高速道路ネットワークの地震リスク評価*

Seismic Risk Assessment for Los Angeles Highway Transportation Network System*

1. はじめに

高速道路や鉄道、空港、港湾施設を含む交通システ ムは、今日の社会基盤システムでは、重要な機能を担っ ている。これらのシステムは、一般の公共福祉はもちろ ん、国内のみならず国際的な商業・工業ビジネス、文化 活動、さらには災害時の捜索・救助や、医療チーム、負 傷者、復旧用資材、市民の生活用品などを運搬するため に必要不可欠なであるといえる。特に、自然災害または 人為的災害下において、交通システムが機能的に健在で あること、また早急にその機能が回復することは極めて 重要である。過去の災害では、高速道路を構成する各コ ンポーネント(道路橋や車道、トンネル、擁壁など)に 対する地震被害は、交通機能を度々麻痺させ、災害後の 危機管理や復旧活動はもちろん、多大な経済損失をも与 えてきた。これらの影響の拡大は、各コンポーネントに 対する地震被害の特徴や大きさのみならず、交通システ ム全体のネットワークとしての機能損傷の形態に依存す ると考えられる。そこで著者らは、交通ネットワークの 地震時におけるシステムパフォーマンス評価を目的とし て、地震リスク評価という観点から、各コンポーネント の耐震性能と交通ネットワークモデルを統合する評価方 法を開発してきた。

交通ネットワークシステムは、様々なコンポーネントから成り立っているが、その中でも、道路橋は地震時に最も被害を受ける可能性の高いコンポーネントであるといえる。既往の研究(Shinozuka et al., 2000)¹⁾では、この道路橋のフラジリティ曲線を最大地動加速度(PGA)によって評価し、システムパフォーマンスを評価した。PGAは入手しやすい情報ではあるが、一方で近年、最大地動速度(PGV)も、地震被害の予測に適した指

 *キーワーズ:交通ネットワーク分析
**法人会員、工修、株式会社構造計画研究所 (東京都中野区本町4-38-13、 TEL03-5342-1006、FAX03-5342-1222)
非会員、工博、University of California、Irvine (Irvine, CA 92697-2175, USA、 TEL+1-949-824-9379、FAX+1-949-824-9446) 村地由子** · 篠塚正宣 By Yuko MURACHI** · Masanobu SHINOZUKA ***

標として、フラジリティ曲線の評価に用いられている。

本研究では、PGAとPGVに対して、経験的手法によるフラジリティ曲線を開発し、Caltrans'(California Dep artment of Transportation)のLos Angeles周辺の高速道路 交通ネットワークを例題として、1994年Northridge地震 に対する交通許容量の低下をシミュレーションし比較し た。さらに、災害時の迅速な危機管理体制の支援を目的 として、シミュレーション結果を3Dアニメーションに よって可視化し、その有用性を確認した。

2. 経験的手法によるフラジリティ曲線の開発

1994年Northridge地震のCaltrans'の道路橋の被災記録お よびカリフォルニア州周辺のリアルタイム地震情報サイ トTriNet ShakeMap²⁾のPGAおよびPGVの空間分布を用い て、Los Angeles周辺の高速道路橋に対するフラジリティ 曲線を経験的手法によって開発した。フラジリティ曲線 は、対数正規分布を仮定し、最尤法により関数の2パラ メータ(中央値と対数標準偏差)を算定している。全て のサンプルが統計的に同質な母数集団であると仮定した 場合のフラジリティ曲線の算定結果を、図-1に示す。 図-1では、例えば、"Minor"(小破)の曲線は、サン プルから任意に取り出された道路橋が、PGAまたは PGVがaである地震動を受ける場合、取り出された同慮 今日が地震動aにおいて小破(Minor)以上の損害を受け る確率を示している。そのほか被害状態に対する曲線に ついても、同様の定義である。

3. システムパフォーマンスの評価方法

高速道路の交通システムは様々な構造形式のコンポ ーネントによって構成され、また複雑な自然・建設環境 に置かれている。前述のとおり、それらのコンポーネン ト中でも、道路橋は潜在的に地震による被害を最も受け る可能性の高いコンポーネントであるといえる。したが って、本研究では、道路橋のみを地震に対する脆弱性を 考慮する構造物として設定した。また、対象範囲内にあ る全ての橋は、独立な構造物であり、それぞれの橋の損 傷状態の決定は独立に扱うことができると仮定している。

各道路橋の損傷状態は、前章で開発したフラジリティ曲線を用い、モンテカルロ・シュミレーションによって決定する。

1994年Northridge地震では、Los Angeles圏の交通シス テムはいくつかの橋が大破以上の損傷を受け通行不可能 な状態となっているが、被害を受けなかった高速道路の ほか、一般道を高速道路のネットワークの一部として指 定することにより、システムとしての機能は維持された ことが実証されている。このような代替ルートは、本来 の高速道路上のルートと比較すると通行速度および許容 量では能力が劣るが、災害時には利用可能であると考え られ、この効果を考慮し、被災後のリンクの交通速度と 許容量の低減率をリンクの損傷状態に応じて表-1に示 すとおり設定した。ここでリンクの損傷状態は、ボトル ネックの状態を考え、リンクを構成する橋の中で最も被 害の大きい橋の損傷状態をそのリンクの損傷状態とする と仮定している。表-1の設定値はあくまで仮定であり、 より信頼性のある低減率の設定には今後の研究が必要で ある。

表-1 リンクの交通速度と許容量の低減率の設定

State of	Capacity	Free Flow Speed
Link Damage	Change Rate	Change Rate
No Damage	100%	100%
Minor	100%	75%
Moderate	75%	50%
Major	50%	50%
Collapse	50%	50%

