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1. Introduction 
 
  In an infrastructure system comprising of many groups categorized by technological differences, the overal degradation of the 
entire system is the average value, which largely depends on the deterioration rank of individual group. Each group is regarded as 
one type of technology. The deterioration of individual group is subjected to be different from the others due to the rich variety in 
design, construction, environment and operation condition. In regard to the selection of technology based upon the best actual 
performance, it is necessary to study the deterioration behavior of each group by mean of hetegoneity factor. Only when the 
heterogeneity factor is emperically determined, had the better choice on optimal technology would become feasible. This paper 
focuses upon the benchmarking model using local mixing mechanism in order to define the value of hetegoneity factor and further 
describe and compare the deterioration process of each group of technology. 
  In regard to the deterioration forecasting model, in recent years, the use of Markov chain based analysis has been one of the 
major innovations. Hazard model helps users to predict hazard rates, life spans and deterioration curves of infrastructure given the 
historical inspected condition states and other variables concerning various environment impacts. The application of the Markov 
chain model has gained its high recognition for its flexibility of modeling and high operability. In the Markov chain model, the 
condition states of infrastructure component are ranked in some discrete states. The values of condition states are recorded through 
actual inspection over periods of time. And thus, a simulation of deterioration is understood to follow the transit of condition states 
along with duration1-2). 

  The proposed model in this research discusses the integration of hetegeneity factor into conventional markovian hazard model 
that as developed by Tsuda et at3). The hetegoneity factor is followed by local mixing mechanism. Estimation approach enables us 
to determine not only the deterioration of the entire group of infrastructure but also the individual. An empirical analysis on the 
Vietnamese highway system is carried out to illustrate the application of local mixture hazard model in the real world. 

 
2. Benchmarking Hazard Model 
 

(1) The Deterioration Process and Markovian Hazard Model 
The deterioration process of infrastructure under time-homogeneous Markov chain process is defined on state space 
= {1,..., }S I . Here, the rating (1,..., )i I  reflexs the healthy status of road sections with = 1i  to be at its healthiest and =i I  

to be its worst. The probability, at which the condition state observed at time t  expresses as ( ) =w t i  change to ( 1) =w t j+ , 
can be described as conditional probability in the following equation 

[ ( 1) = | ( = ] = ijProb h t j h t i π+                       (1) 

The transition probabilities are expressed by a matrix of dimension (i,j). Here, it is understood that different time intervals give 
different transition probabilities. The highest level when i=I is called absorbing state. Using the database of past inspections, the 
transition probability can be estimated. In this section, we only give an outline of the estimation method for ease to readers. 

The life expectancy of a condition state i  is assumed to be a stochastic variable with the probability density function ( )i if ζ  
and the distribution function ( )i iF ζ  The conditional probability that the condition state i  at time iy  of a component reaches to  
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condition state 1i +  at i iy + Δ  can be expressed in the following hazard function  
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where ( ) = 1 ( )i i i iF y F y−  is referred as the survival function of a transition in the condition state i  during the time interval 
= 0iy  to iy . It is assumed that the deterioration process of a component satisfied the Markov property and the hazard function is 

independent of the time instance iy  on the sample time-axis. Thus, for a fixed value of > 0iλ , it can be defined as ( ) =i i iyλ λ              

The value of survival function ( )i iF y can be obtained by using exponential hazard function ( ) = exp( )i i i iF y yλ−  . Considering 
the possible inspection time, Ay  for instance, the condition state are observed as i  at time Ay  and keep remaining constant at 
time , ( 0)A iy z z+ ≥ . The conditional probability for this event to happen can be defined as   
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where, z  indicates the interval between the two inspection times. Equation (3) expresses the probability 
[ ( ) = | ( ) = ]B AProb h y i h y i  as the Markov transition probability iiπ . Equation (3) also illustrates the hazard rate iλ  and the 

time interval z  are the only two parameter that are required for the calculation of the transition probability iiπ .  
  By defining the subsequent conditional probability of the condition state i to j, with respect to the actual interval time z of 
inspection, general form for transition probability is formulated in equation (4).  
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  For convenience of mathematical manipulation, we define  
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(2) Local Mixing Mechanism of Hazard Model 

