← ∅; ܮܶ	 ← ;ܮ

 ݄ ← ݄݁ݐ ݎܾ݁݉ݑ݊ ݀݅ݎ݂݃ ݏܽ݃
Step 1: Selecting step
 ,ܮܶ	݊݅	݈݇݊݅	ݕݎ݁ݒ݁	ݎ݂
find link a with the minimum ݑሺሻ ܿ ݄ሺሻ, ܶܮ െ ሼܽሽ
Step 2: Updating step
if ݑ	 ݑ ܿ		݄݊݁ݐ

 if ݑ	 ൌ ∞		ܽ݊݀	 ݂ ൌ ݄݊݁ݐ	0
ߚ ← ߚ		݁ݏ݈݁	1 ← ݂ݑ

ݑ ←
ቀߚ ݂൫ݑ ܿ൯ቁ

݂ ݂
, ݂ ← ݂ ݂, ܪ ← ܪ ሼܽሽ

if ܶܮ ൌ ∅ or ݑ ܿ ݄ , go to step 3 else go to step 1ݑ

Step 3: Loading step
for every link a ∈ ݑ in decreasing order of ܮ ܿ ݄,

 if a ∈ ܪ then ← ሺ ݂/ ݂ሻݕ and ݕ ← ݕ else

 ൌ 0.

In Table 1, the ASF and HS algorithms are
illustrated together for simplicity and their
similarities and differences can be easily observed.
If one omits the shadowed and underlined parts, the
HS algorithm reduces to the ASF algorithm. In the
HS the heuristic information hi of a node is set to be
the number of grid gaps from the origin and the
link-to-link path search is from the destination to the
origin so that this heuristic information will reduce
the search by selecting the search direction. In many
shortest path problems, it is usual to search the
Dijkstra shortest path at first and then use the A-star
algorithm for possible subsequent searches to the
same destination under slightly changed network
conditions. Following this idea, the shortest distance
will be used as the heuristic information in this
paper.

From the pseudo code illustrated in Table 1, the
theoretical time complexity of the ASF algorithm
can be analyzed as	Oሺ∑ ݅ଶሻ

୧ୀଵ , thus Oሺ݉ଷሻ whereas
the time complexity of the HS algorithm is
dependent on the heuristic information and
unknown beforehand. Incorporating an
improvement to the Dijkstra algorithm by utilizing
prior queue data structures such as Fibonacci heap,
the actual time complexity of the ASF algorithm can
be reduced to 	Oሺ∑ ݅ ∗ log ݅

୧ୀଵ ሻ , thus Oሺ݉ ∗
ሺlog݉ሻଶሻ (Cormen, 1991). Apparently, as
mentioned in Cominetti and Correa (2001), the ASF
algorithm should be much slower than HPD
algorithm by comparing the theoretical time
complexity. For a better understanding of the HPD
algorithm the pseudo code is illustrated in Table 2.

Table 2 Pseudo codes of HPD algorithm

Step 0: Variables initialization
ݑ ← ܪ,∞ ← ∅, ∀ ݅ ∈ ܰ െ ሼݏሽ, ௦ݑ ← 0;

