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1. Introduction 
 

Multinomial logit (MNL) model are commonly used to predict travel behavior. MNL model explains the behavior in 
terms of the linear compensation of the utility. However some researches denoted that people may use 
non-compensatory rule, and therefore, the bias in prediction may be raised by the linear compensatory model. Machine 
learning approach is considered as an alternative approach to describe the travel behavior. Machine learning approach 
describes the data by statistical theory and which is not constrained by the economic explanation.  

Some sophisticated machine learning approaches, such as linear discriminant, Support Vector Machine (SVM) and 
Artificial Neural Networks (ANN), are widely used in the field of transportation research. These machine learning 
approaches are based on discriminant function. Discriminant function can be described as: ( ){ } 1

I
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g
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x , where i  is the 
index of the classification or the alternative and I  is the number of the classification or the alternative. If 

( ) ( )  ,    i jg g i j> ∀ ≠x x  then the input x  will be assigned to classification i . The discriminant function based 
technology may raise some problems in the context of travel behavior research. First, the sizes (i.e.: the number of 
alternative) and the alternative may be different for each choice set of the SP/RP survey data, however, the general 
structure of discriminant function based technology cannot address this problem easily. Additionally, discriminant 
functions based technology is that given a tumor sample, it only predicts a class label but does not provide probability 
information1), on the other hand, choice probability is usually considered as a important information for travel behavior 
research. In this paper, we propose a new machine learning based behavior model for addressing the problem mentioned 
above.  
 
2. Methodology 
 

(1) Outline of the proposed model 
In the discrete choice model, the choice decision rule is: argmax i iC U∀=  where C  is the index of the chosen 

alternative, iU  is the utility of alternative i . In the proposed model we employ a new criterion instead of utility. Let 

( )1 iP Y = x  denotes the probability of that the decision maker is satisfied given alternative i , the attribute vector of 
the alternative is ix , Y  is a binary variable (0 or 1). In the proposed model, we use ( )1 iP Y = x  instead of utility, 

iU . The following decision rule was obtained: ( )argmax 1i iC P Y∀= = x .                                                
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Here, we consider that the distribution of Y  is Bernoulli distribution with parameter ( )iπ x , where 
( ) ( )i iE Yπ =x x , and ( )iE Y x  is the expected value of iY x . We have ( ) ( )1i iE Y P Y= =x x  and : 

( ) ( )argmax argmaxi i i iC E Y π∀ ∀= =x x ……(1) 
where ( )0 1iπ≤ ≤x . Generally, logistic regression model can be used to predict ( )iπ x : 

( )( ) ( )logit i i ifπ ε= +x x ……(2)                                                    
where ( )if x  and iε  is the regression equation and the random error component respectively, ( )( )logit iπ x  denotes 
logit transformation: ( )( ) ( ) ( ){ }1

logit  = log 1i i iπ π π
−⎡ ⎤−⎢ ⎥⎣ ⎦x x x . If we let ( ) ( )i i ifπ ε= +x x  then the value of 

( )i if ε+x  has to be between zero and one. This means that a constraint condition must be added to the regression 
model. A solution to this problem is to use logit transformation map ( )iπ x  from the range (0, 1) to ( ,−∞ +∞ ), 
therefore, regression model can be applied without constraint conditions.  

Let iP  denotes the probability of alternative i  is chosen by decision maker given the choice set. According to 
equation (1), iP  can be denoted as ( ) ( )( )  , i i jP P j iπ π= > ∀ ≠x x , where alternative i  and j  are belong to the 
same choice set. Equally (we omit the proof ) we have: ( ) ( )( )  , i i i j jP P f f j iε ε= + > + ∀ ≠x x . If we assume an 
Gumbel distribution for ,i iε ∀ , then we have: 
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= ∑x x ……(3)                                                      

There is a different between equation (3) and MNL model. ( )if x  in equation (3) denote a regression model rather 
than the utility function in MNL model. Regression model describes the property of the training data and which does 
not explain the mechanism of behavior. We propose a Kernel Logistic Regression (KLR), a machine learning approach 
for ( )if x . KLR model is a form of nonlinear regression and which is also good at small size training data (usually, the 
size of a SP survey data is small).  

First we introduce Kernel trick2). Kernel or (.,.)K  is a kind of function which satisfies Mercer’s Theorem2). We can 
express (.,.)K  as: ( ) ( ) ( ), ,, ,K φ φ=x x x x  where 2: p lφ ⊂ →x , here 2l  denote a infinite dimension space, that 
means ( )φ x  is a vector in the new space. x  and ,x  are two vectors from the space of input, .,.  denote the inner 
product of two vectors. Obviously, it is difficult to calculate the result of ( )φ x  (i.e: curse of dimensionality). 
Fortunately, in the applications of machine learning approach, we usually only want to know the value of inner product 
of two vectors rather than the full information of the vectors, therefore, we can adopt Kernel trick that use ( ),,K x x  to 
calculate the inner product of the vectors without calculating ( )φ x . In this paper we employed a Gaussian Kernel: 

( ) ( ), , 21
2, exp || ||K = − −x x x x ……(4)                                              

Although the structure of ( )φ ⋅  which corresponding to equation (4) is unknown, the value of inner product of these 
two vectors can be derived from the Gaussian Kernel.  