  It has been realized that similar group of individual infrastructure components can be exerted to have different deterioration 
speeds. To express these differences, the term "heterogeneity factor" is employed. Here, the letter kε  denotes the heterogeneity 
parameter, which infers the change of characteristic of a peculiar hazard rate to an infrastructure component  ( = 1, , )k k K . 
Thus, the mixture index hazard function (2) can be expressed as  

=  ( = 1, , 1; = 1, , )k k k
i i i I k Kλ λ ε −                                     (6) 

  The value of kε  is always greater than 0. Importantly, the deterioration speed of component k  is fast when value of kε  
increased in comparison with the rate of standard hazard k

iλ . It is also noted from (10) that the same random variable kε  is 
included in the mixture index hazard function of all ratings. εk is understood to be in a form of function or stochastically distribution. 
The Markov transition probability ( : )k k k

ij zπ ε  that the rating changes to (> )j i  between k
Ay  and =k k k

B Ay y z+  will be 
formed from (7) and (10) as  
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  Equation (7) expresses the dependence of transition probabily only on the function of average hazard rate. 
  Regarding the heterogeneity factor kε , it is not easy to infer kε  to follow a particular function. Several investigations were on 
assuming function of kε  as stochastic distribution such as: Gamma, Lognormal distributions etc. However, the results are not 
always satisfied in fitting with actual transition. In order to cope with this obstacle, one possible rule is to consider the form taken by 
mixture distribution as when kε  has little dispersion so that the departure from homogeneity is small 4).  To express the relation of 
transition probability and hetegeroneity, equation (6) can be further described in the following form. 

0
( ) = ( : ) ( )   ( = 1, , 1)ij ijz z f d i Iπ π ε ε ε

∞
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For ease of mathematical expression, let assume the local mixture transition probability as the exponential function 
( , , )mixf zε λ  with mix  as indication for local mixture and define the following equation.  

( , , ) = ( , , ) ( )mixf z f z dHε λ ε λ ε∫                                       (10) 



 

where, dH(ε) is arbitrary distribution around the mean of 1. ( , , )f zε λ  is exponential family, and thus, can be further expressed as 
f(ε,z,λ)=exp(-ελz). The expected value of  f(ε,z,λ) with respect to ε is likely a function of ε about its mean, and can be taken to be 
unity with no loss of generality as long as the mean exits in the following form. 

2
2( 1)( ) = (1 ( 1)( ) ( ) ...
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  Without lossing generality, the expectation of this series can be expressed in quadratic form. This assumption is proved to satisfy 
the exponential family as it turn to produce very attractive statistical property. Equation (11) becomes 

2 2( )( ) {1 }
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  From this approximation approach, equation (7) and (9) can be rewritten in equation (13) 
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  The deterioration process of sample k  can be expressed by using mixture index hazard function ( ) =k k k k
i i iyλ λ ε . The hazard 

rate k
iλ  depends on the characteristic vector of road component and suppose to change to the vector kx  as follows =k k '

i ixλ β . 
Where ,1 ,= ( , , )i i i Mβ β β  is a row vector of unknown parameters and the symbol '  indicates the vector is transposed. From 

equation (13), the standard hazard rate in each rating can be expressed by the mean of the probability distribution of hazard rate k
iλ  

and the heterogeneity kε . The average Markov transition probability is expressible by (13) when using row vector kx  of the 
infrastructure component ( 1= ( , , )k k k

Mx x x  indicating the observed value of variable m for the sample k). In addition, the 
transition probability also depends on the inspection time interval kz  when data is observed. Thus, it is ( , : )k k k

ij z xπ θ  with 

( , )k kz x  and 1 1= ( , , , )Iθ β β σ−  for the average Markov transition probability k
ijπ .  
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  where, 11 1,= ( , , )k k k
I Iδ δ δ −  is a dummy variable vector and takes value 1 at ( ) = , ( ) =k kh t i h y j and 0 otherwise. Since 

= ( , )θ β σ , and ( , : )k k k
ij z xπ θ  is a rating transition probability at the initial time. It can be expressed as  
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  Since k
iδ , kz , kx  are known from the inspection, the likelihood functions are functions of β, μ. In the method of maximum 

likelihood, ˆ ˆ ˆ= ( , )θ β σ  that maximizes (13) will be presumed. Functions (13) can be defined as the log-likelihood function as 
follow  
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  The estimation of 1 ( 1)
ˆ ˆ ˆ= ( , , )I Mθ θ θ − can be obtained by solving the optimality conditions ln ( , ) = 0
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  When the value of θ̂  is obtained, from equation (10), the following likelihood function is applied to estimate value of kε   
1