݂ ← 1/݀	݂݅	݀ 0, 	݁ݏ݈݁ ݂ ← 	;ܯ

݂ ← 0, ݅ ∈ ܰ;	
ݕ ← 0, ݅ ∈ ܰ െ ሼݎሽ, ݕ ← ܪ,1 ← ∅,ܷܰ ← ∅
Step 1: Updating step

 5

1.1 Generating hyperpath set for each node
While ܷܰ ് ܰ,
 node updating
ܰ	݊݅	݁݀݊	ݕݎ݁ݒ݁	ݎ݂ െ ܷܰ, 	ݑ	݊݅݉	݄ݐ݅ݓ	݆	݁݀݊	݂݀݊݅

ܽ	݈݇݊݅	݄ܿܽ݁	ݎ݂	 ∈ ሺ݆ሻିܮ
 ݂݅	݅ሺܽሻ ∈ ܰ െ ሼݏሽ	, ݑ	݄݊݁ݐ ← ݑ ܿ	
ሺሻݑ	݂݅ ሺሻݑ ܿ

	ݑ	݂݅ ൌ ∞		ܽ݊݀	 ݂ ൌ ߚ	݄݊݁ݐ	0 ← ߚ		݁ݏ݈݁	1 ← ݂ݑ

ݑ	 ←
ቀఉାೌ ൫௨ೕାೌ൯ቁ

ାೌ
, ݂ ← ݂ ݂, ܪ ← ܪ ሼܽሽ

 link re-check
ܾ	݈݇݊݅	݄ܿܽ݁	ݎ݂ ∈ ሺሻܪ

ݑ	݂݅ ሺሻݑ ܿ

ݑ	 ←
ቀఉି್൫௨ೕሺ್ሻା್൯ቁ

ି್
, ݂ ← ݂ െ ݂, ܪ ← ܪ െ ሼܾሽ

 	ܷܰ ← ܷܰ ሼ݆ሽ
1.2 Combining hyperpath set
݅	݁݀݊	݄ܿܽ݁	ݎ݂ ∈ ܪ ,ܰ ← ܪ ܪ

Step 2: Loading step
 for each link a ∈ ݑ in decreasing order of ܮ ܿ ,
 if a ∈ then ܪ ← ሺ ݂/ ݂ሻݕ and ݕ ← ݕ else ൌ 0.

Bell (2009) tested the ASF and HS algorithms in

a synthetic 8 by 8 grid network with 64 nodes and
224 links (both directions). In the network, i and j
are node IDs and ܿሺ,ሻ	is the undelayed travel time
which is the same for both directions of a link. R
represents the maximum delay that is generated
from a random number between 0 and 1. (See Fig.1)

The performances of ASF and HS algorithms are

compared by the number of selected links (See
Table 3). The table shows the links selected in Step
1 of the HS which accounts for most of the running

time under 3 different maximum delay levels. The
result of scenario 3 corresponds to Fig.1. Scenario 2
generates less links because of its lower maximum
delay than Scenario 3. Scenario 1 ignores the
potential delay and only generates the shortest path.
One may refer to Bell (2009) for more detailed
information.

3. SPEED-UP ALGORITHM: DIJKSTRA-
HYPERSTAR (DHS)

By inspecting the ASF algorithm, one can
observe that the efficiency mainly depends on two

i j ܿሺ,ሻ R

1 2 1.5000 0.5313

2 3 1.3610 0.7027

3 4 1.7729 0.1717

4 5 1.8187 0.6617

5 6 1.8722 0.9257

6 7 1.5820 0.9747

7 8 1.5706 0.3410

9 10 1.5597 0.7933

10 11 1.4173 0.8680

11 12 1.2747 0.8280

12 13 1.1977 0.3443

...

Fig.1 Hyperpath generated in Bell’s synthetic road network (depicted from Bell, 2009)

Table 3 Comparative selected links of the HS algorithm
(depicted from Bell, 2009)

Scenario

ID

Maximum

delay (d)

Number of selected links

ASF HS

1 0 219 79

2 0.3R 222 111

3 R 223 148

 6

indices: the number of selected links and the number
of links that are searched to find a selected link.
Since the topological relations among nodes and
links are available, the actually involved links in the
searching process can be well managed dynamically
or “on the fly” by utilizing the pre-stored
information of the in- and outgoing links. In the
following it will be shown that with a slightly more
complicated management of the link set to be
checked, the speed of the algorithm dramatically
improves if the link updating step is directed so that
a significant number of unnecessary link checks can
be excluded from the searched area. Accordingly,
two measures, improved heuristic distance
estimation and the node-directed search, are taken to
speed up the algorithm.

