在庫費用を考慮したサプライチェーンネットワーク均衡モデル*

A Supply Chain Network Equilibrium Model with Inventory Cost*

繁田健**•山田忠史***•今井康治**•谷口栄一****

By Ken SHIGETA** • Tadashi YAMADA*** • Koji IMAI** • Eiichi TANIGUCHI****

1. はじめに

サプライチェーンネットワーク(SCN: Supply Chain Network)上で生じる現象を的確に捉えること、すなわち、 SCN 上での商品の流動や活動主体の行動を記述するこ とは、行政側の物資流動発生メカニズムや物流施策の効 果の把握, および, 企業側の施策理解につながる.

本研究では、5 主体の行動から構成される既存のサプ ライチェーンネットワーク均衡 (SCNE: Supply Chain Network Equilibrium)モデル ¹⁾を基にして, 商品需要の不 確実性に起因する在庫費用を考慮したモデルへと拡張し、 商品需要や輸送時間の不確実性が SCN に及ぼす影響に ついて基礎的検討を行う. なお, 在庫費用を考慮した SCNE モデルは、Dong et al.29も提案しているが、消費需 要の変動に適用可能な確率分布、考慮する主体数と費用、 および, 主体間の費用負担において, 本研究と相違する.

2. SCNEモデル

寡占的で単一の流通段階を有するSCNを想定し、5主 体のSCNEモデルについて定式化を行う. SCN上には、 m個の製造業者, n個の卸売業者, o個の小売業者, r個 の消費市場, и個の物流事業者が存在すると仮定する. わが国の店着価格制という取引形態を考慮して、SCNの 上流側の主体が各主体間の取引費用および輸送費用(運 賃) を負担し、その費用が下流側の主体への販売価格に 影響するように定式化する. なお、現実のSCNでは商物 分離のケースも見受けられるが、ここでは考慮しない.

(1) 製造業者の行動

製造業者iの行動は、利潤最大化を目的関数として、 以下のように表される. なお, 式中の*は均衡解を表す.

*キーワーズ:物流計画,物資流動,サプライチェーンマネジメント

**学生員,京都大学大学院工学研究科

(京都市西京区京都大学桂C1,

TEL075-383-3231, FAX075-950-3800)

***正会員,工博,京都大学大学院工学研究科 (京都市西京区京都大学桂C1,

TEL075-383-3230, FAX075-950-3800)

****フェロー, 工博, 京都大学大学院工学研究科 (京都市西京区京都大学桂C1,

TEL075-383-3229, FAX075-950-3800)

$$\max_{q_i} \sum_{j=1}^{n} \rho_{ij}^{1*} \sum_{h=1}^{u} q_{hij} - f_i(Q^1) - g_i(Q^1)$$
(1)

$$-\sum_{j=1}^{n}c_{ij}(Q^{1})-\sum_{h=1}^{u}\sum_{j=1}^{n}\rho_{hij}^{5*}q_{hij}$$

subject to
$$q_{hij} \ge 0 \ \forall h, j$$
 (2)

ここに,

: ij 間における物流事業者 h の輸送量 q_{hii} $:q_{hii}$ を要素とする un 次元ベクトル q_i

 ρ^{1}_{ii} : 製造業者 i から卸売業者 i への販売価格

 $f_i(Q^1)$: 製造業者 i の生産費用

 Q^{1} : *q_{hii}* を要素とする *umn* 次元ベクトル

 $g(O^1)$: 製造業者 i の施設費用

 $c_{ii}(Q^1)$: 製造業者 i と卸売業者 j の取引費用 : ij 間における物流事業者 h の運賃

生産費用には材料費や設備費等が含まれる. 取引費 用には運賃以外の取引に関わる費用が、施設費用には土 地代や施設の維持管理費が含まれる.