Kernel trick can be used in the regression model3). Let x  is the independent variable vector and y  is the 
dependent variable. Function ( )f x  approximation to y , the parameters of ( )f x  are estimated using the following 
regularization problem4) : ( )( ) ( )( ) ( )

1
min ,M m m

f m
L y f J fλ

=
⎡ ⎤+⎢ ⎥⎣ ⎦∑ x . Where (.,.)L  is a loss function, (.)J  is a penalty 

functional, m  is the index of training data, M  is the number of training data. Generally, ( ) ( )
1 t tt

f x c φ∞

=
=∑ x , 

where tc  is the unknown parameters, ( )t xφ , 1, 2,...,t = ∞  is a series function which transform the input x  into a 
infinite dimension space. We have: 
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L y f J fλ∞ =
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The solution of (5) is5)  

( ) ( )( )
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mm

f Kα
=

=∑x x x ……(6)                          
where mα  is the unknown parameters. Equation (6) is the general formalism of KLR model.  

Let M  is the number of training data (i.e: total N  answers are collected by a survey, and nI  is the number of 
alternative in the question n , M  can be expressed as 

1

N
nn

M I
=

=∑ ). The regression model for this study can be 
described as: 

( ) ( )1 1
,nN I

q ni ni qn i
f Kα

= =
=∑ ∑x x x ……(7) 

where qx  denote the attribute vector of alternative q  in the current choice set, nix  denote the attribute vector of 



alternative i  in the question n . 
 

(2) Estimation 
The parameters ( niα ) of the proposed model can be estimated using maximum likelihood estimation. The likelihood 

function is: ( ) ( )
1 1

n ni
N I s

nin i
L P

= =
=∏ ∏α , where α  is the parameters vector, 1nis =  if alternative i  in the question 

n  was chosen, niP  is the choice probability of alternative i  in the question n . The log-likelihood function 
is: ( )

1 1
lnnN I

ni nin i
LL s P

= =
=∑ ∑α . We can use Newton-Raphson method or quasi-Newton method to maximize the 

log-likelihood function ( )LL α . The solution of this unconstraint maximization problem is the estimation result for the 
parameters.  
 
3. Numerical example 
  

(1) Data set 
Although a validation test should be presented in this paper, we would like to give a numerical example to explicitly 

explain how to use the proposed model.  
We explore the modal split among three traffic modes. The attributes considered are ‘Travel Time (min)’ and ‘Fee 

(1000 yen)’ among the traffic mode ‘A’, ‘B’ and ‘C’. A total of three samples were obtained from a SP survey. Table 1 
shows the details of the samples. Let 1AT  and 1AF  denote ‘Travel Time’ and ‘Fee’ of alternative ‘A’ in question / 
sample 1 respectively. 

 
                         

Question Index 1 2 3 

 Parametersα  1α  2α  3α 4α 5α 6α 7α

Choice Result 1 0 0 1 0 0 1 

Alternative A B A B C A C 

Travel Time (min) 0.22 0.10 0.30 0.l5 0.10 0.25 0.16

Fee (1000 yen) 0.20 0.50 0.20 0.60 1.00 0.31 0.51

 
(2) Parameters estimation 
The parameters to be estimated in the model are [ ]1 2 3 4 5 6 7     α α α α α α α . The log-likelihood function to be 

maximized is: 

( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }
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Parameters [ ]1 2 3 4 5 6 7      α α α α α α α  are coefficients in the statistical model, consequently, which cannot be used to 

Alternative A B 

Travel Time 0.18 0.12 

Fee 0.21 0.52 

Table 1. The samples  Table 2. An example of modal split 



calculate the economic indicators such as the value of travel time savings (VTTS). We can consider that the parameters 
are the weight of the attribute vector of the alternative in each question. 
   

(3) Prediction 
In this section, we present an example of travel behavior prediction using the samples shown in Table 1 and the 

estimated parameter. We want to predict the modal split between mode ‘A’ and mode ‘B’. Table 2 shows the attributes 
of mode ‘A’ and mode ‘B’. Let [ ]1 1 1 A A AT F=x  denote the attribute vector of alternative ‘A’ in question / sample 1, Ax  
denote the attribute vector of current alternative ‘A’. The choice probability of mode ‘A’ and mode ‘B’ can be calculated 
as: 

( ) ( ) ( )
1
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4. Conclusion  
 

In this paper we propose a machine learning model to describe the travel behavior data. The structure of the proposed 
model (see Equation 3) indicates that the model can fit the data set which including different alternatives and size for 
the choice set (e.g. Table 1). The data are fitted by a Kernel Logistic Regression in the proposed model which is not 
restricted by the economic explanation, and therefore, Kernel Logistic Regression may be able to better describe the 
data. On the other hand, the parameters of the proposed model cannot be used to calculate the economic indicators. We 
can see that the proposed model focus on the accuracy of prediction rather than explain the mechanism of behavior. In 
this paper we present a numerical example, however a real data set should be used to convince about the performance of 
the proposed model.  
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