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1. Introduction 
Application of soft computing techniques to transportation research has become very popular since the 70s, which 
formed a new category of travel behavior models sometimes called hybrid models. These models include neural 
networks, fuzzy logic and Genetic Algorithms (GA), and statistical methods. Hybrid models have been suggested for 
solving transportation problems in an attempt to explore the advantages of both methods, and here promising results 
have been found 1) 2). These techniques have been applied to various modeling problems such as: bicycle route choice 
behavior 3); modal choice model’s parameters and linguistic values estimation4); estimating household members’ 
transport modal choices5). However, these studies require complex decision structures and large computational 
processing for simulation. This limits the extent to which hybrid models can be applied in transport studies where there 
is a lack of time and resources. 
 
This paper presents a hybrid transport modal choice model in which the genetic algorithm is applied for estimating 
parameters of a Multinomial Logit Model. The model has a simple decision structure which requires relatively modest 
computational capabilities and time to be estimated. Linear Utility Functions are defined for the transport modes which 
are included in the model structure as the fitness function. The objective function seeks to reduce the errors in the modal 
choice process. Moreover, the hybrid model incorporates distance as a spatial attribute variable for explaining 
commuters’ modal choices among automobile, bus, bicycle and walk modes. After this introduction section, a brief 
review on GA’s is presented. Section 3 introduces the Hybrid Transport Modal Choice Model structure, which is 
followed by the modeling results. Finally, Section 5 discusses this work’s findings and makes recommendations to 
further research. 
 
2. Genetic Algorithms 
Genetic Algorithms were initially suggested during the 70s6) as search technique used for approximating solutions in 
optimization problems. The GA’s are based on the evolution theory which considers that, in competitive scenarios, 
individuals with favorable traits are more likely to survive and reproduce as a result of the Natural Selection process7). 
These algorithms are defined by three basic rules, in which the first is the Crossover, used for combining information 
from two or more individuals; the second is the Mutation, which generates new solutions from the current population, 
therefore allowing the exploration of new regions of the Search Space; and the third is the Selection of the fittest 
individuals, a process that ensures the continuing improvement of the candidate solutions 8). Presently, GA’s are widely 
used in solving problems on decision making, classification, and complex numerical optimization4), among other 
applications. In this context, it seems to be an adequate tool for use in transportation problems. 
 
Amongst genetic algorithms, Real-Coded Genetic Algorithm (RCGA) is specifically applied to parameter estimation. 
The RCGA adopts a real coding of the optimization parameters. It includes a process called Real Biased Crossover, 
which produces two new individuals from their ancestors, where one of them is more similar to its “best” ancestor, i.e. 
the one presenting better value for the objective function8). This process ensures that there will be better individuals in 
the new generation, which does not happen for the so-called Simple Genetic Algorithm (SGA) in its basic form7). Table 
1 summarizes the characteristics of the RCGA and its procedures. 
 
3. Hybrid Transport Modal Choice Model Structure 
The model employs the GA technique to conduct the modeling of the transport modal choice. In this model, GA’s main 
objective is to iteratively improve an initially random set of individuals9), which is formed by the choice among the 
automobile, bus, bicycle and walk modes. The procedures adopted for this search are the crossover among the selected 
good modal choices, and their further random mutation. In a constant-size population, only those individuals with high 
fitness are selected, whereas incorrectly predicted choices are dropped from the initial population. GA is able to find 
nearoptimal solutions for the investigated problem after a sufficient number of iterative applications of these two 
instruments 10). 
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Table 1: RCGA characteristics and procedures 
Characteristics Procedures 

• Each parameter is described 
by a real number. 

• A valid interval is defined for 
parameter values. 

• N random vectors are 
generated in the first stage of 
the algorithm. 

• The algorithm ends either by 
an imposed condition or by 
reaching the determined 
number of generation. 

• Crossover: the population is divided in two parts, and the possibility of Biased 
crossover is verified (Probability of crossover equal to 0.8, with 50% of the 
crossings being biased ones). 
• Mutation: the possibility of mutation for each individual is verified (Probability 

of mutation equal to 0.05). 
• Evaluation: each individual is evaluated according to the objective function. 
• Adjust Function or Fitness Function: the objective function is introduced in the 

adjusted function. 
• Selection: N individuals are selected from the original population. 
• Enrichment: if the best individual was not selected for the new population, then it 

takes place of any element randomly. 
 
(1) Model Input 
The model input is composed by characteristics of the transport network and characteristics of a set of investigated 
commuters. The data used in this study was obtained from a data survey carried out in Christchurch, New Zealand. In 
this survey students and staff of the Canterbury University were targeted. Initially, several attribute variables obtained 
from the survey were analyzed so as to identify those which could be the most appropriate to model adequately the 
modal choices. This analysis was based on the extensively published literature about travel behavior models. Finally, 
travel time (TT), distance from household to the university (D), availability of parking place inside the university 
campus (P), availability of bus service (BS), and bicycle ownership (BO) were defined as the input attribute variables to 
the model. The distance between household and university was included in the model as a spatial variable, in an attempt 
of explaining the choices between motorized modes (automobile and bus) and non-motorized modes (bicycle and walk). 
 