As mentioned before, in Bell (2009), the grid gap
number was adopted as the heuristic variable in his
experimental grid network, i.e. the heuristic distance
between two adjacent nodes in the network is
estimated as 1. However, it is worth mentioning that
all of the links of the experimental network are of
great homogeneity and their link travel times are
confined between 1 and 2 so that the heuristic
estimation will not surpass the real distance.
Without this condition, the heuristic grid gap may
generate a non-optimal hyper-path. (A similar
problem might occur when implementing the A-Star
algorithm and estimating the heuristic estimates in
another dimension than the route guidance advice,
e.g. heuristic estimate is taking distance, but the
shortest path in travel time is sought.)

The usage of shortest distance as heuristic
variable generally makes the algorithm faster but
such efficiency improvement is far less important
than confining the search set when selecting the link
with minimum 	ሺݑ ݄ ܿሻ . To confine the
search set, a similar idea to the one used in the HPD
algorithm is utilized. That is, the HPD uses a
Dijkstra-like node label setting algorithm. However,
unlike the HPD algorithm, we stick to link label
setting as in the HS with the help of node label
correcting at the same time. That is, after a link label
is permanently set, the label of its tail node is
corrected. By recording the most recently updated
node the link updating will be limited to those
outgoing from this node, which leads to a “node-
directed” search. The concept of this node-directed
search is to keep the link selection search always
confined within the updated link set. The updated
node of the last updating step is the node whose
incoming links will be updated and added to the
updated links set. The elements in the links list will
be dynamically added and removed within the
running process so that the searched link set will be
kept low. Compared to the HPD algorithm, the DHS

is generally superior because it maintains the link
set directly thus the link-checking step within Step
1.1 of the HPD is unnecessary to ensure optimality
of the resulted hyperpath.

By utilizing the ideas mentioned above in
connection with the HS algorithm, the number of
selected links will keep unchanged but an obvious
speed-up can be seen when testing the algorithm. In
addition, this node-directed search can also be
adopted in the ASF algorithm. In that case, the
theoretical time complexity will decrease to the
level of the HPD algorithm resulting in a much
faster run time. Table 4 shows the pseudo code of
DHS algorithm. To get a blind version of the DHS
algorithm without heuristic information, i.e. a node-
directed ASF algorithm, one may just cross out the
with shadow underlined lines of DHS algorithm.

Table 4 Pseudo codes of DHS algorithm

Step 0: Variables initialization
ݑ ← ∞, ݅ ∈ ܰ െ ሼݏሽ, ௦ݑ ← 0;

݂ ← 1/݀	݂݅	݀ 0, 	݁ݏ݈݁ ݂ ← 	;ܯ

݂ ← 0, ݅ ∈ ܰ;	
ݕ ← 0, ݅ ∈ ܰ െ ሼݎሽ, ݕ ← ܪ,1 ← ∅
߱ ← ܮܷ,ݏ ← ∅
Run Dijkstra algorithm, ݄ ← ;ݏ
Step 1: Select link a

for every link ܽ ∈ ,ሺ߱ሻିܮ
 ݂݅	ܽ ∉ ܵ	ܽ݊݀	ܽ ∉ ܮܷ	݄݊݁ݐ	ܪ ← ܮܷ ሼܽሽ
find link a in UL with the minimum ݑሺሻ ܿ ݄ሺሻ,
ܮܷ	 ← ܮܷ െ ሼܽሽ, ܵ ← ܵ ሼܽሽ

Step 2: Update node i
if ݑ	 ݑ ܿ		݄݊݁ݐ

 if ݑ	 ൌ ∞		ܽ݊݀	 ݂ ൌ ߚ	݄݊݁ݐ	0 ← ߚ		݁ݏ݈݁	1 ← ݂ݑ

ݑ ←
ቀఉାೌ ൫௨ೕାೌ൯ቁ

ାೌ
, ݂ ← ݂ ݂, ܪ ← ܪ ሼܽሽ, ߱ ← ݅

if ݑ ܿ ݄ , go to step 3 else go to step 1ݑ

Step 3: Load
for every link a ∈ ݑ in decreasing order of ܮ ܿ ݄,
 if a ∈ ܪ then ← ሺ ݂/ ݂ሻݕ and ݕ ← ݕ else

 ൌ 0.