生産費用関数,施設費用関数,取引費用関数が連続 かつ凸であり、すべての製造業者の最適性条件が同時に 成り立つ場合、この問題は以下の変分不等式を満たす $O^{1*} \in R_+^{umn}$ を求める問題と等価である.

$$\sum_{h=1}^{u} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\frac{\partial f_{i}(Q^{1*})}{\partial q_{hij}} + \frac{\partial g_{i}(Q^{1*})}{\partial q_{hij}} + \frac{\partial c_{ij}(Q^{1*})}{\partial q_{hij}} + \rho_{hij}^{5*} - \rho_{ij}^{1*} \right]$$

$$\times \left[q_{hij} - q_{hij}^{*} \right] \ge 0 \qquad \forall Q^{1} \in R_{+}^{umn}$$
(3)

(2) 卸売業者の行動

卸売業者iの行動は利潤最大化を目的関数として、以 下のように定式化できる.

$$\max_{q_i, q_j} \rho_j^{2^*} \sum_{h=1}^{u} \sum_{k=1}^{o} q_{hjk} - c_j(Q^1) - g_j(Q^1)$$
(4)

$$-s_{jk}(Q^2) - \sum_{j=1}^{n} c_{jk}(Q^2) - \sum_{h=1}^{u} \sum_{j=1}^{n} \rho_{hjk}^{6*} q_{hjk} - \sum_{i=1}^{m} \rho_{ij}^{1*} \sum_{h=1}^{u} q_{hij}$$

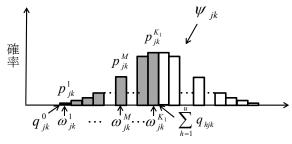
subject to
$$\sum_{h=1}^{u} \sum_{k=1}^{o} q_{hjk} \le \sum_{h=1}^{u} \sum_{i=1}^{m} q_{hij}$$
 (5)

$$q_{hij} \ge 0 \ \forall h, i, \quad q_{hjk} \ge 0 \ \forall h, k$$
 (6)

ここに,

:ik 間における物流事業者hの輸送量 q_{hjk} : *q_{hik}*を要素とする *um* 次元ベクトル : 卸売業者 j から小売業者への販売価格 $:q_{hk}$ を要素とする uno 次元ベクトル

: 卸売業者 j の保管費用 $c_i(O^1)$



商品取引量

図-1 小売業者 k の卸売業者 i に対する商品需要の確率分布

 $g_j(Q^1)$: 卸売業者jの施設費用

 $s_{jk}(Q^2)$: jk 間で発生する在庫費用

 $c_{jk}(Q^2)$: 卸売業者jと小売業者kの取引費用 ho^6_{hk} : jk 間における物流事業者hの運賃

在庫費用 $s_{\mu}(Q^2)$ は、期待在庫量と在庫費用係数(単位在庫費用)の積で表す。在庫費用係数は外生的に与えるものとし、期待在庫量は以下のように求める。

小売業者 k の卸売業者 j に対する商品需要が確率分布 Ψ_{jk} に従うと仮定した場合(図-1),需要が平均値 $\sum_{h=1}^{w}q_{hjk}$ を下回るときに商品在庫が発生すると考え,そのときの在庫量の期待値を期待在庫量(図-1 の網掛け部)とする. なお,確率分布は離散型を想定し,連続型の場合は離散近似する(図-1). また,確率分布 Ψ_{jk} は,後述の消費市場での需要の確率分布と関連性を持たせる.

このとき、期待在庫費用は以下のように表される.

$$s_{jk}(Q^{2}) = \xi_{j}^{1} \sum_{k=1}^{\infty} \sum_{M=1}^{K_{1}} \omega_{jk}^{M} p_{jk}^{M}$$

$$= \xi_{j}^{1} \sum_{k=1}^{\infty} \sum_{M=1}^{K_{1}} \left(\sum_{h=1}^{u} q_{hjk} - \frac{(2K_{1} - 2M + 1)}{2} \frac{\left(\sum_{h=1}^{u} q_{hjk} - q_{jk}^{0}\right)}{K_{1}} \right) p_{jk}^{M}$$
(7)

2212.

 $q^o_{\ \emph{\tiny ik}}$:階級1の左端の値

在庫費用は q_{hk} の凸関数となる。したがって,保管費用関数,取引費用関数,施設費用関数が連続かつ凸であり,すべての卸売業者の最適性条件が同時に成り立つ場合,この問題は以下の変分不等式を満たす (Q^{1*},Q^{2*},γ^*) $\in R_+$ $u^{mnn+uno+n}$ を求める問題と等価である.