=1 =

ˆ ˆˆln ( : , ) = ln ( : ) ( , : , )   ( = 1, , )
I I

k k k k k k k k k
ij ij

i j i
f z x k Kξ θ ε ε σ δ π β ε

−

+∑∑                  (17) 

The optimum value of kε  can be obtained by solving optimality condition 
ˆln ( : , ) = 0
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3. Empirical Analysis 
 

Two set of visual inspection data on the Vietnamese national highway system in the year 2001 and 2004. In which, 1237 highway 
sections were selected. We further categorized 1237 sections into 8 groups according to their similarity in term of the traffic volume 
and the asphalt overlay thickness. The range of rating is also defined for the Markov model since there has been no national standard 
of rating for highway in Vietnam5). We selected a range of rating in the space of S=(1,...,5).  

In the first step, we estimated the average transition probabilities of the highway system by using hazard model that is explained 
in (7). The two parameter used for estimation are the thickness of overlay asphalt 2( )x and the traffic volume 3( )x , which are 



 

subjected to change over two time point of inspection. In general, the general form of the hazard function is explainable by 
,1 ,2 2 ,3 3=k k k

i i i ix xλ β β β+ +  with (i=1,...,4; n=1,...,N), with β, N indicating unknown parameters and the number of samples 

respectively. Table III shows the result of the maximum likelihood estimations, in which, the value of unknow parameters β̂  are 
obtained with the respective t-values of each explanatory variable. 

Table 1: Exponential hazard model results 
State Absolute βi,1 Surface Thickness 

βi,2 
Traffic Volume 

βi,3 
1 0.3052 (26.027) - - 
2 0.1792 (2.6557) 0.4996 (2.4433) 1.0570 (2.4174) 
3 - 2.6461 (9.6294) - 
4 - 1.8089 (6.5421) - 

Note) t-values are shown in parenthesis  

Table 2: Average transition probability matrix 
State  1   2   3   4   5  

1 0.5431 0.2773 0.0998 0.0574 0.0224 
2 0 0.3756 0.2522 0.2348 0.1374 
3 0 0 0.1673 0.4022 0.4305 
4 0 0 0 0.2945 0.7055 
5 0 0 0 0 1  

Table IV shows the average transition probability when taking the whole set of data into calculation of the exponential hazard 
model. The values are coressponding to the mean of 1 for the heteroneity factor. Benchmark deterioration curve is drawn as a result 
of this transition probability. 

In the second step, the local mixture model is applied to estimate the heterogeneity factor kε . In this application, the number of 
groups is 8. The values of kε  are estimated to be (0.6495, 0.9909, 0.9957, 0.5109, 1.1931, 0.5665, 0.5112, 1.1545) respectively to 
particular group. Thus, a combination of step 1 and step 2 makes it possible to draw the deterioration curves respectively in “Fig. 1”.  
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Figure 1: Expected deterioration path for each group 

 
Table 3: Transition probability matrix for k=5 

 
State  1   2   3   4   5  

1 0.7805 0.1700 0.0328 0.0132 0.0035 
2 0 0.5996 0.2136 0.1354 0.0514 
3 0 0 0.2767 0.4334 0.2899 
4 0 0 0 0.4062 0.5938 
5 0 0 0 0 1  

Result in “Fig. 1” enables us to have a good comparison of the dispersion of each group of highway with respect to the thickness 
of surface asphalt and the traffic volume around the average deterioration curve. The  life expectancy of rating and deterioration 
curve are important indicators, which assist managers to select the desire representative highway for the life cycle cost analysis. In 
our study, the group with heteroneity factor ε = 1.1931 (k=5) is selected for sample application of the LCC analysis. Table V shows 
the results of transition probability for this group. 

 
4. Conclusion 
 
  This paper has discussed the local mixture model for benchmarking the infrastructure technologies. The local mixing mechanism 
is expressed by mean of heterogeneity factor ε that exist in each group of infrastructure. Heterogeneity factor was estimated together 
with the markovian transition probability, which describes the deterioration process of the infrastructure. An empirical study has 
been conducted on the dataset of Vietnamese highway system, which was classified according to the technologies in asphalt 
pavement. The estimation results shown in Fig. 1 could be used as key performance indicators for selection of pavement design, 
technology offered from difference contractors. 
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