In summary, there are two changes that contribute to
improve algorithmic efficiency. One is the Dijkstra
heuristic and the other is the node-directed search.
Both of these improvements will not influence the
resulting hyperpath . To illustrate this, the following
three propositions are set.
 Proposition 1. Dijkstra shortest path heuristic
ensures the optimal solution.
 Proof 1. The heuristic potentials have to satisfy the
following inequality principle (Wagner and
Willhalm, 2006):

݄ ݄ ܿ, ∀ܽ ൌ ሺ݅, ݆ሻ ∈ (1) ܮ
There are two possible situations: Either link a

belongs to the shortest path ݏ or not. If link a
belongs to ݏ, we will have ݏ ൌ ݏ ܿ. Since
that shortest path is taken when initializing the

 7

network, we have ݄ ൌ and ݄	ݏ ൌ ݏ such that

݄ ൌ ݄ ܿ. Similarly, if link a does not belong to
, it turns out that ݄ݏ ൏ ݄ ܿ because the path
r-i-j is another path rather than the shortest path r-j.
Consequently, both situations satisfy the inequality
principle, which ensures the optimal solution. □
 Proposition 2. The node-directed search avoids
the link re-check in the HPD algorithm.
 Proof 2. In the HS algorithm, the initial link set to
be searched is the whole link set and the selected
link will be removed in every step until termination
of the algorithm. The DHS instead initializes an
empty link set to be searched and allows a gradual
node-directed link addition. Only the added links
will be checked in every iteration. As a consequence
of the reduction in ݑ, some links which have been
added to ܪ in previous iterations may not be
advantageous anymore and are removed through the
link re-check in the HPD algorithm. By contrast, the
DHS algorithm updates the link set directly and the
labels of updated nodes are not affected by the link
updating process so that u୧ will not reduce in later
iterations and at any time ∀ܽ ∈ ܪ the hyperpath
addition condition: ݑ	 ݑ ܿ	 is always
satisfied, so that there is no need for link re-check.
 Proposition 3. The DHS and HPD result in the
same hyperpath.
 Proof 3. The hyperpath is determined by the
summation of the selected links in each step. The
other processes including the node-updating step
and the loading step are the same except for the UN
management in the node updating step of the DHS.
Consequently, if the same link will be selected by
the HS and DHS algorithms in every single link
selection, the resulting hyperpath will be the same.
Step 1 finds the link with minimum ሺu୧ h୨ cୟሻ
among the links except those that have already been
selected before. From proposition 1 it is apparent
that the hyperpath result will not change if shortest
distances are used as heuristic information. On
condition that the HS adopts the shortest distance
heuristic information, the only difference between
the DHS algorithm and the HS algorithm is the
gradual node-directed link addition. In the DHS, the
UL set, which excludes the links that have never
been updated and are hence are also never selected
in the HS due to initialized infinite	u୧, is a subset of
the TL set of HS. The UL is identical to the TL
except for excluding links a that have a head node
with uj(a)= ∞ and therefore the same link will be
selected in each iteration. Consequently, DHS and
HS generate the same hyperpath. Furthermore, since
both the HS and HPD algorithms generate the same
hyperpath with ASF, all four algorithms generate
the same hyperpath.□

4. ALGORITHM PERFORMACE TESTS

In this section, first, the same network with Bell
(2009) will be tested and then the performances of
ASF, HS, HPD and the proposed DHS are compared
in larger synthetic networks with different
topologies. All of the algorithms are coded in
Microsoft C# with Visual Studio 2010 and the testing
environment is Intel T6400 2.13GHz/4G

RAM/Windows Vista. Only the result of tests on grid
networks will be shown here for convenience because
a similar result can be seen on other network
topologies according to our performed tests. On the 8
by 8 grid network as used in Bell (2009), we firstly
compare the number of selected links (Fig.2). Due to
the different structure of HPD from the other three
algorithms, it will not be included in this comparison.