$$\begin{split} &\sum_{h=1}^{u} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\frac{\partial c_{j}(Q^{l^{*}})}{\partial q_{hij}} + \frac{\partial g_{j}(Q^{l^{*}})}{\partial q_{hij}} + \rho_{ij}^{l^{*}} - \gamma_{j}^{*} \right] \times \left[q_{hij} - q_{hij}^{*} \right] \\ &+ \sum_{h=1}^{u} \sum_{j=1}^{n} \sum_{k=1}^{o} \left[-\rho_{j}^{2^{*}} + \frac{\partial s_{jk}(Q^{2^{*}})}{\partial q_{hjk}} + \frac{\partial c_{jk}(Q^{2^{*}})}{\partial q_{hjk}} + \rho_{hjk}^{6^{*}} + \gamma_{j}^{*} \right] \times \left[q_{hjk} - q_{hjk}^{*} \right] \\ &+ \sum_{h=1}^{n} \left[\sum_{i=1}^{u} \left(\sum_{k=1}^{m} q_{hij}^{*} - \sum_{k=1}^{o} q_{hjk}^{*} \right) \right] \times \left[\gamma_{j} - \gamma_{j}^{*} \right] \ge 0 \ \forall (Q^{1}, Q^{2}, \gamma) \in \mathbb{R}_{+}^{umnn-uno+n} \end{split}$$

ここに、 γ_j は式(5)についてのラグランジェ乗数であり、 γ は γ_j を要素とする n 次元列ベクトルである.

(3) 小売業者の行動

小売業者kの行動は、卸売業者と同様に、利潤最大化のもと、以下のように定式化できる.

$$\max_{q_{k}q_{k}} \rho_{k}^{3*} \sum_{h=1}^{u} \sum_{l=1}^{r} q_{hkl} - c_{k}(Q^{2}) - g_{k}(Q^{2}) - s_{kl}(Q^{3})$$
(9)

$$-\sum_{l=1}^{r}c_{kl}(Q^{3})-\sum_{h=1}^{u}\sum_{l=1}^{r}\rho_{hkl}^{7*}q_{hkl}-\sum_{j=1}^{n}\left(\rho_{j}^{2*}\sum_{h=1}^{u}q_{hjk}\right)$$

subject to
$$\sum_{h=1}^{u} \sum_{l=1}^{r} q_{hkl} \le \sum_{h=1}^{u} \sum_{i=1}^{n} q_{hjk}$$
 (10)

$$q_{hik} \ge 0 \quad \forall h, j, \qquad q_{hkl} \ge 0 \quad \forall h, l$$
 (11)

ここに,

 q_{hd} : kl間における物流事業者hの輸送量 q_k : q_{hd} を要素とするur次元ベクトル

 ρ_k^3 : 小売業者 k の販売価格

 Q^3 : q_{bkl} を要素とする uor 次元ベクトル

 $c_k(Q^2)$: 小売業者 k の保管費用 $g_k(Q^2)$: 小売業者 k の施設費用 $s_k(Q^3)$: kl 間で発生する在庫費用

 $c_k(Q^3)$: 小売業者 k と消費市場 l の取引費用

 ho^{7}_{hkl} : kl 間における物流事業者 h の運賃

卸売業者の場合と同様に、在庫費用 $s_k(Q^3)$ を以下のように定式化する。なお、このときの確率分布は、後述の消費市場での需要の確率分布を用いる。

$$s_{kl}(Q^{3}) = \xi_{k}^{2} \sum_{l=1}^{r} \sum_{R=1}^{K_{2}} \omega_{kl}^{R} p_{kl}^{R}$$

$$= \xi_{k}^{2} \sum_{l=1}^{r} \sum_{R=1}^{K_{2}} \left(\sum_{h=1}^{u} q_{hkl} - \frac{(2K_{2} - 2R + 1)}{2} \frac{\left(\sum_{h=1}^{u} q_{hkl} - q_{kl}^{0}\right)}{K_{2}} \right) p_{kl}^{R}$$

$$(12)$$

- - 1-

 q^0_{kl} :階級1の左端の値

在庫費用は q_{kl} の凸関数となる。したがって、保管費用関数、取引費用関数、施設費用関数が連続かつ凸であり、すべての小売業者の最適性条件が同時に成り立つ場合、この問題は以下の変分不等式を満たす $(Q^{2^*}, Q^{3^*}, \delta^*)$ $\in R_+^{uno+uor+o}$ を求める問題と等価である。

