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A hyperpath can be defined as a set of attractive lines identified by the passenger for each stop, each of 

which might be the optimal one from the stop, depending on lines arrival time, frequency, cost etc. The 
concept of the hyperpath has been used for most of transit assignment models as a fundamental 
assumption, although the passengers’ behavior on the real transit network has not been well explored. 
This research uses time series smart card data from London to investigate whether passengers follow such 
proposed hyperpaths or not. The analysis is based on n-step Markov models and proposes that the 
variations in routes taken by passengers who supposedly travel between the same OD pair every morning 
over several days should reflect the set of paths included in an (optimal) hyperpath. Our hypothesis is that 
a large variation in bus lines over days indicates a complex hyperpath whereas a passenger who takes the 
same line every morning does not consider many alternatives. Our results suggest that there is some 
variation in routes chosen, possibly in accordance with the theory of hyperpaths in networks with 
uncertainty.  
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1. INTRODUCTION 
 

It is generally assumed that on transit networks 
travelers try to minimize their expected travel time 
consisting of waiting time, on-board time as well as 
potentially other factors such as fare, crowding or 
seat availability by selecting a hyperpath. A 
hyperpath can be defined as a set of attractive lines 
identified by the passenger for each stop, each of 
which might be the optimal one from the stop, 
depending on lines arrival time, frequency, cost etc. 
In networks with few uncertainties, e.g. regular 
arrival times, low congestion, this set of services 
will be smaller as passengers can better estimate 
whether it is advantageous to let slow services pass 

in order to wait for the faster service that might 
arrive soon. This behavioral assumption has led to a 
fairly large set of literature. 

Several transit network design models that aim at 
optimizing the frequencies of the lines have been 
proposed1). Transit assignment has been studied 
either as a separate problem (e.g. see Andreasson2)), 
or as a sub problem of more complex models, such 
as transit network design (e.g. Mandl3)), or 
multimodal network equilibrium (Florian4), and 
Florian et al.5)). Most of the algorithms that have 
been proposed in the past may be classified as 
heuristic approaches to the problem. These 
algorithms are variants of assignment procedures 
used for private car traffic on road networks (such 
as shortest path, stochastic multipath assignment) 



 2

that are modified to reflect the waiting time 
phenomenon inherent to transit networks. Spiess et 
al.6) replace the simplistic route choice models by a 
transit assignment model leading to more realistic 
transit network design models. They described a 
model for the transit assignment problem with a 
fixed set of transit lines. The traveler chooses the 
strategy that allows him or her to reach his or her 
destination at minimum expected cost. In recent 
approaches7), the previous assumptions are refined; 
partly to reflect the increasing amount of 
information passengers obtain during their journeys. 
Another formulation is proposed by Nguyen et al.8). 
They introduced the concept of hyperpaths and 
formulate an equilibrium model similar to that used 
for congested road networks 9). In both models, 
Spiess9) and Nguyen et al.8), waiting times are 
considered constant and independent of volumes. 

The purpose of this research is to understand 
whether passengers indeed follow such proposed 
hyperpaths or whether habits and other factors 
would dominate routing decisions leading to less (or 
more) complex hyperpaths than those proposed in 
the literature. Observing hyperpaths is, however, 
difficult. One would have to understand which 
(unchosen) routing options the traveler considers. 
As a first step this analysis assumes that the 
variations in routes taken by regular commuters 
during their morning journey over several days 
should reflect the set of paths considered by 
hyperpath travelers in networks with uncertain 
vehicle arrival times. Our hypothesis is that a large 
variation in routes over days indicates a complex 
hyperpaths whereas a traveler who takes the same 
route every morning does not consider many 
alternatives leading to a simple hyperpaths.  

The reminder of this paper is structured as follows. 
The next section describes the data used for this 
research and the preprocessing. Section 3 describes the 
Markov analysis used to analyze stability in route 
choice over days and shows some initial results. 
Section 4 describes how overlapping between routes is 
considered and how this changes the results. Section 5 
discusses the findings of this paper. 

 
2. DATA DESCRIPTION AND 

PREPARATION 

 
Through Transport for London (TfL) smart card 

data from London’s public transport network, 
commonly referred to as “Oyster card”, has been 
obtained. It is believed that London is a good case 
study for our analysis because of three reasons. First, 
the public transport network is large and dense 
offering passengers a large number of route choices. 
Second, public transport services are operated 

frequency based. This is, even though there might 
be an internal timetable within TfL, in many cases 
passengers only find information about service 
frequencies at bus stops for frequent services during 
peak hour. Third, service reliability in London is not 
as high as in many other cities with smart card 
systems. All three reasons should encourage 
passengers to consider in many cases fairly complex 
hyperpaths.  

