パーティクルフィルタの設計と交通流への適用に関する考察*

Design of Particle Filter and Application to Traffic Flow*

小林剛**・アンブルヴェル・アルラナンダム***・中辻隆**** By Takashi KOBAYASHI** • Anburuvel ARULANANTHAM*** • Takashi NAKATSUJI****

1. はじめに

複雑な交通状態を把握する必要がある現代の交通流シ ミュレーションにおいては、観測データを用いたフィー ドバックによる動的推定が、広く用いられている。この フィードバック推定法において、最も代表的なものが、 カルマンフィルタ(Kalman Filter: KF)である。KFは 1960年代に提唱された方法論であり、コンピュータが発 達する以前から一般的となってきた。しかし、KFは線 形事象しか取り扱うことができないという点で制限が強 く、実際に発生する諸事象に対応するための改良が数多 く行われてきている。その例としては、拡張カルマンフ ィルタ(Extended Kalman Filter: EKF)や、Unscented カルマンフィルタ(Unscented Kalman Filter: UKF)¹⁾ などがあげられる。

パーティクルフィルタ(Particle Filter: PF)も同様に、 KFの制限を克服すべく提案されたフィードバック推定 法である。PFでは、ランダムサンプリングによるモン テカルロ近似法を導入し、非線形事象の動的推定を可能 にしている³⁾。

本稿では、PFによるフィードバック推定システムの 概要について述べた上で、交通流への適用可能性につい ての考察を行う。特に、この適用結果を元にして、PF において重要な位置を占める、プロポーザル分布とリサ ンプリングによる、システム設計および推定結果への影 響を記述する。

*キーワーズ:パーティクルフィルタ、フィードバック推 定、交通流

**学生員、工学、北海道大学大学院工学院 (北海道札幌市北区北13条西8丁目、

TEL: 011-706-6217、E-mail: go-goo-go@eng.hokudai.ac.jp)

***非会員、工修、北海道大学大学院工学院 (北海道札幌市北区北13条西8丁目、

TEL: 011-706-6217, E-mail: aanbu007@eng.hokudai.ac.jp)

****正員、工博、北海道大学大学院工学研究院 (北海道札幌市北区北13条西8丁目、

TEL: 011-706-6215、E-mail: naka@eng.hokudai.ac.jp)

2. パーティクルフィルタの設計

(1) フィルタによる動的推定システム3)

フィルタを用いて状態予測を行う動的推定を、フィル タリング (Filtering) と呼ぶ。これは、誤差を含む観測 データから対象の状態を予測する方法論である。

いま、 \mathbf{x}_k を時刻kにおける直接観測できない状態変量 のベクトル、 \mathbf{y}_k を直接観測できる観測変量のベクトルと すれば、状態空間モデルは次の式であらわされる。

状態方程式
$$\mathbf{x}_k = \mathbf{f}(\mathbf{x}_{k-1}) + \mathbf{v}_k$$
 (1)

観測方程式
$$\mathbf{y}_k = \mathbf{g}(\mathbf{x}_k) + \mathbf{w}_k$$
 (2)

ここで、f(*)は非線形状態遷移行列関数、g(*)は非線 形観測行列関数、また、v_kは時間変化に関する誤差、w_k は観測誤差である。状態方程式とは、時刻kから時刻k+1 への状態変量の時間発展を記述し、観測方程式とは、状 態変量から観測変量が得られる様子を記述している。

時刻kまでの観測値の集合を $Y_k=\{y_1, \dots, y_k\}$ とすれば、 求めるべき x_k の最小分散推定量(最確値)は事後確率分 布 $p(x_k|Y_k)$ を用いて次のようにあらわされる。

$$\hat{\mathbf{x}}_{k} = E(\mathbf{x}_{k} | \mathbf{Y}_{k}) = |\mathbf{x}_{k} p(\mathbf{x}_{k} | \mathbf{Y}_{k}) d\mathbf{x}_{k}$$
(3)

観測値 \mathbf{Y}_k から状態 \mathbf{x}_k の事後確率 $p(\mathbf{x}_k | \mathbf{Y}_k)$ を直接推定する ことは困難であるため、フィルタリングではベイズの定 理を用いて推定を行う。

$$p(\mathbf{x}_{k} | \mathbf{Y}_{k}) = p(\mathbf{x}_{k} | \mathbf{y}_{k}, \mathbf{Y}_{k-1}) = \frac{p(\mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{Y}_{k-1})}{p(\mathbf{y}_{k}, \mathbf{Y}_{k-1})}$$
(4)
$$= \frac{p(\mathbf{y}_{k} | \mathbf{x}_{k})p(\mathbf{x}_{k} | \mathbf{Y}_{k-1})}{p(\mathbf{y}_{k} | \mathbf{Y}_{k-1})}$$