$$\sum_{h=1}^{u} \sum_{j=1}^{n} \sum_{k=1}^{o} \left[\frac{\partial c_{k}(Q^{2^{*}})}{\partial q_{hjk}} + \frac{\partial g_{k}(Q^{2^{*}})}{\partial q_{hjk}} + \rho_{j}^{2^{*}} - \delta_{k}^{*} \right] \times \left[q_{hjk} - q_{hjk}^{*} \right] \\
+ \sum_{h=1}^{u} \sum_{k=1}^{o} \sum_{l=1}^{r} \left[-\rho_{k}^{3^{*}} + \frac{\partial s_{kl}(Q^{3^{*}})}{\partial q_{hkl}} + \frac{\partial c_{kl}(Q^{3^{*}})}{\partial q_{hkl}} + \rho_{hkl}^{7^{*}} + \delta_{k}^{*} \right] \times \left[q_{hkl} - q_{hkl}^{*} \right] \\
+ \sum_{k=1}^{o} \left[\sum_{h=1}^{u} \left(\sum_{j=1}^{n} q_{hjk}^{*} - \sum_{l=1}^{r} q_{hkl}^{*} \right) \right] \times \left[\delta_{k} - \delta_{k}^{*} \right] \ge 0 \quad \forall (Q^{2}, Q^{3}, \delta) \in R_{+}^{uno+uor+o}$$

ここに、 δ_k は式(9)についてのラグランジェ乗数であり、 δ は δ_k を要素とするo次元列ベクトルである.

(4) 消費市場の均衡条件

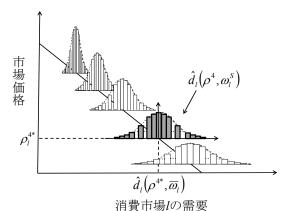


図-2 消費市場の需要関数

需要関数が連続であるとし、消費市場Iでは以下の均 衡条件(相補性条件)が成立すると仮定する.

$$\rho_k^{3^*} \begin{cases} = \rho_l^{4^*} & \text{if } q_{hkl}^* > 0 \\ \ge \rho_l^{4^*} & \text{if } q_{hkl}^* = 0 \end{cases}$$
 (14)

$$d_{l}(\rho^{4*}) \begin{cases} = \sum_{h=1}^{u} \sum_{k=1}^{o} q_{hkl}^{*}, & \text{if } \rho_{l}^{4*} > 0 \\ \leq \sum_{h=1}^{u} \sum_{k=1}^{o} q_{hkl}^{*}, & \text{if } \rho_{l}^{4*} = 0 \end{cases}$$

$$(15)$$

ここに,

 ho^4_l : 消費市場lでの市場価格

 ρ^4 : ρ^4 を要素とする r 次元ベクトル

 $d(\rho^4)$: 消費市場 l の需要関数

需要関数 $d(\rho^4)$ は、市場価格が ρ^4 であるときの商品需要の確率分布 $d(\rho^4, \omega_l)$ の期待値において成り立つ(図-2)、すなわち、

$$d_{l}(\rho^{4*}) = \hat{d}_{l}(\rho^{4*}, \overline{\omega}_{l})p_{l}^{S} = \sum_{S=1}^{K_{3}} \hat{d}_{l}(\rho^{4*}, \omega_{l}^{S})p_{l}^{S}$$
(16)

ω_l : 消費市場 l の需要変動を表わす確率変数

K3 : 階級数

 ω^S_I : ω_I の S 番目の階級値

 p_{I}^{S} :階級値 ω_{I}^{S} に対応する確率

なお、確率分布は外生的に与えられ、離散型を想定し、連続型の場合は離散近似する。均衡状態において、式(14)と(15)は、全ての消費市場について満たされる必要があり、これら均衡条件は、下式を満たす(Q^{3*} , ρ^{4*}) \in R_{+}^{uor+r} を求めることに等しい。

$$\sum_{h=1}^{u} \sum_{k=1}^{o} \sum_{l=1}^{r} \left[\rho_{k}^{3^{*}} - \rho_{l}^{4^{*}} \right] \times \left[q_{hkl} - q_{hkl}^{*} \right]$$

$$+ \sum_{l=1}^{r} \left[\sum_{h=1}^{u} \sum_{k=1}^{o} q_{hkl}^{*} - d_{l} \left(\rho^{4^{*}} \right) \right] \times \left[\rho_{l}^{4} - \rho_{l}^{4^{*}} \right] \ge 0 \quad \forall \left(Q^{3}, \rho^{4} \right) \in R_{+}^{uor+r}$$

$$(17)$$

(5) 物流事業者の行動

物流事業者hの行動は、利潤最大化を目的関数として、 以下のように表す.