The Oyster smart card system is implemented in 
London’s bus, tube, tram, DLR as well as parts of 
its commuter rail system10). Smart card data are 
convenient for travelers, operators as well as 
analysts, allowing for example to conduct the 
analysis on which this paper is based. Kusakabe, et 
al.11) describe in more detail possibilities as well as 
limitations of smart card data. There is an average 
of 6.3 Million Oyster card swipes recorded in our 
data set per day. Cardholders traveling by bus do 
only have to swipe when boarding a bus. Travelers 
on all track bound modes though have to swipe 
when boarding as well as when alighting. For the 
purpose of our analysis on path choice decision this 
additional alighting record is obviously 
advantageous. However, interchanges between tube 
lines are not captured by Oyster card, whereas the 
bus data do record the route number taken. 
Furthermore, the bus network offers users far more 
routing options and potentially complex hyperpaths 
with several bus routes departing from the same 
stop. Therefore our initial analysis focuses on bus 
records only. 

We obtained two weeks of Oyster card’s data for 
the period 08 Nov - 22 Nov 2007. Due to the size of 
our data set as well as some incomplete records 
significant preprocessing is required. As Kusakabe 
et al.11) also noted this preprocessing effort required 
for the use of smart card data can be very substantial. 
Firstly we reduced the dataset to only that 
information relevant to our analysis. These are  
- Card number, to identify the same traveler over 

several days, 
- Route ID, to identify the bus route, 
- Boarding time. 

We further kept the information (bus stop) 
boarding location in our database, however, 
unfortunately the boarding location recorded on the 
Oyster card are not reliable. (This is because in 
2007 the bus is not yet connected to the bus GPS 
system.) Note further that Oyster card does not 
record the exact bus the passenger is boarding. 
Clearly these are limitations to our study, but we 
believe to partly overcome these by reducing our 
sample to only those travelers who use a bus every 
day of the 10 week days in our sample before 9.30 
am, meaning that we are likely to pick up only 
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regular morning commuters. Any Oyster card holder 
who is not using a bus before 9.30am at all ten 
weekdays is excluded from our sample. Furthermore, 
we only select the first boarding of the day, meaning 
that it is likely that the person is starting the journey 
each day from the same location, his home. With 
these stringent conditions we reduce our sample size 
to 17302 regular bus commuters. Furthermore, we 
reduce our sample to those commuters whose 
hyperpath presumably only consists of bus route 
options from their home location.  

 
3. INITIAL N-STEP MARKOV ANALYSIS 

 
To analyze the consistency in route choice over 

days, we adopted an n-Step Markov model. The 
choice of route on day d is assumed to depend on 
the choices on n previous days. As we are not 
interested in which specific route the passenger is 
taking, but only in whether the traveler is taking the 
same or a different route the choice on the first day 
is generally abbreviated with bus A in the following. 
On the next day the passenger has then the choice to 
take the same bus A or a different bus B. If the 
passengers took two different buses on the first two 
days, on the third day he/she then has a choice 
between buses A, B, C and so on.  

In the first analysis step we assume n=2. Our 
choice of independent days is taken as the previous 
day as well as the same weekday during the 
previous week. The letters follow chronological 
order of choices from left to right. Therefore, the 
two letters before the underline indicate the routes 
taken on previous days and the last letter indicates 
the route chosen on the predicted day. For example 
AA_A indicates that the traveler is taking the same 
route on all three days, AB_B indicates that the 
traveler is taking the same bus as yesterday, but that 
he took a different bus route on the same weekday 
on the previous week. AB_C indicates that different 
buses are taken each day. The 3-Step case can also 
be calculated in the same way, assuming e.g. the 
day before yesterday as an additional independent 
variable. The general form of the probability that a 
person i will choose line j on day d can be described 
as follows; 
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Where: 
i : person, 
j : transit line choice, 
jd : transit line choice on the dth day, 
pij

d : probability that a person i chooses 
transit j on the dth day, 

Ji : number of available transit lines for 
person i. 

 
Our hypothesis is that if we expect some route 

variations then hyperpaths may exist (i.e. a large 
part of the route choice variation may be due to 
common lines that are part of the travelers 
hyperpaths). 

Fig. 1 describes the probability of each choice for 
2-step Markov model, suggesting that there is 
considerable variation in routes chosen, and 
indicates that a large amount of commuters change 
route at least on some days. It also shows that only 
around 23% choose the same bus every day whereas 
around 20% choose a different bus route on all three 
days. The reminding percentage of passengers 
chooses a different bus on at least one out of the 
three days. Fig.2 shows the results for n=3 where 
the independent days are taken as the day before, 
two days before and the same weekday in the week 
before. The percentage of commuters taking every 
day the same bus now reduces to less than 17%. 
Note, however, that the percentage of commuters 
taken a different bus every day reduces even further 
to below 6%. The reminding percentage of 
passenger chooses the same bus on at least two out 
of the four days. 