 $p(\mathbf{y}_k | \mathbf{x}_k)$ は、ある状態 \mathbf{x}_k のときに、観測値 \mathbf{y}_k を得る確率 であり、観測方程式から与えられる。また、 $p(\mathbf{x}_k | \mathbf{Y}_{k-1})$ は、 時刻kにおける事前確率であり、次のようにあらわされ る。

$$p(\mathbf{x}_{k} | \mathbf{Y}_{k-1}) = \int p(\mathbf{x}_{k}, \mathbf{x}_{k-1} | \mathbf{Y}_{k-1}) d\mathbf{x}_{k-1}$$

$$= \int p(\mathbf{x}_{k} | \mathbf{x}_{k-1}) p(\mathbf{x}_{k-1} | \mathbf{Y}_{k-1}) d\mathbf{x}_{k-1}$$
(5)

 $p(\mathbf{x}_{k-1}|\mathbf{Y}_{k-1})$ は時刻k-1における事後確率である。また、 $p(\mathbf{x}_{k}|\mathbf{x}_{k-1})$ は時刻k-1から時刻kへの状態推移確率であり、 状態方程式から与えられる。

フィルタリングでは、時刻k-1までの観測から時刻kの 状態を推定するステップ(Prediction:予測)と、予測 と状態推移確率から事後確率を推定するステップ(Upd ate:更新)から成っている。フィルタリングとは、この二つのステップにより各時刻の事後確率 $p(\mathbf{x}_k \mathbf{Y}_k)$ を求めることで、状態推定を行っていくシステムである。

(2) モンテカルロ近似法と重度サンプリング4)

PFにおいては、先に述べたベイズによる更新と、モ ンテカルロ積分を用いたモンテカルロ近似法(Monte C arlo Approximation)による最適推定によって構成され ている。ベイズ推定においては確率密度関数を求める際 に、多重積分 $H = \int k(x) dx$ の計算を行うことがしばし ば必要となる。モンテカルロ近似法を用いれば、大型計 算機を必要とすることなく精度の高い結果を得ることが できる。

確率密度関数 $\pi(x)$ がk(x)の台を含むとするとき、積分H を次のように書き換える。

$$H = \int k(x)dx = \int \frac{k(x)}{\pi(x)} \pi(x)dx$$
$$= \int h(x)\pi(x)dx$$
$$= E_{\pi}[h(x)]$$
(6)

ここで、
$$h(x) = \frac{k(x)}{\pi(x)}$$
であり、 E_{π} は $\pi(x)$ に関する期待

値である。このとき、 $x_1, \dots, x_n を x_n(x) を確率密度関数とする分布からの独立標本とすると、大数の法則より<math>n \rightarrow \infty$ のとき、

$$\hat{H} = \frac{1}{n} \sum_{i=1}^{n} h(x_i) \to H \tag{7}$$

と収束するので、 \hat{H} によって多重積分Hを推定することができる。

ここで、 $\pi(x)$ からの確率標本の発生が難しい場合を 考える。この場合、乱数発生が容易な別の確率密度関数 g(x)を用いて、モンテカルロ積分と同様の操作を行うこ とができる。

まず、E_πを次のように書き換える。

$$E_{\pi}(h(x)) = \int h(x)\pi(x)dx$$

$$= \int \left(\frac{\pi(x)}{g(x)}h(x)\right)g(x)dx$$

$$= E_{g}\left[\frac{\pi(x)}{g(x)}h(x)\right]$$
(8)

ここで、Egはg(x)に関する期待値である。

次に x_1, \dots, x_n を、g(x)を確率密度関数とする分布からの独立標本として、

$$\hat{E}_{\pi}(h(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{\pi(x_i)}{g(x_i)} h(x_i)$$
(9)

として求めればよい。このように、重み付きによってサ ンプリング近似を行う方法を、重度サンプリング(Imp ortance Sampling) と呼んでいる。また、新たに発生さ せる別の分布関数のことを、プロポーザル分布 (Propos al Distribution) と呼ぶ。

(3) SISとパーティクルフィルタ

PFは先述した事後確率 $p(\mathbf{x}_k|\mathbf{Y}_k)$ と、事前確率 $p(\mathbf{x}_k|\mathbf{Y}_{k-1})$ を これらに従うランダムサンプリングによって近似するも のである。そこでは、重度サンプリングを時刻推移の中 で逐次的に用いる、逐次重度サンプリング(Sequential I mportance Sampling: SIS)が広く用いられている。

いまタイムステップをn=0,1,2,…とすれば、

- イニシャルサンプリング サンプルx₀⁽ⁱ⁾を初期分布p(x₀)から生成する。 (i = 1,…,N)
- 2. 予測サンプルの生成 式(1)の状態モデルによって時刻k-1のサンプル $\mathbf{x}_{k-1}^{(i)}$ を推移させ、予測サンプルを生成する。vは あらかじめ設定した誤差分布である。 $\tilde{\mathbf{x}}_{k}^{(i)} = \mathbf{f}(\hat{\mathbf{x}}_{k-1}^{(i)}) + \mathbf{v}_{k}^{(i)}$ (10) 3 サンプルの重度計算

