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1. Introduction 
 

Congestion pricing has been widely recognized as an effective means for reducing traffic congestion in 
urban areas. Theoretical researches have been extensively conducted on how to design optimal congestion 
pricing policies in transport networks. In particular, marginal cost pricing is considered as the best pricing 
scheme that optimizes certain welfare functions defined in transport network models. Various second best 
pricing schemes, including Cordon pricing, area pricing, have been designed when the marginal cost pricing 
can not be implemented due to practical and technical restrictions. However, most theoretical results are 
based on pure transport network models, and may fail to be optimal in a framework that takes into account 
the interaction between transport and other related activities. Most recently, there is a strong concern 
regarding what may be the best pricing principles from social economic point of view, see Rothengatter 
(2003) and Nash (2003), because theoretically sound and practically realizable pricing principles are 
indispensable for making national and international transport pricing policies. To address the problem of 
optimality of pricing principles, the ideal is  to work on a mathematical model that considers most of the 
important factors related to transport. We believe that working on integrated location/transport models may 
serve as a first step toward this ideal.  

The researches of urban economists on congestion pricing problems do consider location problems in their 
models, where the transport network structure is usually simplified in order to obtain analytical conclusions 
(see, e.g., Fujita, 1989). On the other hand, researches on computational methods for solving optimal design 
problems in integrated location/transport models have been conducted, but without rigorous mathematical 
algorithms for dealing with congestible transport networks (see Coelho and Williams, 1978; Boyce and 
Mattsson, 1999).  

In this paper we propose a sensitivity analysis based algorithm for solving the optimal pricing problems in 
an integrated location/transport model. Although this algorithm is developed for a particular model, it 
illustrates a general principle of optimization in FOR general integrated location/transport models.  
 
2. An integrated location/transport model 
 

A transport network is represented by a directed graph which consists of a set of links { },...,baA = , and a set 

of nodes { },..., srN = . Let W  denote the set of OD (origin destination) pairs. Let rsq be the volume of 

travel demand for OD pair rs W∈ .  Let rsR  be the set of paths connecting r  and s , rs W∈ . Let 

( ),ax a A= ∈x  denote the vector of link flows. Link travel time on link a  is assumed to be a function of 

ax : ( ),  a a at t x a A= ∈ . The travel time of path k  from r  to s is written as ,
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The expected minimum cost (disutility) rsS  for a trip from  r  to s  is given by  
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In the following a model consisting of employment and residential zones is considered. Let EZ  be the set 
of employment zones,  RZ  the set of residential zones. It is assumed that each household has one worker 
commuting from a residential zone r  to an employment zone s . Let sD  be the fixed number of 
employment in zone Es Z∈ . Travel demand rsq  from zone r  to zone s  is equal to the number of 
people choosing residence in zone Rr Z∈  and working in zone s . Assume  R EW Z Z= × , where W is 
the set of OD pairs.  

Let ( )
R

r rss Z
y nq

∈
=∑  denote the population in zone Rr Z∈ , where n  is a constant coefficient 

indicating the average number of residents per commuting worker; in the rest we assume 1n = . Assume 
that the cost for locating in zone r  is a function ( )r r rc c y= . The disutility of locating in r  and working 
in s  is given by rs rS c+ . Assume that this disutility is perceived with an i.i.d. Gumbel random error of 
scale 1 α . Then the travel demands are functions given as follows 
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The aggregate utility of workers in employment zone s  is (see Williams, 1977). 
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The traffic flows and location population are in an equilibrium state if the following equations are satisfied 
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For later use, rewrite the equations in the following symbolic form 
( ; ) 0,
( ; ) 0,
y   
x   
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where ( ), ( , ) ( ( ))x  y   y, x  S S Q Q S Q S= = = .  
 
3. Optimal pricing problem 
 

Suppose that a toll aT  is imposed on traffic link a A∈ , and a tax (or subsidy) rL  is imposed on 
location Rr Z∈ . Then the total social welfare can be defined as the sum of the residents’ total utility and the 
total taxes collected  

E R
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Denote (x, y, , )=

R
a a r ra A r Z

f T L SW U x T y L
∈ ∈

= + +∑ ∑ as the objective function to be optimized.  

