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1. Introduction 
 

Ozone concentrations are very difficult to model because of the different interactions between 
pollutants and meteorological variables (Sousa et al, 2007). The atmospheric chemistry and diffusion 
mechanism of surface ozone in the ambient air is quite complicated and depends on several parameters of 
a different nature, also including the horographic characteristic of the area of study. The combinations of 
those situations increase in particularly ozone at certain times which are strongly affected by the emission 
intensity of air pollutants, meteorological conditions and the presence of primary pollutants which reacts 
each other (G Nunnari, 1998). These complex and non-linear relationships of multiple variables can make 
statistical models awkward and complicated (Abdul-wahab, S.A,2006). Therefore, it is expected that they 
will under-perform when used to model relationship between ozone and the other variables that are 
extremely non-linear. Nowadays, artificial neural network (ANN) model have the potential to describe 
highly non-linear relationships such as those controlling ozone production. Therefore, the application of 
artificial neural network for ozone modeling has recently more popular than other regression model. 

. 
In forecasting with neural network, especially in the atmospheric studies which cite in this study, 

the most popular tool is provided by Multilayer Perceptrons (MLP). The multilayer perceptron (MLP) has 
been applied to a wide variety of tasks which can ber further categorized as prediction, function 
approximation, or pattern recognition. Prediction involves the forecasting of future trends in a time series 
of data given current and previous conditions. The MLP consist of a system of simple interconnected 
neurons or nodes which represent a nonlinear mapping between input and output parameters. The nodes 
are connected by weights and output signals which are a function of the sum of inputs to the node 
modified by a simple nonlinear transfer, or activation function. It is the superposition of many simple 
nonlinear transfer functions that enables the MLP to approximate extremely non-linear function. The 
output of the node is scaled by the connecting weight and fed forward to be an input to the nodes in the 
next layer of the ANN model. By selecting a suitable set of connecting weights and transfer functions, it 
has been shown that a MLP can approximate any smooth, measurable function between input and output 
vector (Gardner, 1998). Multilayer perceptrons have the ability to learn through training. 

The work reported in this paper deals with the use of Artificial Neural Network model as a 
complimentary method combine with the previous statistical models to predict ozone concentration in 
Jakarta city. The model developed based on previous work on Structural Equation Model. The purpose of 
combining SEM and ANN model in this study was to describes and predict ozone as influence by 
emission source, meteorology and interaction of pollutants in the atmosphere. We also examine the 
relative percent contribution of each input parameter by analyze the sensitivity of the mean of input 
variables. This will help to the decision maker to understand the real world of ozone behavior in Jakarta 
city which will useful in the determining effective control strategies.   

 
2. Research Methodology  
 

The development of a Multilayer perceptron back propagation (MLP-BP) neural network model 
essentially involves a number of stages. First the variables to be used as the input parameters for neural 
network model have to be identified. This requires an understanding of the problem domain and may 
require insight from previous studies. To minimize the number of input parameters, previous statistical 
model results used to identify to most significant variables in the model. Regarding on the ozone 
prediction in Jakarta city, we used all parameter in the Structural Equation Model which explore 
interaction and cause-effects relationship among vehicular emission, meteorology and air pollutants. In 
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this MLP-BP, we choose multi-input and multi output model structure to predict Nitrogen Oxide and 
Ozone concentration at time (t). We incorporated observed traffic data for vehicular emissions, 
meteorology data and pollutants data in our model. Totally, fifteen variables used in the first layer of 
input parameter of our MLP-BP ANN. Considering time series and serial correlation which already 
mentioned in our previous SEM model, four pollutants (PM10, SO2, CO, NO2) variables used as the input 
parameter at time (t) and (t-1). Three traffic flow conditions as vehicle per road capacity per hour of 
Motorcycles, Passenger Car and high duty trucks variables used as the input parameter at time (t-2). Solar 
radiation (SR), ambient temperature (T), Humidity (RH), wind speed (WS), and wind direction -which in 
this study stated as sine and cosine of wind direction- variables used as the input parameter at time (t-1). 
The structure of our MLP-BP ANN for Jakarta city shown in figure 1 