In Fig.2, it is clear that the proposed DHS
algorithm selects significantly less links during the
link selection step so that we can expect a speed-up
in real running time. One may argue about the extra
time required to run the Dijkstra shortest path
algorithm in Step 0 of the DHS algorithm and doubt
whether the run time of DHS is hence in fact faster.
Therefore the CPU run time is tested in the
following where the time required to run the
Dijkstra algorithm is included in the DHS.

To make run time differences large enough to be
observable, tests are performed on a larger grid
network. This larger grid network has a size of 50
by 50, leading to 2500 nodes and 9800 links. The
data table format is shown in Table 5. The
uncongested travel time was randomly generated by
uniform distribution within [30, 50] and then the
congested travel time was generated by adding a
new random variable within [15, 25] to the
uncongested travel time. The difference of
congested and uncongested travel times corresponds
to the maximum delay in Bell (2009).

We randomly tested the performance for different
OD pairs where the tested node pairs are all
randomly selected by a uniform random generator

Fig.2 Comparison of the number of

selected links in Bell (2009) network

219 222 223

79
111

148

9
28

46

d = 0 d = 0.3R d = R

Scenario 1 Scenario 2 Scenario 3

ASF HS DHS

 8

that is available online (http://www.random.org/
integers/). In Table 6 the test scenarios are ordered
by the shortest distances from the origin to the
destination because it is reasonable to assume that
the algorithm running time increases when the OD
pairs are farther away considering that more link
searches may be included. Fig.3 illustrates the
relative positions of these OD scenarios in a
rectangular coordinate system, for example, node 1
as (1, 1) and node 2500 as (50, 50). Note that the
codes of all algorithms are implemented with the
same data handling structure and that they share the

same codes as much as possible so that there will be
no specific code bias for any algorithm. For
convenience, the data structure we used is the
adjacency list and the practical speed can be much
faster by using other data structures such as heap
structure. In any case, these factors have little effect on
the performance comparison and the comparisons are
fair. The following HS algorithm test results are all
with the shortest distance information and the one
with the grid gap information will not be discussed
since it is slower and may cause deviated hyperpath.

The result of our test is shown in Table 6. In our

tests, the average run time of these 20 scenarios for
the ASF algorithm was 7068.1ms, 6814.9ms for the
HS algorithm, 298.1ms for the HPD algorithm and
only 51.3ms for the proposed DHS algorithm. It
turns out that the Dijkstra running time is almost
negligible compared to the total running time of
DHS in the scenarios that OD pairs are far away
from each other and that the total run time of DHS
is similar to the speed of running the Dijkstra
algorithm if the destination is, in terms of grid
distance, close to the origin.

In most of the scenarios, the HS algorithm is

faster than the ASF algorithm except for the last
four scenarios where OD pairs are near the opposite
corners of the network. This is because the heuristic
information helps to direct the search to the origin.
However, such a merit can improve the speed very
limitedly when the OD pair scenario are in opposite
corners. (Note that the link search is inversely from
the destination to the origin.) Consequently, the
scenario where HS algorithm is even slower means
that the speed-up by heuristic information cannot
compensate for the intrinsic additional run time
consumption for adding the heuristics and the
difference is not trivial. Considering that such

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

1

2

3

4(16)

5

6

7

8

9

10

11

12

13

14

15

17

18

19

20

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

Origins

Destinations

Fig.3 Relative positions of the tested OD scenarios
(The numbers are scenario ID, 4(16) means the same node for scenario 4 and 16)

 9

search scenarios are rare, the HS in general outperforms the ASF algorithm.

