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1. Introduction 
Crosswalk geometry and configuration at signalized 

intersections directly affect the safety, cycle length and 

resulting delays for all users. Optimizing crosswalk 

configurations including width, position and angle is an 

important concern to improve the overall performance of 

signalized intersections. Quantifying the effect of 

bi-directional flow and crosswalk width on pedestrian 

walking speed and crossing time at signalized crosswalks 

is a prerequisite for improving the geometric design and 

configuration of signalized crosswalks. Pedestrian 

crossing time is basically a function of crosswalk length 

and walking speed. However when pedestrian demand 

increases at both sides of the crosswalk, crossing time 

increases due to interaction between conflicting 

pedestrian flows. 

A variety of methods have been developed for 

determining appropriate pedestrian crossing times at 

signalized intersections. Although many of these 

methods have useful applications, most of them have 

shortcomings when considering the effects of 

bi-directional flow on crossing time. No consideration is 

given to deceleration or reduction in walking speed that 

results from the interaction between the conflicting flows. 

In this study, a new methodology is proposed to model 

pedestrian crossing time as a function of pedestrian 

demand, directional split, and crosswalk width, which is 

based on aerodynamic drag theory. 

 

2. Literature Review 

Few studies addressed the issue of bi-directional 

flow and its impact on crossing time at signalized 

crosswalks. Most of the existing works in this respect 

attempted to investigate the impact of bi-directional flow 

at other pedestrian facilities such as walkways and 

sidewalks. However the characteristics of the 

environment as well as the pedestrian arrival pattern at 

crosswalks is different from other pedestrian facilities. 

Most crossing time estimations have been based on 

assumptions for start-up delay and a particular walking 

speed. The Manual on Uniform Traffic Control Devices 

(2003)
1)

, Pignataro (1973)
2)

, and the Signalized 

Intersection chapter of the Highway Capacity Manual 

(2000)
3)

 have formulations similar to Equation (1).  

 

(1) 

Where T is total time required for all the crossing 

process (s), I is initial start-up lost time, L is crosswalk 

length (m), Sp is walking speed (m/s), x is average 

headway (s/ped/m), Nped  is number of pedestrians 

crossing during an interval p from one side of the 

crosswalk, and w is crosswalk width (m). 

Equation (1) shows that the time spent on the 

crosswalk itself (L/Sp) is independent from the pedestrian 

demand, bi-directional effect and crosswalk width. 

Lam et al. (2003)
4)

 investigated the effect of 

bi-directional flow on walking speed and pedestrian flow 

under various flow conditions at indoor walkways in 

Hong Kong. They found that the bi-directional flow 

ratios have significant impacts on both the at-capacity 

walking speeds and the maximum flow rates of the 

studied walkways. However they did not investigate the 

effect of different walkway’s dimensions on the walking 

speed and the capacity of the walkway. 

Virkler, et al. (1984)
5)

 collected data from some 

relatively low-volume and high-volume signalized 

crosswalks and recommended an equation for 

one-directional flow that also considers platoon size. 

However they did not consider the impact of 

bi-directional pedestrian flow. 

Golani et al. (2007)
6)

 proposed a model to estimate 

crossing time considering start-up lost time, average 

walking speed, and pedestrian headways as a function of 

the dominant platoon and the opposite platoon separately. 

The proposed model is based on HCM
3)

 model which 

was calibrated by using empirical data. The proposed 

model relates the impact of bi-directional flow to the 

headway between pedestrians when they finish crossing. 

So it is very hard to see how the interaction is happening 

and what the resulting speed drop or deceleration is. 

 

3. Methodology 
The total time needed by a platoon of pedestrians to 

cross a signalized crosswalk can be divided into two 

main parts, discharge time and crossing time: 

cdt
TTT   (2) 

Where Tt is the total time needed to cross the 

crosswalk, Td is the discharge time necessary for a 

pedestrian platoon to move from the waiting area and 

step inside the crosswalk, and Tc is the time necessary to 

cross the crosswalk. 

This study concentrates only on modeling the crossing 

time Tc as a function of crosswalk length, crosswalk 

width, and pedestrian demand at both sides of the 

crosswalk by applying the concept of drag force theory. 

 

4. Modeling  
The force on an object that resists its motion through a 

fluid is called drag. When the fluid is a gas like air 

(Figure 1), it is called aerodynamic drag (or air 

resistance). While if the fluid is a liquid like water it is 
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called hydrodynamic drag. Drag is a complicated 

phenomenon and explaining it from a theory based 

entirely on fundamental principles is exceptionally 

difficult. Pugh (1971)
7)

 described the relation of drag D, 

the relative velocity of the air or the fluid, and a moving 

body in terms of a dimensionless group, the drag 

coefficient Cd. The drag coefficient is the ratio of drag D 

to the dynamic pressure q of a moving air stream and is 

defined by Equation (3): 

 
pd

qACD 
 

(3) 

Where D is drag force (kg·m/s
2
), Cd is drag coefficient 

(dimensionless), q is dynamic pressure (force per unit 

area), and Ap is the projected area (m
2
). 