 $W_k^{(i)} = p(\mathbf{y}_k | \mathbf{\tilde{x}}_k^{(i)}) \tag{11}$

ここで $p(\mathbf{y}_k \mathbf{\tilde{x}}_k^{(i)})$ は、式(2)の観測モデルによって 推定する。

4. ノーマライズ 計算された重度は、すべてノーマライズしておく。 $W_{k}^{*(i)} = \frac{W_{k}^{(i)}}{v_{k}}$ (12)

$$W_k^{(c)} = \frac{\kappa}{\sum_{j=1}^N W_k^{(j)}} \tag{1}$$

サンプル集合 $\{\tilde{\mathbf{x}}_{k}^{(i)}\}$ から重度 $W_{k}^{*(i)}$ に比例する割合

でN個の新しいサンプル $\mathbf{\hat{x}}_{k}^{(i)}$ を生成する。 このリサンプリングが、いわばフィルタ機能を果たしている。

という1~5の手順を踏む。その後は、2~5の手順を繰り 返し行ない、タイムステップを進めていく。図1は、Ch en¹⁾によって示された、PFにおける予測サンプルの発生 と、リサンプリングによる更新の様子である。

ある時刻kにおける状態推定値**x**kは、次のように重度 付き平均によって、期待値として求めることができる。

$$\hat{\mathbf{x}}_{k} = E(\mathbf{x}_{k}) \approx \frac{1}{N} \sum_{n=1}^{N} \hat{\mathbf{x}}_{k}^{(i)} = \sum_{n=1}^{N} W *_{k}^{(i)} \widetilde{\mathbf{x}}_{k}^{(i)}$$
(13)

3. リサンプリングの影響

(1) リサンプリング手法について

リサンプリングはPFにおいて核を成す部分であり、 コンピュータ処理をより速く、より正確に行うための改 良及び提案が数多くなされている。本稿においては、D oucら²⁰によって示された4つのリサンプリング手法につ いて評価を行う。

a) Multinomial Resampling

発生させるサンプルのインデックス番号をiとすれば、

- 1. (0,1]区間に一様乱数uを発生させる
- 2. ノーマライズされた重度の累積分布関数(Cumul ative Distribution Function: CDF)を作成する
- 3. CDFによってソーティングされた後のインデック

スiまでの重度の和 $\mathbf{s}_i = \sum_{j=1}^i W^{*(i)}$ を計算し、そ

れぞれ計算していく

- 4. $s_{i-1} \le u \le s_i$ となるような s_i を見つけ、パーティ クルのインデックスiを選択する
- 5. iが選択されたとき $\{\mathbf{x}^{(i)}, W^{*(i)}\}$ について、この

x⁽ⁱ⁾が新たなパーティクル**x**^(j)になる

この過程により、重度の高いサンプルが増え、重度の 低いサンプルが消えることになる。

b) Stratified Resampling

Multinomial Resamplingを基本として、(0,1]区間をm 個の同じ長さの小区間に分け、小区間にひとつの一様乱 数 $u^{(j)}$ ($j = 1, \cdots, m$)を発生させる。

c) Systematic Resampling

同様にMultinomial Resamplingを基本として、サンプ ル数をN個とすれば、(0,1/N]区間に1つサンプルを発生 させ、あとは1/Nを足し算していく。

d) Residual Resampling

先に述べた三つのリサンプリングとは種が異なり、ま ず重度をサンプルに配分してから、配分しきれなかった 一部分のみについてリサンプリングを行う。

(2) リサンプリング手法の選択評価

リサンプリングはコンピュータにとって非常に負荷 のかかるパートであること、またリサンプリングによっ て、再現性に変化が出ること、これらから次の二つが最 適な手法の候補に挙げられる。

a) サンプル数が少ない(コンピュータへの負荷は少 ない)、かつ再現性がよい b) サンプル数は多い(再現性はよい)が、コンピュ ータへの負荷は低い(処理時間が短い)

a)について、サンプル数 100 個の場合の再現性を比較 すると、RMSE、決定係数 R^2 ともに Systematic が最もよ い値を示した。

b)について、サンプル数 1000 個の場合について、処 理時間を比較した。4 つすべてが拮抗し、Residual のみ が若干速いという状況である。しかし、Residual は再現 性が極端に悪く、これはサンプル数を増やしても改善さ れなかった。