Table 6 Test scenarios and results

Scenario ID r (coordinate) s (coordinate) Shortest Distance
Algorithm running time (ms)

ASF HS HPD DHS

1 763 (13,16) 707 (7,15) 260 751 137 311 7

2 1926 (26,39) 1688 (38,34) 614 4227 1277 323 11

3 683 (33,14) 1046 (46,21) 711 4008 1727 299 12

4 42 (42,1) 991 (41,20) 731 5429 1563 287 10

5 921 (21,19) 1665 (15,34) 768 5907 1982 302 13

6 277 (27,6) 1173 (23,24) 810 7057 2172 311 14

7 510 (10,11) 1417 (17,29) 860 7540 2642 310 16

8 117 (17,3) 488 (38,10) 1002 7109 3649 285 24

9 758 (8,16) 2056 (6,42) 1019 6297 3268 297 20

10 2013 (13,41) 870 (20,18) 1058 9421 4174 313 26

11 530 (30,11) 1297 (47,26) 1104 7542 4658 281 32

12 399 (49,8) 1479 (29,30) 1482 10655 7897 310 61

13 1455 (5,30) 633 (33,13) 1580 10449 8509 312 69

14 241 (41,5) 2027 (27,41) 1735 11044 10238 289 65

15 2400 (50,48) 2355 (5,48) 1753 9912 5656 297 26

16 42 (42,1) 2488 (38,50) 1907 10804 9182 293 54

17 1717 (17,35) 296 (46,6) 1991 10432 12040 284 102

18 2132 (32,43) 305 (5,7) 2159 10532 13456 290 130

19 144 (44,3) 1608 (8,33) 2293 10826 14662 280 178

20 287 (37,6) 1951 (1,40) 2416 11340 14546 287 156

Average 7068.1 6814.9 298.05 51.3

In Fig.4 the performance comparison among

these 4 algorithms is shown. Fig.4 implies that as
the shortest distance increases, there is a trend that
also the run time increases although the relationship
is not a strict one because there is no strict linear
relationship between the shortest distance and the
algorithm run time. In contrast to the HS and DHS
algorithms, the HPD algorithm almost keeps the
same run time. By analogy to the Dijkstra shortest
path algorithm and the A-star algorithm, the reason
is clear: Like Dijkstra shortest path algorithm, no

matter where the OD pairs are, the HPD algorithm
will always cover all of the nodes before
termination. Furthermore, Fig.5 shows the run time
of the HS algorithm and DHS separately and one
may find that the increasing trends in run time the
further apart the OD pairs are in terms of shortest
distance, are quite similar for both algorithms. It can
be explained with the facts that both adopt the
shortest distance as the node heuristic information
and that the DHS algorithm is a constrained link
search version of the HS algorithm.

 10

Finally, one may question whether the observed

differences in run time also hold for networks with
different topologies. We carried out another test on a
synthetic radial network which contains one central
node, 50 radial links and 50 connecting cycles (2501
nodes and 10000 links). Test results on this network
also show that the proposed DHS is faster than the
other algorithms, especially compared with ASF or
HS algorithm. The same random OD pairs as the
former tests are tested. The average run time for the
ASF algorithm on the radial network is 11232 ms,
9249 ms for HS algorithm and 305 ms for the HPD
algorithm. The average run time of the proposed
DHS algorithm is only 21ms. The similarly
increasing trend between HS and DHS also holds.
The general speeds on the radial network for ASF
and HS algorithms are a little slower; it may be
explained mainly by the fact that the radial network
increases the number of links to 10,000. The run
time of the HPD algorithm is almost identical
compared with that in the grid network. This is
because the run time of the HPD algorithm is
mainly constrained by the number of nodes and
there is only one node more in the grid network.