The dynamic pressure q which is equivalent to the 

kinetic energy per unit volume of a moving solid body 

(Pugh (1974)
8)

) is defined by Equation (4): 

 2

2

1
uq 

 

(4) 

Where ρ is density of the air in kilogram per cubic 

meter, and u is speed of the object relative to the fluid 

(m/s). By substituting Equation (4) in Equation (3), the 

final drag force equation is: 

 
pd

AρuCD 2

2

1


 
(5) 

 

4.1 ’Drag Force’ Caused by the Opposite 

Pedestrian Flow 
To use the drag force concept to model the interactions 

between pedestrian flows, the following assumptions are 

made: 

I. Opposite pedestrian demand is considered as a 

homogenous flow (Figure 2) with a density equal to 

the number of pedestrian waiting in the beginning of 

the green interval divided by an area equal to the 

width of the crosswalk multiplied by 1 meter. 
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(6) 

II. The subject pedestrian flow is considered as one body 

moving against the opposite pedestrian flow. The 

interactions occur along the projected area of all 

pedestrians in the subject flow which is defined as the 

sum of widths of all pedestrians in the subject flow: 

nAp   (7) 

Where Ap is the projected area of the subject 

pedestrian flow (m), β is the average width of one 

pedestrian, and n is a dimensionless number equal to 

the number of pedestrian in the subject pedestrian 

flow P1, shown in Figure 2. 

III. The initial speed of the subject and the opposite 

pedestrian flow when they start crossing is assumed to 

be equal to the free-flow speed uo, therefore the 

relative speed u becomes: 

 
ooo uuuuuu 2))(( 21 

 
(8) 

After substituting Equation (6), (7), and (8) in 

Equation (5), then the drag force equation becomes: 
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(9) 

Assuming that the width of one pedestrian β is 0.6m, 

the drag force D becomes: 

nu
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Where CDadj is adjusted drag coefficient 

(dimensionless), and it is defined according to Equation 

(11). 

ddadjD CCC *6.0*44    (11) 

 

4.2 Deceleration of the Subject Pedestrian Flow 
The net force on a particle observed from an inertial 

reference frame is proportional to the time rate of change 

of its linear momentum (Momentum is the product of 

mass and velocity): 

 
ma

dt

dv
m

dt

mvd
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(12) 

Where m is the mass of the moving body and its 

equivalent to the subject pedestrian demand P1, and a is 

the average deceleration of the subject pedestrian flow.  

The final speed of a moving particle in a straight line 

with constant average deceleration according to the 

motion equations is: 

aLuu
if

222   (13) 

Where ui is initial speed (m/s) which is assumed to be 

equal to the free-flow speed uo, uf is final speed (m/s), a 

is average deceleration of the subject pedestrian demand 

(m/s
2
), and L is the travelled distance (m). 

Figure 3 shows the projection of pedestrian flow 

trajectory from both sides of a crosswalk. A major 

assumption of this methodology is that both opposing 

flows will start walking with the same free-flow speed uo 

in a straight line until the middle of the crosswalk where 

they will meet. In order to avoid the complexity in 

estimating the real interaction time, the time from the 

moment when the subject pedestrian flow meets the 

opposite pedestrian flow at the middle of the crosswalk 

until the subject pedestrian flow reaches the end of the 

crosswalk is assumed as the interaction time here. The 

Ap

ρ

Air Stream Moving Body

 

Figure 1: Drag force 
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Figure 2: Applying the concept of drag force on 

opposing pedestrian flows at crosswalk 



resulting deceleration is averaged along the assumed 

interaction time. Therefore the final speed is: 
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(14) 

Where Lc is average trajectory length of the subject 

pedestrian demand, Tc is average crossing time of the 

subject pedestrian demand, Lo is crosswalk length and uo 

is free-flow speed. By substituting Equation (14) in 

Equation (13), the average deceleration becomes: 
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(15) 

By substituting the mass and the acceleration in 

Equation (12), the net force (ped·m/s
2
) becomes: 
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(16) 

 

4.3 Model Development 

The drag force caused by an opposite pedestrian flow 

should be equal to the force that causes the deceleration.  

By equating Equation (16) and Equation (10), and after 

solving them for the crossing time TC, the net equation is: 
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(17) 

Equation (17) represents how the crossing time varies 

according to pedestrian demand combinations from both 

sides of the crosswalk and crosswalk width.  