The optimal pricing scheme design problem can be formulated as follows. 
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{ } { }, , ,  a T r R LT T a A L L r Z= ∈ ∈Ω = ∈ ∈Ω , 

where TΩ  and LΩ  are feasible ranges for traffic link tolls and location taxes, respectively. If the gradient 
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 of  f  with respect to the price variables is 

known, then existing mathematical programming algorithms can be applied to solve the optimization 

problem. This amounts to computing the following vector of partial derivatives , , ,x y x y
T T L L
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vector can be solved for by the following equations.  
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The cofficients of the above equations can be divided into two parts,  
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The first part can be calculated solely from the location equilibrium equations, for fixed transport costs; and 
the second part can be calculated solely from the traffic network equilibrium equations, for fixed transport 
demands (Ying and Miyagi, 2001). 
 
4. A numerical example.  
 
As shown in Figure 1, the network in question consists of seven residential zones (1,…,7) and two 
employment zones (8,9). The employment are given as 8 9 500D D= = . The location cost functions are 

assumed to have the form Rrrrrr ZrMybcc ∈−+=  ,)( 2
0 , where rM  is intended to be the optimal 

population for location r . The parameters for the cost functions are given in Table 1.  
 
 
 
 
 
 
 
 
 
 
 
 

Link travel time function is assumed to be of the BPR form ( )( )4
0 1a a a a at c b x Cap= + . These 

coefficients are assumed to be 0 10, 100, 0.15a a ac  Cap  b= = = , for all { }a A= 1,2,...,14∈ . The random 
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Figure 1. Location Sites and  
Transport network.  Table 1. Coefficients for Location Cost Functions. 

 
zone 1 2 3 4 5 6 7

 100 100 100 200 100 100 100

 0.002 0.002 0.002 0.001 0.002 0.002 0.002

 20 20 20 20 40 40 40rM

0rc
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error scale parameters in route and location choices are assumed to be 0.5θ =  and 0.1α = , respectively.  
Computations were carried out for the following cases.  

• NoPolicy: No location taxes (subsidies), no tolls (residents incur average costs) 
• MCPLT: MCP on both location and transport (residents incur marginal costs) 
• MCPT: MCP on transport 
• MCPL: MCP on location 
• OptLT: Both location taxes (or subsidies) and tolls (negative tolls are forbidden) are    

designed based on optimization method 
• OptT: Tolls are designed based on optimization method 
• OptL: Location taxes (or subsidies) are designed based on optimization method  

 
Table 2. Social Welfare, Travel Time, and Travel Disutility, for Various Pricing Schemes. 

  NoPolicy MCPLT OptLT MCPT OptT MCPL OptL

-SW 39415.1 35842.7 
(-9.1%) 

35842.7
(-9.1%)

36388.5
(-7.7%)

36197.1
(-8.2%)

36029.5 
(-8.6%) 

35957.1
(-8.8%)

Travel 
Time 26928.1 25080.2 

(-6.9%) 
25086
(-6.8%

24691.7
(-8.3%)

24604.3
(-8.6%)

25497.1 
(-5.3%) 

25390.2
(-5.7%)

Travel 
Disutility 26899.3 71714 

(+166.6%) 
28922.7
(+7.5%)

71643.4
(+166.3%)

36103.2
(+34.2%)

25473.7 
(-5.3%) 

25368.2
(-5.7%)

 
From these results of the hypothetical example, it can be observed that: 
(1) Social welfare optimum can be achieved by MCP rules or by optimization methods applied to both 

transport and location. 
(2) Among pricing schemes restricted to transport network, MCP is not the best one, the best can be 

obtained by optimization methods. 
(3) Location taxes or subsidies may be used to reduce travel time and to improve total social welfare. 
(4) Travel disutility may be worsened by imposing tolls. Optimization method may provide more flexibility 

for deciding the levels of tolls.  
 
5. Concluding remarks 
 

An important step toward practical application of the proposed method is the implementation of the 
proposed method for optimal pricing scheme design in established integrated location/ transport models. And, 
public transit has not been considered in the paper, for practical application we need to include public transit 
system as alternative transport mode. All these topics remain to be studied in the future. 
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