4. 交通流への適用性

(1) 誤差分布の設定とプロポーザル分布による近似 PFの強みの一つとして、フィルタリングにおける誤 差分布が、正規分布にとらわれない設定が可能であると いうことが挙げられる。そこで、5分間交通量における 車両感知器から得られるデータと、実際の観測量の間に 存在する誤差の分布関数を、正規分布に形状の上で似て いるラプラス分布として設定した上で、プロポーザル分 布を正規分布としてフィルタリングを行うことにした

(図3)。また、誤差はその分散を小さくするために、 誤差率に換算して取り扱うことにした。

ある交差点における、車両感知器データと観測デー タ間の誤差(誤差率)を48個得ることができた。図3に は、実際の誤差率の分布と、正規分布、ラプラス分布の 理論分布を示した。

プロポーザル分布を用いた近似計算が正しくできてい るかを、サンプル数を変えて確認したところ、サンプル 数100個では十分な近似は行えていなかったが、サンプ ル数500個を超えると十分な近似が行えていた。また、 サンプル数1000個になるとさらに精度が増し、サンプル 数が増えるほど精度が増すこともわかった。

(2) 状態推定の結果

誤差データを得た交差点における、22のタイムステッ プにおいてPFによる5分間交通量推定を行った。サンプ リングの確認をした際、サンプル数を増やしたほうが、 精度が増すことがわかったので、サンプル1000個におい て推定を行った結果を図4に示す。結果としてRMSE、 決定係数*R*²ともに十分な推定値を得ることができた。

誤差分布をラプラス分布に変更しても十分な推定値が 得られたことは、正規分布という制限があるKFに比べ て、PFの汎用性が高いことを示す結果となりうる。

5. プロポーザル分布による影響

プロポーザル分布による PF への影響を調べるため、 再びサンプリングによる近似を確認する。先ほどは正規 分布がラプラス分布に近い形状を持っていたため、表現 性の点でも問題はなかった。次は他の分布関数がプロポ ーザル分布としてなり得るのかどうか、検討を行う。理 論上は、プロポーザル分布は正規分布にとらわれない設 定が可能なはずである。

(1) 一様分布

一様分布は発生範囲に制限を設けるため、今回はサン プリングに十分である $-5 \le x \le 5$ と設定した。そうす れば、いま 0.5 刻みで横軸をとれば、それぞれの発生確 率は一様に 1/20 とすることができる。

サンプル数100個の場合はまるでサンプリングがうま くいかなかったものの、サンプル数500個を超えると正 規分布の時とあまり変わらない結果が得られた(図5)。 また、サンプル数1000個にしてもあまり変わらない結果 が得られた。

ここから言えることとしては、KFでは正規分布に制

限されていたのに対し、PFでは一様分布にしても十分 な結果が得られることができた。つまり、コンピュータ への負荷を調べ、負荷の軽いほうを選べばよい。また、 サンプル数500個の場合と1000個の場合が結果としてあ まり変わらなかったことから、サンプル数500個付近が、 精度とコンピュータ負荷を考慮した際に最も適当なサン プル数とも考えられる。

(2) ガンマ分布、カイ二乗分布

分布関数を発生させることが容易な例としては、表 計算ソフトに元から入っている分布関数があげられる。 Microsoft社のVisual Basicではカイ二乗分布(CHIDIST) や、ガンマ分布(GAMMADIST)を容易に発生させる ことができる。

しかし、これら二つの分布関数は発生範囲に制限が あり、正の値を取ることが前提となっている。今回の場 合は、誤差率をサンプリングにこれらはすべて正の値で 構成されており、誤差率の分布サンプリングによって近 似しようとしているので、負の値を取ることも考えなけ ればならない。よって、これら二つの分布関数をプロポ ーザル分布として取り扱うことはできない。プロポーザ ル分布を取り扱うには、形状だけではなく、その発生範 囲を十分に考慮することが重要であると考えられる。

6. おわりに

本稿においては、PFの設計概要を示した上で、交通 流推定への適用を行ない、その有用性を示したといえる。 また、プロポーザル分布とリサンプリングによる影響を 調査し、PFのさらなる発展可能性を見出した。

今後の課題としては、他に数多くある発展型のPFに よる検証や、速度データのフィードバック推定、路面状 況や感知器の種類別の検証などが挙げられる。

最後に、車両感知器データを提供してくださった北海 道警察本部交通管制センター杉本廣行様に、心から深謝 の意を表します。

参考文献

- Z. Chen : Bayesian filtering: From Kalman Filters to Particle Filters, and beyond
- R. Douc, O. Cappé and E. Moulines : Comparison of resampling schemes for Particle Filtering, Proc. of Image and Signal Proceeding and Analysis (ISPA), pp.64-69, 2005
- 加藤丈和:パーティクルフィルタとその実装法、情報処理学会研究報告、2007
- 4) 小西貞則、越智義道、大森裕浩:計算統計学の方法 ーブートストラップ・EM アルゴリズム・MCMC-、 朝倉書店、2008