 
Figure 1 A Multi layer perceptron with four hidden layer 

 
Usually about one-third of the data are used as the testing set (A.T.C Goh, 1995). For simulation, 

we use data collected in several major roads in Jakarta city. After discard the ‘noise’, total number data in 
the simulation is 647 cases. Those data consist of training data 471 cases (73%) and testing data set 
around 176 cases (27%). A critical review of the main application in atmospheric science which has been 
attempted by Gardner and Dorling (1998) whose comparison among models turn out to be rather 
unbalanced, since each model was trained with different kinds of data. In this study, in order to response 
these above matter, based on time observation basis, we select the data for training and testing data set. 
Then, we change in other both of training and testing data considering time observing and percentage of 
each category to observe the model performance in the different data set. 

There is currently no rule for determining the optimal number of neurons in the second layer of our 
ANN model which consist of the hidden layer except through experimentation. Using too few neurons 
impairs the nural network and prevents the correct mapping of input to output. Using too many neurons 
impedes generalization and increases training time (A.C.T Goh, 1995). A common strategy and the one 
used in this study was to replicate the training several times, starting with two neurons and the increasing 
number while the monitoring the average sum square error. At the end of the training phase, the neural 
network should correctly reproduce the target output values for the training data provided the errors are 
minimal, i.e. convergence occurs. Training is carried out until there is no significant improvement in the 
error. In the third layer of our model, the pollutants NO and O3 variables used as the output parameter at 
time (t). After several times trial and error by 2,3,4,5,6,7, and 8 hidden layer in our MLP-BP ANN we got 
the minimum of MSE at 4 hidden layer, and this 4 hidden layer use in this study. The testing set of 
patterns is then used to verify the performance of the neural network, on the satisfactory completion of the 
training. The testing phases assesses the quality of our MLP-BP ANN model and determines whether the 
neural network can generalize correct responses for patterns that only broadly resemble the data in the 
training set. In this case, we will use out model to predict the NO and ozone concentrations as the results 
of several policies which in practice will influence to the input parameter of our model. In this study, we 
used the conjugate gradient method for weight correction, as it was judged to be best for identifying the 
absolute minima of the error function. As the activation function of the single neurons, we choose the 
sigmoid function:  
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Where P is the potential, and s, K, A are threshold, the slope and the amplitude of the activation 
function, respectively. The model’s behavior in both, training and testing steps, was evaluated calculated 
the following statistical parameters: correlation coefficient (R), mean bias error (MBE), mean absolute 
error (MAE), and root mean squared error (RMSE).  
 
4. SUMMARY OF DATA 
 

The data collected from 5 mobile ambient roadside air quality monitoring stations in Jakarta which 
is located 5-10 meter from main roads. We use a set of data on weekdays and weekend on several days in 
April, May, September and October 2005. All sampling points selected to describes the air quality 
situations of major roads in five districts of Jakarta. The monitoring stations operated at Thamrin road in 
central Jakarta, Fatmawati road in South Jakarta, Perintis Kemerdekaan road in East Jakarta, Yos Sudarso 
road in North Jakarta and Daan Mogot road in West Jakarta. The Fatmawati station is a sub-urban area of 
Jakarta city, and the others stations described the urban areas in Jakarta.  

All monitoring stations were operated automatically and those are capable to measure CO, NO, 
NO2, SO2, PM10, and O3. In-situ meteorological data (solar radiation-SR, temperature-T, relative 
humidity-RH, wind speed-WS and wind direction-WD) were also recorded by using the basic 
meteorological sensors, which attached and installed at 10 meter height above the ground. The interval of 
measurement data of the average pollutants concentration and meteorological data are 30 minutes. 
Besides, traffic is monitored by video recording at the same locations. From video images, vehicles in the 
traffic are classified into 9 categories which consist of motorcycles, three wheeler (bajaj), passenger car, 
taxi, mini and medium bus, bus, small truck, truck and heavy truck. In this study, we categorize data into 
3 categories which will adopt in the MLP-BP ANN. Those categories consist of motorcycle and three 
wheeler (MC), passenger cars (PC), high duty trucks (HDT) which includes all diesel vehicles. As input 
for the model, all observed traffic data converted to the traffic volume per road capacity (V/C) ratio for 
each road. Altogether observation data consist of 715 time points obtained from 5 stations. After careful 
inspection of the data for checking disorders in measurements, the original data size is reduced to 672 
time points.  