$$\operatorname{Max} \sum_{i=1}^{m} \sum_{j=1}^{n} \rho_{hij}^{5^{*}} q_{hij} + \sum_{j=1}^{n} \sum_{k=1}^{o} \rho_{hjk}^{6^{*}} q_{hjk}$$

$$+ \sum_{k=1}^{o} \sum_{l=1}^{r} \rho_{hkl}^{7^{*}} q_{hkl} - g_{h} (Q^{1}, Q^{2}, Q^{3}) - w_{h} (Q^{1}, Q^{2}, Q^{3})$$

$$(18)$$

subject to

$$q_{hij} \ge 0 \ \forall i, j \ , \quad q_{hjk} \ge 0 \ \forall j, k, \quad q_{hkl} \ge 0 \ \forall k, l \tag{19}$$

ここに,

 $g_h(Q^1,Q^2,Q^3)$: 物流事業者hの施設費用 $w_h(Q^1,Q^2,Q^3)$: 物流事業者hの運行費用

施設費用は施設の整備・維持管理などに要する費用であり、運行費用は輸送手段の運行に要する費用である. 輸送時間の変動を考慮する場合、運行費用は、平均

輸送時間の変動を考慮する場合,連行質用は,平均輸送費用 $\bar{w}_h(Q^1,Q^2,Q^3)$ と期待遅刻費用の和で表すものとする.物流事業者hのij間の輸送時間 t_{hij} が確率分布 $\varphi_{hij}(t)$ に従うと仮定し,許容される最大輸送時間を遅刻限界 t_{hij} としたとき,輸送時間がt(ただし, $t \geq l_{hij}^+$)のときの遅刻時間は $\Delta_{hij}^+ = t - l_{hij}^+$ と表される.したがって,遅刻時間の期待値は,以下のように求められる.

$$e_{hij}^{+}\left(l_{hij}^{+}\right) \equiv E\left(\Delta_{hij}^{+}\right) = \int_{l_{hij}^{+}}^{\infty} \left(t - l_{hij}^{+}\right) \rho_{hij}\left(t\right) dt \tag{20}$$

このとき、期待遅刻費用は、遅刻費用係数 $\lambda^{l}_{hj}(Q^{l})$ を用いて、

$$E\left(\lambda_{hii}^{+} \Delta_{hii}^{+}\right) = \lambda_{hii}^{+} \left(Q^{1}\right) e_{hii}^{+} \left(l_{hii}^{+}\right) \tag{21}$$

と記述される. Γ_{iij} を外生的に決定すれば、期待遅刻費用は Q^1 のみの関数となる.

期待遅刻費用については, jk間やkl間についても, 同様に記述できるので, 物流事業者hの運行費用は, 以下のようになる.

$$w_h(Q^1, Q^2, Q^3) = \overline{w}_h(Q^1, Q^2, Q^3) + E(\lambda_{hij}^+ \Delta_{hij}^+)$$

$$+ E(\lambda_{hik}^+ \Delta_{hik}^+) + E(\lambda_{hkl}^+ \Delta_{hkl}^+)$$
(22)

施設費用関数と運行費用関数(すなわち,平均輸送 費用関数および遅刻費用係数)が連続かつ凸であり,す べての物流事業者の最適性条件が同時に成り立つ場合, 以下の変分不等式を解くことになる.