(2) Utility Functions 
The fitness U is assumed as the linear modal Utility Functions. The fitness function quantifies the optimality of a 
solution or chromosome in a GA10).In this study, the fitness functions were formulated as follows: 
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where Uan, Ubn, Ubcn and Uwn are the utilities of decision maker n for transport modes of automobile, bus, bicycle and 
walk, respectively; β’a, β’b, β’bc and β’w are the parameters for alternative-specific constants for modes; βTTa, βTTb, βTTbc, 
βTTw, βDa, βDb,βDbc, βDw, βPa, βBSb and βBObc are parameters for the measurable attribute variables of travel time, travel 
distance, parking at university, availability of bus service and bicycle ownership, specific to transport mode. 
 
(3) Objective Function 
The objective function to be minimized by the GA, with respect to βTTa, βTTb, βTTbc, βTTw, βDa, βDb,βDbc, βDw, βPa, βBSb and 
βBObc, is the error E function, that is, the percent of wrong answers in the model estimation. The function E was 
formulated as: 
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where N is the number of investigated samples (200 input-output data pairs were used during the training process); and 
en is the individual error (en = 0, if model output is equal to observed choice; and en = 1, otherwise). 
 
(4) Characteristics of the RCGA 
The conditions imposed to the real-coded genetic algorithm are summarized in Table 2. 
 

Table 2: Calculation Conditions for the RCGA 
Condition Value 

Population size 50 
Number of function calls 10000 
Mutation rate 0.05 
Crossover rate 0.80 



 
(5) Model Estimation Probabilities 
Multinomial Logit structure was applied for estimating choice probabilities. By following this structure, the probability 
of individual n selecting mode i from the choice set Cn can be written by Equation 3. 
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4. Results 
The performance of the RCGA was initially measured by analyzing the average error across modal choices as shown in 
Figure 1. The performance analysis shows good behavior of the algorithm. Modal choices Error is equal to 27.5 percent 
in the initial iteration and reaches the minimum value of 16 percent after 4500 iterations, remaining constant after this 
point. The RCGA estimation parameters are summarized in Table 3, where all parameters have expected signs. The 
attribute variable distance is positive for motorized modes, whereas it is negative for non-motorized modes. This is in 
accordance with the survey results. 
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Table 3: Parameter Estimation by the RCGA 

Mode β’i βTTi βDi βP βBS βBO 
Auto -0.4702 -0.7132 0.0501 1.2665   
Bus -5.9262 -0.5900 0.0747  2.2185  
Bicycle -1.1951 -0.8560 -0.0593   2.3146 
Walk -0.8575 -0.5100 -0.1457    

 
A sensitivity analysis was performed so as to verify the influence of household distance to the working place in the 
modal choices (Figure 2). We focused on travelers’ behavior regarding motorized modes and non-motorized modes. As 
expected, the probability of selecting both automobile and bus increase with the distance. Additionally, it was observed 
that there is almost no variation on the probability of selecting bus mode up to a 20 Km distance. Figure 2 shows the 
probability of walking to the working place is very much influenced by the household distance. On the other hand, 
slight variation was observed in the probabilities of selecting bicycle mode, which might reflect that cycling does not 
compete directly with the other three modes. These sensitivity analysis results seem to reflect correctly the investigated 
scenario. 

Figure 1: Evolution of Error by Iterations 
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Figure 2: Travelers’ Sensitivity to the Household Distance 
 
5. Discussion and Further Work 
The Real-Coded Genetic Algorithm was used for estimating parameters to be used in a Multinomial Logit modeling 
framework. The fitness function was composed by linear utility functions of transport modes. The objective function 
was formulated so as to minimize the error across choices. The model displayed good performance by presenting a 
reasonable evolution of the error function across iterations and a final sixteen percent error in the simulation of modal 
choices in the validation data set. Additionally, the parameters presented appropriate signs. For example, the positive 
sign of the attribute variable availability of bus service (BS), suggests that improvements on the bus level of service 
would increase its use among commuters. Moreover, the sensitivity analysis suggests that the model is able to capture 
correctly variations in the characteristics of investigated travelers. 
 
The modest data set and computational capability required for developing the model seem to be advantageous 
characteristics of the hybrid model. However, the simplicity of the model might result in losing accuracy. In this context, 
further investigation should be conducted. Testing other variables in the model could increase model reliability. 
Moreover, Maximum Likelihood could be used for parameter estimation. Additionally, Multinomial logit model with 
GA-base parameters could be compared with other simulation techniques in order to verify its accuracy. Finally, the 
model could be tested for different discrete choice problems. 
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