However, we may find that the run time of DHS
algorithm is much faster than that on the grid
network. In the radial network, the shortest distance
is less than that of grid networks because the cycles
shorten the distance, thus the node-directed strategy
will lead to much less links to be searched. That is,
it may be concluded that heuristic information and
node-directed strategy contribute more to the speed-
up on radial networks than on grid networks.
Because the performance comparisons are similar to
that of the grid network, for brevity, the detailed test
results will not be shown in this paper but are
available if requested.

5. DISCUSSION AND CONCLUSIONS

The multipath-routing strategy to “minmax

exposure to delay” seems a reasonable assumption
not only for transit passengers but also for road
users. Whereas for transit passengers it is fairly
obvious to assume that they fear delayed service
arrivals, the precise assumption on what exactly
road drivers fear is more of a topic for discussion.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lo
g(

T
im

e[
m

s]
)

Scenario ID

ASF

HS

HPD

DHS

0
20
40
60
80

100
120
140
160
180
200

1 3 5 7 9 11 13 15 17 19

T
im

e(
m

s)

Scenario ID

DHS Algorithm

0

2000

4000

6000

8000

10000

12000

14000

16000

1 3 5 7 9 11 13 15 17 19

T
im

e(
m

s)

Scenario ID

HS Algorithm

Fig.4 Performance comparison

Fig.5 The trend comparison between HS and DHS algorithms

 11

The focus of this paper is on the performance of
multi-path route guidance algorithms, though, and
we chose to follow Bell’s assumptions about the
hyperpath chosen by drivers in road networks. The
DHS algorithm is proposed as an approach to obtain
this hyperpath faster.

The HPD algorithm has a very similar name to
our DHS algorithm, the idea is different: Hyperpath-
Dijkstra has a structure resembling Dijkstra’s
algorithm; the dominant loop is controlled by the
number of solved nodes instead of solved links.
Although it is impossible to compare the efficiency
between HPD and DHS algorithm in theoretical
time complexity because of the heuristic
characteristic of the DHS algorithm, we showed the
lower run time of the DHS algorithm through tests
on artificial grid and radial networks. In most cases,
the DHS outperformed the HPD algorithm
significantly and even in the worst case it is still
almost twice as fast as the HPD algorithm.

The proposed DHS algorithm is an efficiency
improved version of the original Spiess & Florian
algorithm inspired from the on-the-fly concept: The
link set to be searched is extended on the fly by
gradually finding the lastly updated node; the pre-
stored node-link topology is hence well used for
maintaining the updated link set dynamically. Note
that this requires some more memory space
resources, in terms of pre-stored node look-up
tables. Since run-time improvement is believed to be
crucial for route guidance applications though, our
significant run time improvements mean that it is
worth doing so, especially because hard disk drives
are much cheaper than processors. The algorithm is
still potential to be improved by adopting more
complicated, but also more efficient data structures,
such as Fibonacci heap if necessary.

It is worth mentioning that the speed-up methods
proposed in this paper are not limited to road
networks but also can be adopted for transit
networks if maximum delay is interpreted as service
frequency. We are not declaring a comparatively
superior multipath algorithm to the K-path
algorithm or other types of multipath algorithm here
but only trying to improve the efficiency of the
known frequency (or maximum delay) based link-
to-link multipath algorithm so that it will be much
more potentially eligible to be adopted in navigation
fields. Besides being useful for route guidance, the
proposed algorithm may also be applied within
traffic assignment. In this paper, the effect of
navigation to network equilibrium solutions was not
studied but is a topic of further research. Further,
our plan is to test the algorithm on a real network
and compare the generated paths with the collected
route choice data so that the applicability of this

algorithm and the underlying assumptions on user
behaviour to observed route choice data can be
explored.

REFERENCES

1) Bell, M.G.H. (2009). Hyperstar: A multipath A-star

algorithm for risk averse vehicle navigation.
Transportation Research Part B 43(1): 97-107.