$$\begin{split} &\sum_{h=1}^{u}\sum_{i=1}^{m}\sum_{j=1}^{n}\left[\frac{\partial g_{h}(Q^{1^{*}},Q^{2^{*}},Q^{3^{*}})}{\partial q_{hij}} + \frac{\partial w_{h}(Q^{1^{*}},Q^{2^{*}},Q^{3^{*}})}{\partial q_{hij}} - \rho_{hij}^{5^{*}}\right] \times \left[q_{hij} - q_{hij}^{*}\right] \\ &+ \sum_{h=1}^{u}\sum_{j=1}^{n}\sum_{k=1}^{o}\left[\frac{\partial g_{h}(Q^{1^{*}},Q^{2^{*}},Q^{3^{*}})}{\partial q_{hjk}} - \rho_{hij}^{6^{*}} + \frac{\partial w_{h}(Q^{1^{*}},Q^{2^{*}},Q^{3^{*}})}{\partial q_{hjk}}\right] \times \left[q_{hjk} - q_{hjk}^{*}\right] \\ &+ \sum_{h=1}^{u}\sum_{k=1}^{o}\sum_{l=1}^{r}\left[-\rho_{hkl}^{7^{*}} + \frac{\partial g_{h}(Q^{1^{*}},Q^{2^{*}},Q^{3^{*}})}{\partial q_{hkl}} + \frac{\partial w_{h}(Q^{1^{*}},Q^{2^{*}},Q^{3^{*}})}{\partial q_{hkl}}\right] \times \left[q_{hkl} - q_{hkl}^{*}\right] \geq 0 \\ &\forall (Q^{1},Q^{2},Q^{3}) \in R_{+}^{umm+uno+uor} \end{split} \tag{23}$$

(6) ネットワーク全体の均衡条件

均衡状態においては、各主体の最適性条件、および、 消費市場の均衡条件が同時に満たされる. したがって、 サプライチェーンネットワーク全体の均衡条件は、以下 のように記述できる.

$$\begin{split} &\sum_{h=1}^{u} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\frac{\partial f_{i}(Q^{1^{*}})}{\partial q_{hij}} + \frac{\partial g_{i}(Q^{1^{*}})}{\partial q_{hij}} + \frac{\partial c_{ij}(Q^{1^{*}})}{\partial q_{hij}} + \frac{\partial c_{j}(Q^{1^{*}})}{\partial q_{hij}} + \frac{\partial g_{j}(Q^{1^{*}})}{\partial q_{hij}} - \gamma_{j}^{*} \right. \\ &\left. + \frac{\partial g_{h}(Q^{1^{*}}, Q^{2^{*}}, Q^{3^{*}})}{\partial q_{hij}} + \frac{\partial w_{h}(Q^{1^{*}}, Q^{2^{*}}, Q^{3^{*}})}{\partial q_{hij}} \right] \times \left[q_{hij} - q_{hij}^{*} \right] \\ &\left. + \sum_{h=1}^{u} \sum_{j=1}^{n} \sum_{k=1}^{o} \left[\frac{\partial c_{k}(Q^{2^{*}})}{\partial q_{hjk}} + \frac{\partial g_{k}(Q^{2^{*}})}{\partial q_{hjk}} + \frac{\partial c_{jk}(Q^{2^{*}})}{\partial q_{hjk}} + \frac{\partial c_{jk}(Q^{2^{*}})}{\partial q_{hjk}} - \delta_{k}^{*} + \gamma_{j}^{*} \right. \\ &\left. + \frac{\partial g_{h}(Q^{1^{*}}, Q^{2^{*}}, Q^{3^{*}})}{\partial q_{hjk}} + \frac{\partial w_{h}(Q^{1^{*}}, Q^{2^{*}}, Q^{3^{*}})}{\partial q_{hjk}} \right] \times \left[q_{hjk} - q_{hjk}^{*} \right] \\ &\left. + \sum_{h=1}^{u} \sum_{k=1}^{o} \sum_{l=1}^{r} \left[\frac{\partial c_{kl}(Q^{3^{*}})}{\partial q_{hkl}} + \frac{\partial g_{h}(Q^{1^{*}}, Q^{2^{*}}, Q^{3^{*}})}{\partial q_{hkl}} + \frac{\partial w_{h}(Q^{1^{*}}, Q^{2^{*}}, Q^{3^{*}})}{\partial q_{hkl}} + \frac{\partial s_{kl}(Q^{3^{*}})}{\partial q_{hkl}} \right] \\ &\left. + \delta_{k}^{*} - \rho_{l}^{4^{*}} \right] \times \left[q_{hkl} - q_{hkl}^{*} \right] + \sum_{j=1}^{n} \left[\sum_{h=1}^{u} \left(\sum_{l=1}^{m} q_{hij}^{*} - \sum_{k=1}^{o} q_{hjk}^{*} \right) \right] \times \left[\gamma_{j} - \gamma_{j}^{*} \right] \\ &\left. + \sum_{k=1}^{o} \left[\sum_{h=1}^{u} \left(\sum_{j=1}^{n} q_{hkl}^{*} - \sum_{l=1}^{p} q_{hkl}^{*} \right) \right] \times \left[\delta_{k} - \delta_{k}^{*} \right] + \sum_{l=1}^{u} \left[\sum_{h=1}^{u} \sum_{k=1}^{u} q_{hkl}^{*} - d_{l}(\rho^{4^{*}}) \right] \\ &\left. \times \left[\rho_{l}^{4} - \rho_{l}^{4^{*}} \right] \ge 0 \right. \quad \quad \forall \left[Q^{1}, Q^{2}, Q^{3}, \gamma, \delta, \rho^{4} \right] \in \mathbb{R}^{umm-uno-uor+n+o+r} \right. \end{aligned} \tag{24}$$