Both figures further indicate that the day of the 
week for which the route choice is predicted does 
not appear to have a significant influence on the 
results. Furthermore, it cannot be observed that 
either the previous day or the same day of the last 
week has a more significant influence on the 
prediction. These results seem reasonable, given the 
selection of our sample (first bus chosen from home 
of regular commuters). Our results might suggest 
that there is indeed some random variation in routes 
chosen, possibly in accordance with the theory of 
hyperpaths in networks with uncertainty. 
 
4. CONSIDERATION OF OVERLAPPING 

ROUTES 
 
In order to understand whether the variation in 

chosen routes observed in Figs 1 and 2 is indeed 
due to passengers traveling on hyperpaths or 
whether this is due to other reasons, overlap of 
routes is considered in this section. Our hypothesis 
is that we predict would the variation in route choice 
to disproportionally decrease in case line overlap is 
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considered. This indicates that a large part of the 
route choice variation is indeed due to common 
lines that are part of the travelers’ hyperpaths. 

As explained before though, unfortunately our 
data set does not allow us to induce the home bus 
stop of the respondent. Therefore we cannot identify 
directly whether a traveler took a different route B 
on a second day because it is part of the same 
hyperpath or because of different reasons. As an 
approximation we can only identify the degree to 
which the routes overlap. We therefore define pxy as 
the percentage of shared stops on the routes of two 
bus lines x and y.  

If the percentage exceeds a predefined threshold S 
these two lines are considered as the same line as it 
is presumed likely that passengers could take both 
lines from their home location. This means that the 
smaller S the smaller the set of lines. S=0 would 
mean that the traveler always faces only the option 
of 1 line, whereas S=1 leads to the results identically 
to those shown in the previous section. 

Tests were carried out with different thresholds S 
for 2-step Markov models for prediction of route 
choice during the second week. Fig.3 shows the 

goodness of fit index (ρ) for different overlapping 
thresholds S during week days, which are calculated 
with the following equation. 

   ρ=1-LL (0)/LL (model)         (1) 
It is concluded from Fig.3 that considering overlap 
is important to increase the model fit of the 
predicted model. The likelihood ratio index (ρ) 
improved significantly for low overlapping 
thresholds S (i.e. 20% is better than 40% and so on) 
but no improvement, compared to ignoring 
overlapping, can be observed for S>40%. Table 1 
shows the goodness of fit indices for the 2-step 
Markov analysis and Fig.4(a)-(d) illustrates the 
results of the 2-Step Markov model for route 
predication during the 2nd week for different 
overlapping thresholds S. 
 
5. DISCUSSION 

 
Comparing Fig.1 and Fig.4, we have an evidence 
that the variation in route choice is decreased in case 
line overlap is considered. This may indicate that a 
large part of the route choice variation is indeed due 

Fig.1  2-Step results for route predication during 
the 2nd week 

Fig.2  3-Step results for route predication during 
the 2nd week 

Fig.3 Good of fit index (ρ) for different overlapping 
thresholds S 

 
Table 1 Good of fit index  for different thresholds 
S 

 0% 
(any)

20% 40% 60% 80%
100%
(none)

Mon 0.245 0.153 0.146 0.155 0.157 0.157

Tues 0.306 0.170 0.154 0.158 0.158 0.159

Wed 0.336 0.180 0.156 0.158 0.159 0.159

Thrs 0.350 0.170 0.156 0.159 0.160 0.161

Fri 0.324 0.171 0.150 0.155 0.156 0.157
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to common lines that are part of the travelers’ 
hyperpaths or at least some route variation is due to 
overlap and possibly hyperpaths.  S > 60% reduces 
the significance of considering overlapping as there 
remains significant variation in route choice 
prediction. Only for S <0.4, the variation in route 
choice decreases compared to route choice 
prediction without considering overlapping. 
 

We conclude that Markov models can be used to 
analyze the consistency in travelers’ route choice 
behavior observed with time series Smart Card data. 
The result shows that the day of the week for which 
the route choice is predicted does not appear to have 
a significant influence on the results. Furthermore, 
initial results might suggest that there is some 
random variation in routes chosen, possibly in 
accordance with the theory of hyperpaths in 
networks with uncertainty. Overlap of routes is 
considered to understand whether this is indeed due 
to passengers travelling on hyperpaths or whether 
this is due to other reasons. It is found that the 
variation in route choice is decreased in case line 

overlap is considered. This may indicate that a large 
part of the route choice variation is indeed due to 
common lines that are part of the travelers’ 
hyperpaths or at least some route variation is due to 
overlap and possibly hyperpath.  
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