2) Ben-Akiva, M., Bierlaire, M., Bottom, J., Koutsopoulos, H.
and Mishalani, R. (1997). Development of a route
guidance generation system for real-time application. In
Papageorgiou, M. and Pouliezos, A. (eds.), The 8th IFAC
Symposium on Transportation Systems, Crete, Greece,
June 1997.

3) Chen, Y.Y., Bell, M.G.H. and Wang, D. (2006). Risk-
averse time dependent route navigation by a constrained
dynamic A* search in decenterized structure. Proceedings
of the Transportation Research Board Annual Meeting
2006. Washington D.C., USA.

4) Chen, Y.Y, Bell, M.G.H. and Bogenberger, K. (2007).
Reliable pre-trip multipath planning and dynamic
adaptation for a centralized road navigation system. IEEE
Transactions on Intelligent Transportation Systems 8(1):
14-20.

5) Cominetti, R., Correa, J. (2001). Common bus lines and
passenger assignment in congested transit networks.
Transportation Science 9: 115-121.

6) Cormen, T., Ch. Leiserson, R. Rivest. (1991). Introduction
to Algorithms. McGraw-Hill, MIT Press, Boston, MA.

7) Dijkstra, E. (1959). A note on two problems in connection
with graphs. Numerical Mathematics 1: 395-412.

8) Eppstein, D. (1994). Finding the k shortest paths. The 35th
IEEE Symposium Foundations of Computer Science: 154-
165.

9) Eppstein, D. (1998). Finding the k shortest paths.
Technical Report CA92717, Department of Information
and Computer Science, University of California, Irvine.

10) Fosgerau, M., Frejinger, E. and Karlström, A. (2009).
Route choice modeling without route choice. Proceedings
of European Transport Conference.

11) Hart, P.E.; Nilsson, N. J. and Raphael, B. (1968). A formal
basis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics
SSC4 4 (2): 100-107.

12) Hofmann-Wellenhof, B., Legat K. and Wieser M. (2003).
Navigation: principles of positioning and guidance.
Springer Verlag.

13) Jiménez, V.M. and Marzal, A. (2003). A lazy version of
Eppstein's k shortest paths algorithm, Proceedings of the
2nd international conference on Experimental and efficient
algorithms: 179-191, Ascona, Switzerland.

14) Kaparias, I. and Bell, M.G.H. (2009). Testing a reliable in-
vehicle navigation algorithm in the field. Intelligent
Transport Systems 3(3): 314-324.

15) Nguyen, S. and Pallottino, S. (1988). Hyperpaths and
shortest hyperpaths, Lectures given at the third session of
the Centro Internazionale Matematico Estivo (C.I.M.E.) on
Combinatorial optimization: 258-271, Como, Italy

16) Pearl, J. (1984). Heuristics: intelligent search strategies for
computer problem solving, Addison-Wesley Longman
Publishing Co., Inc.

17) Santos, J.L.K. (2006) Shortest Path Algorithms [EB/OL].
http://www.dis.uniroma1.it/~challenge9/papers/santos.pdf.

18) Spiess, H. and Florian, M. (1989). Optimal strategies: A
new assignment model for transit networks. Transportation

 12

Research Part B 23(2): 83-102.
19) Wagner, D., Willhalm, T. (2006). Speed-up techniques for

shortest path computations. ARRIVAL-TR-0024
(<http://arrival.cti.gr/>).

20) Wichmann, D.R. and Wuensche, B.C. (2004). Automated
route finding on digital terrains. Proceedings of
IVCNZ ’04: 5-9, Akaroa, New Zealand.

21) Yongtaek, L. and Hyunmyung, K. (2005) A shortest path
algorithm for real road network based on path overlap.
Journal of the Eastern Asia Society for Transportation
Studies 6: 1426- 1438.

22) Zijpp, N.J. and Catalano, S.F. (2005). Path enumeration by
finding the constrained K-shortest paths. Transportation
Research Part B 39(6): 545-563.