地震後のシステムパフォーマンスを定義するため、 Shinozuka et al. (2000)¹⁾では包括的な指標として"Drivers Delay"を採用している。これは通勤者を含む全ての交通 の総所要時間が、地震によってどの程度増加するかとい うことを表している。すなわち、災害前後のネットワー クの総所要時間の差である。各リンク間の所要時間は、 United State Bureau of Public Roads (1964) によるリン ク・パフォーマンス関数 (式-1) を用いて評価してい る。

リンク間の交通量は、1991年のOD交通量調査(Origi n-Destination)に基づき、交通システムの利用者均衡 配分モデルによってネットワークシステムを解析し計算 した。本研究では、広域を対象とした地震動の影響を評 価するため、図-2に示すThissenポリゴンによる方法 を用いて、大規模なODマトリックスを縮小しPCレベル で解析可能なサイズに変換している。

4. Los Angeles周辺ネットワークに対する適用例

図-3に、本研究を適用したLos Angelesおよび隣接す るOrange County内の高速道路ネットワークを示す。ネ ットワークモデルは、118ノード、185リンク、2727の道 路橋で構成されている。各リンクは、自由通行速度と許 容量が属性として与えられており、自由通行速度はフリ ーウェイ(信号なし)とハイウェイ(信号あり)のそれ ぞれの制限速度の下限を用い、65マイルと35マイルに設 定した。また許容量は、それぞれ毎時2500および1000の PCU (Passenger Car Unit)と仮定している。

図-3 Los Angeles地域の高速道路ネットワーク

図-4、図-5に 1994 年 Northridge 地震における Los Angeles 周辺のネットワーク解析結果を示す。図-4、図-5では、リンクの損傷状態および通行速度の比 (被災後/被災前) について、モンテカルロ法による 10 シミュレーションの結果の平均値を示している。 Goltz (1994)⁴⁾による実際の被害調査結果と比較すると、 シミュレーション結果におけるリンクの損傷状態におけ る中破以上は、実際に被害が発生した4箇所に加え2箇 所のリンクで発生した。この違いは、シミュレーション では、全てのサンプルが統計的に同じカテゴリに属する と仮定したフラジリティ曲線を使用しており、橋の属性 を考慮していないことが主要因と考えられる。

図-6、図-7は、上記のシミュレーション結果を 3Dアニメーションによって表した例である。3Dを用い た表現を利用することにより、災害による渋滞箇所をよ り詳細に見ることができ、災害時の危機管理体制の計画 に有用であるといえる。

また、表-2に、PGAとPGVを用いた場合の"Drivers Delay"の平均値を示す。被災後の"Drivers Delay"は、災 害前と比較して、PGAで約78%、PGVで約73%増加した 結果となった。PGVを用いた場合、PGAを用い場合よ り"Drivers Delay"が約7%減少する傾向が見られ、PGAま たはPGVをリスク評価の過程で一貫して使用していれ ば、結果に及ぼす差はネットワークのような複合システ ムの場合、大きく影響しないことが分かる。

表-2 Drivers' Delayの平均値

Case	Total Travel Time	Drivers' Delay	Drivers' Delay
	10^5 (hours)	10^5 (hours)	(min/PCU)
PGA	15.87	6.97	14.30
PGV	15.40	6.50	13.34

*Total number of PCU (Passenger Car Unit) = 2,921,668

5. おわりに

本研究では、1994年Northridge地震の被災記録をもと にTriNet ShakeMapのPGAおよびPGV分布を用いて、4 つの損傷状態に対するCaltrans'の道路橋のフラジリティ 曲線を開発した。また、このフラジリティ曲線をLos Angeles周辺の高速道路ネットワークモデルに適用し、 Northridge地震によるシステムの損傷を評価した。その 結果、地震動強さの指標の違い(PGA/PGV)は、リ スク評価の過程において一貫して使用されれば、ネット ワークのような複合システムの場合、評価結果に大きく 影響しないことが確認された。また、シミュレーション 結果を可視化した3Dアニメーションを作成した。3次元 での可視化は、災害時の危機管理体制の立案時における 視覚的な洞察を可能とする有用な支援ツールとなりうる と考えられる。

謝辞

この研究は、Caltarns'、MCEER (Multidisciplinary Center for Earthquake Engineering Research), NSF (National Science Foundation)のサポートにより実施されたもので ある。論文執筆にあたってご協力いただいたDr. Xuejiang Dong, Dr. Youwei Zhou (UC, Irvine), Mr. Michal J. Orlikowski (Princeton Univ.)に感謝の意を表す。

参考文献

- 1) Shinozuka, M. et al., (2000), Performance of Highway Network Systems under Earthquake Damage, Proceedings of the Second International Workshop on Mitigation of Seismic Effects on Transportation Structures, Taiwan, Sep. 13-15, 2000, pp. 303-317.
- 2) TriNet ShakeMap, http://www.trinet.org/shake/
- Shinozuka, M. et al., T., (2001), Statistical Analysis of 3) Bridge Fragility Curves, MCEER Technical Report 2001, http://shino8.eng.uci.edu/journalpapers.htm
- 4) Goltz, J.D., (1994), The Northridge, California of January 17, 1994: Earthquake General Reconnaissance Report, Technical Report NCEER-94 -0005, March 11, 1994
- 5) Shinozuka, M. et al., (2003), Effect of Seismic Retrofit of Bridges on Transportation Networks, MCEER Research Progress and Accomplishments 2001 - 2003, http://mceer.

buffalo.edu/publications/resaccom/0103/03shinozuka.pdf

図-4 1994年Northridge 地震のPGA 分布、およびリンクの損傷状態および通行速度の比(被災後/被災前)の平均値

図-5 1994年 Northridge 地震の PGV 分布、およびリンクの損傷状態および通行速度の比(被災後/被災前)の平均値