この変分不等式の解の存在については、既存の SCNE モデル 11 と同様の方法で証明することができる。また、既存モデル 11 と同様の関数設定により、解の一意性を保つことができる。解法については、 $Meng\ et\ al.$ 31 の推奨する方法を用いる。すなわち、

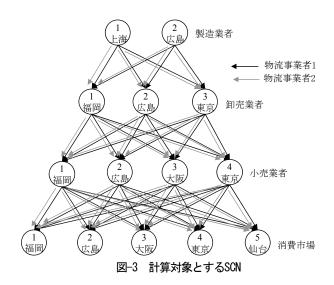
- i) 式(24)の変分不等式問題を, 等価な相補性問題に置換する.
- ii) FB(Fischer-Burmeister)関数を用いて、非負実数値関数を定義する.
- iii) 上記の関数を用いて、相補性問題を等価な制約なし 非線形最適化問題に置換する.
- iv) 制約なし非線形最適化問題を準ニュートン法を用いて求解する.

3. 数値計算

(1) 問題設定

上述のモデルを用いて、図-3 に示すような仮想的な SCN を対象にして、数値計算を行う. ここでは、SCN の下流側ほど主体数が多くなる状況を想定している. 本研究で実施する数値計算には、多数の関数形とパラメータ値の設定を必要とするので、それらの設定次第では、非現実的な計算ケースになる可能性がある. そこで、具体的な都市を設定することにより、都市間の相対的な関係を考慮してパラメータ値を設定すること、および、計算結果の解釈を容易にすることを図る.

計算に必要な関数形とパラメータ値については、既存の研究 ^{1),4)}で使用されているものを基にして、国内企業の業種別の物流費用、中国における製造業者(日本企業現地法人)の物流費用、および、実際のわが国の物流事業者 1 社へのヒアリング調査結果を参考にして、それ



らと整合するように調整する. 具体的な関数形とパラメータ値, および, キャリブレーションの結果については, 講演時に詳細を示す.

(2) 計算の概要

既存のSCNEモデル」と在庫費用を考慮したSCNEモデルから得られる結果を比較・分析することにより、在庫費用を考慮することの影響を考察する。また、消費需要の確率分布を変化させることにより、消費需要の不確実性が在庫費用やSCNに及ぼす影響を分析する。なお、確率分布の変化は、分布型や分布のパラメータ(分散など)を変えることにより行う。さらに、輸送時間の変動性と信頼性がSCNに及ぼす影響と消費需要の不確実性がSCNに及ぼす影響と消費需要の不確実性がSCNに及ぼす影響を比較する。輸送時間の変動性については、輸送時間の平均に注目し、信頼性は輸送時間の分散に着目する。

4. おわりに

本研究では、消費需要の不確実性に基づく在庫費用を考慮した、5主体の行動から構成されるSCNEモデルを提案した、数値計算の設定と内容、および、そこから得られる結果と知見については、講演時に詳細を示す.

参考文献

- 1) 山田忠史, 今井康治, 谷口栄一: 物流事業者の行動を考慮したサプライチェーンネットワーク均衡分析, 土木学会論文集D, Vol.65/No.2, pp.163-174, 2009.
- Dong, J., Zhang, D. and Nagurney, A.: A supply chain network equilibrium model with random demands, European Journal of Operational Research, Vol.156, pp194-212, 2004.
- Meng, Q., Huang, Y. K. and Cheu, R. L.: A note on supply chain network equilibrium models, Transportation Research Part E, 43, pp.60-71, 2007.
- Nagumey, A., Dong, J. and Zhang, D.: A supply chain network equilibrium model, Transportation Research Part E, 38, pp.281-303, 2002.