 

5. Estimating the Drag Coefficient (CDadj) 

The value of adjusted drag coefficient CDadj according 

to aerodynamic drag is dependent on the kinematic 

viscosity of the fluid, projected area and texture of the 

moving body. In the pedestrian’s case, this value can 

here be assumed to be dependent on the pedestrian 

demand at both sides of the crosswalk and their split 

ratio. 

In order to define a value for the pedestrian free-flow 

speed, a 1.5-hour video tape for the crosswalk at the east 

leg of Nishi-Osu intersection in Nagoya City (6m wide × 

25.4m long) was analyzed. Nishi-Osu intersection is 

characterized by small pedestrian demand with a large 

crosswalk width. 102 samples of pedestrian’s free flow 

speeds were measured. All the considered pedestrians 

were leading pedestrians and they did not face any 

opposite flow or turning vehicles. The average free-flow 

speed for all the samples is uo=1.45 m/s. This value is 

used to estimate CDadj and crossing time Tc. 

To estimate crossing time by using Equation (17), 

CDadj was first estimated from empirical data. A 2-hour 

video tape for the crosswalk at the east leg of Imaike 

intersection in Nagoya City (9.6m wide × 21.5m long) 

was analyzed. The pedestrian demand in each cycle at 

each direction, the average pedestrian trajectory length, 

and the average pedestrian crossing time in the same 

cycle were extracted from the video tape. Then by using 

Equation (17), CDadj was estimated for 35 samples where 

the total pedestrian demand was ranging from 5 – 30 

pedestrians per cycle (one cycle is 160sec). After 

analyzing the available data, CDadj was modeled in terms 

of the split ratio r which is the ratio of the subject 

pedestrian demand to the total pedestrian demand. 

Equation (18) defines the split ratio r. 
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(18) 

Figure 4 shows the relationship between split ratio and 

CDadj. As split ratio increases the drag coefficient also 

increases. Due to the limited sample size and the 

existence of many external factors that can affect 

pedestrian behavior, the coefficient of correlation (R
2
) is 

relatively small. 

  

6. Discussion and Validation  

After estimating the drag coefficient, Equation (18) 

can directly be used to calculate the average crossing 

time for different demand volumes under different 

crosswalk widths. Figure 5 shows how the crossing time 

varies with crosswalk width. When crosswalk width 

becomes larger and larger for a specific demand, 

crossing time decreases until it becomes almost constant 

(free-flow condition). But when crosswalk width 
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Lo: crosswalk length, P2: opposite pedestrian demand, P1: subject 

pedestrian demand, u1: speed of the subject pedestrian flow, u2: 
speed of the opposite pedestrian flow, uo: free flow speed, and Tc: 

time needed by subject pedestrian demand to cross the crosswalk. 

Figure 3: Time-Space diagram of the conflicting 

pedestrian flows 
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Figure 4: Modeling the drag coefficient as a function 

of split ratio 



becomes smaller for a specific demand, crossing time 

increases, as the interactions between the opposing flows 

increases, until it reaches a point where the opposing 

flows block each other causing a drastic increase in 

crossing time. 

Figure 6 shows the drop in average walking speed due 

to the interactions between the opposing flows. As the 

crosswalk width decreases for a specific pedestrian 

demand, the interactions increase causing reduction in 

the average walking speed. The drop in the walking 

speed continues with reducing crosswalk width until a 

point where the speed drops drastically. This tendency is 

reasonable if we assume that pedestrian cannot walk 

outside the crosswalk, therefore it is expected that as the 

demand increases for a specific crosswalk width, the 

average walking speed will drop, until it reaches almost 

zero where every pedestrian cannot walk any more. 

To validate the proposed model, the average crossing 

time was measured for 38 cycles under different demand 

ratios and compared with the estimated crossing time 

from the proposed model. Figure 7 illustrates the 

differences between the measured and the estimated 

crossing times. A paired t-test was performed and the 

result showed that the estimated values were not 

significantly different from the measured values at the 

95% confidence level. 

7. Conclusions and Future Works 

A new methodology in modeling the interactions 

between opposing pedestrian flows at signalized 

crosswalks was proposed in this paper. This 

methodology is based on the aerodynamics drag concept. 

The final equation of crossing time Tc provides a rational 

quantification for the effect of crosswalk length, 

pedestrian demand, demand split ratio, and crosswalk 

width on crossing time. However, the proposed model 

needs to be validated and compared with the real 

pedestrian behavior at crosswalks with higher demands. 

The nature of the drag coefficient CDadj is a key factor in 

estimating crossing time. Collecting and analyzing more 

data especially for high demand crosswalks are necessary 

to develop more concrete formula for the drag coefficient 

with higher correlation. The proposed methodology will 

be used as a basis to define the required crosswalk width 

for different pedestrian demand volumes and split ratios. 
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Figure 6: Drop in average walking speed due to 

bi-directional flow effect 
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Figure 5: Changes in crossing time with changing 

demand and crosswalk width 
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Figure 7: Model validation 