 
5. MODEL ESTIMATION OF TRAINING AND TESTING DATA 

All about the diurnal and relationship among variables used in the MLP-BP ANN model already 
discussed in chapter 5. And so, we didn’t discuss again in this chapter and focus on the categorized 
observed data for training and testing data set. 

At the training stage, after 19983 epoch the best network was achieved with the minimum square 
error 0,0009998. For parameter NO, the R2 is 0,9758 and the percent correct to measured data around 
99,2147 %. For parameter O3, the R2 is 0,9883 and the percent correct to measured data around 97,7528 %. 
The estimation results shows in table 1 & table 2. Based on the sensitivity analysis of mean value of input 
parameter to output parameters, we got several results: 
a. The most sensitive input parameter for NO output variable at time (t) is concentration of NO at time 

(t-1) follows by ambient temperature (T) at time (t-1) and concentration of CO at time (t).  
b. The most sensitive input parameter for O3 output variable at time (t) is concentration of NO2 at time 

(t) follows by ambient NO2at time (t-1) and concentration of O3 at time (t-1).  
All above information shown in figures 2, 3 and 4 

Table 1 Overall best network of model for 
training data 

 
Best Network Training
Epoch # 19983
Minimum MSE 0.000999882
Final MSE 0.000999882  

Table 2 Overall performance of model for training data
Performance LNNO/10(t) O3/100(t)
MSE 0.000235 0.000870
NMSE 0.024146 0.011667
MAE 0.011150 0.021608
Min Abs Error 0.000022 0.000021
Max Abs Error 0.099666 0.130791
r2 0.975880 0.988345
Percent Correct 99.21466 97.75281



  

Figure 2. Actual and Predicted NO  
for training data 

 
Figure 3 Actual and Predicted O3 for training data 
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Figure 4 Sensitivity of the mean of training data 

 
After the training stage, to obtain the model performance, we simulate testing data. For testing data 

for the output parameter NO, the R2 is 0,6657 and the percent correct to measured data around 91,0448 %. 
For parameter O3, the R2 is 0,8056 and the percent correct to measured data around 88,0952 %. The 
estimation results shows in table 3 and table 4. Based on the sensitivity analysis of mean value of input 
parameter to output parameters, we got several results: 
a. The most sensitive input parameter for NO output variable at time (t) is concentration of NO at time 

(t-1) follows by ambient temperature (T) at time (t-1) and concentration of CO at time (t).  
b. The most sensitive input parameter for O3 output variable at time (t) is concentration of NO2 at time 

(t-1) follows by ambient NO at time (t-1), concentration of O3 at time (t-1) and PM10 at time (t)  
All above information shown in figures 5,6, and 7 

Table 3 Overall best network of model for testing 
data 

Output / Desired LNNO/10(t) O3/100(t)
LNNO/10(t) 122 5
O3/100(t) 12 37  
 

Table 4 Overall performance of model 
for testing data 

Performance LNNO/10(t) O3/100(t)
MSE 0.002388492 0.014450819
NMSE 0.376405861 0.23335301
MAE 0.03590879 0.083554292
Min Abs Error 5.20475E-05 0.000832212
Max Abs Error 0.207691896 0.450451075
R2 0.665723116 0.805615744
Percent Correct 91.04477692 88.09523773

Figure 2. Actual and Predicted NO  
for testing data 

Figure 3 Actual and Predicted O3 for testing data 
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Figure 4 Sensitivity of the mean of testing data 

 
6. CONCLUSION 

Using data collected from roadside monitoring stations in Jakarta city, we confirmed the 
effectiveness of the proposed prediction of ozone concentration by ANN model. By the model, we found 
that there are several factors which sensitive to affects to the ozone concentrations.    
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