プローブカー調査車両の種別と搭載機器の違いによるデータ特性に関する考察*

Variation of Floating-Car-Data Characteristics: Different Vehicle Types and In-Vehicle Systems*

高橋尚人**・宗広一徳**・浅野基樹**

By Naoto TAKAHASHI** • Kazunori MUNEHIRO** • Motoki ASANO**

1. はじめに

近年、プローブカーを活用した各種旅行速度調査が実施されている。プローブカーとしては、タクシーと路線バス等が用いられているが、タクシーと路線バスでは走行特性などが異なり、調査結果にもその特徴が現れると考えられる。札幌市域においては、札幌市内を走行するタクシーの運行管理・改善用の走行データ(GPSデータ)を活用したプローブカー調査、路線バスに GPS 機器を設置したプローブカー調査の両方を行っており、本稿では、同一路線を同一年月日・同一時間帯に走行した調査結果を基に両調査手法の特徴を比較・分析した内容について報告する。また、両調査手法では搭載しているGPS機器も違うため、上空遮蔽物の有無によって位置情報の取得精度も異なり、その傾向について分析した結果を紹介する。

2. プローブ調査の概要

札幌市域では、札幌市内を走行するタクシーの運行管理・改善用の走行データ(GPSデータ)を活用したプローブカー調査、路線バスに GPS機器を搭載したプローブカー調査の両方を行っている。

タクシープローブについては、タクシーの走行データを運行管理・改善に活用しているタクシー会社の協力により、タクシー115台、一日あたり約6万kmに及ぶ走行データ(GPSデータ)をプローブカーデータとして二次的に利用している。当研究所では、札幌市域における、主に冬期交通特性把握を目的として活用している $^{1)}$ 。両調査手法では、データ収集装置や走行特性が異なっている(表-1)。

*キーワーズ:プローブ、 データ特性

**正員、独立行政法人北海道開発土木研究所 道路部交通研究室

(札幌市豊平区平岸1条3丁目1番34号、TEL.011-841-1738、FAX.011-841-9747)

3. データ特性に関する調査概要

両プローブ調査手法によって同一路線を同一年月日・同一時間帯に走行した調査結果を基に、搭載機器の違いによる位置データ取得精度と走行特性について比較・分析を行った。

なお、タクシープローブ調査では、予め調査日時、 路線、方向を定めて交通の流れに乗って走行する調 査(指定走行調査)を実施している。指定走行調査 とバスプローブ調査を実施した条件が合致する日時 等から、以下のように調査対象路線等を選定した。

図-1 調査対象路線図

・調査対象路線:一般国道 230 号

一般国道 230 号はバス路線であり、中心部、郊外、 山地部、と沿道や地形の状況が変化に富んでいるこ とから当該路線を選定した。

・調査対象区間:センサス²⁾区間 1024(市中心部) ~1033(郊外)

バス路線は、札幌市中心部(センサス区間 1024、1025)において一般国道 230 号と異なっている。そこで、札幌市中心部における位置データ取得精度の比較は図-2に示す区間で行った。

走行特性の比較については、路線バスが一般国道 230 号を走行するセンサス区間 $1026 \sim 1033$ を対象 とすることとした。

表-1 プローブ調査手法の概要

		バスプローブ	タクシープローブ
収集装置	データ収集機器	GPSアンテナ+PDA	業務用カーナビ+メモリカードユニット
	記憶装置	コンパクトフラッシュ	コンパクトフラッシュ
	データ更新周期	1秒	5秒
	緯度経度の有効桁	0.1秒	0.01秒
	GPSアンテナ	車内設置	車外設置
	装置によるデータ取 得の傾向性	①GPS衛星の受信状態が良いところは、道路上に座標があるが、受信状況の悪い札幌中心部、高架下や山間部等の上空が開けていない地域では、位置が分らなくなる。 ②サンプリング周期が短いので、区間内での速度変化がより分りやすい。	①GPSデータが取得できない場合、カーナビにより、ジャイロと車速パルスから位置を算出しており、マップマッチングされている為、走行経路の再現性は高い。 ②サンプリング周期が長いので、速度が極端に速い場合、区間内での速度変化が分らなくなる場合がある。
収集条件	収集時期	バス運行時期	年中無休
	収集時刻	午前6:30 ~ 午後9:30	24時間
	収集車両台数	79台	115台
車両走行 特性	車両走行特性によるデータ取得の傾向性	①決まったバス路線を時刻表に合わせて走行するため、ある路線のデータを定期的に収集することができる。 ②大型車であるため、普通車より加減速に時間を要する。	①時間帯、場所、路線のデータを広く収集することができる(特に、都心部データ)。 ②乗客の多い路線を走行する。 ③ガス車ではあるが、普通車に近い加速性能を有する。
	バスレーンの走行	バスレーンを走行可能	乗客を乗せている場合のみ、バスレーンを走行 可能
	速度に対する影響・早くなる方向	バスレーンがある場合、通常車両より優先して走れる。	①渋滞する道路を避けて走る。 ②先の先の信号のタイミングも見て走る。 ③一般の運転者より、道路状況を良く知ってい る。
	速度に対する影響・遅くなる方向	①乗客の乗降者(人数によってはかなり時間を 要する) ②時刻表より早く走らない。	①乗客の乗降者(バスよりは短い) ②タクシー乗り場での停車



図-2 一般国道 230 号及びバス路線(中心部)

•調査対象日時:

上り(中心部)方向:平成15年10月16日8時 下り (郊外) 方向: 平成 15年 10月 23日 18時 道路交通センサスの旅行速度(混雑時旅行速度) とも比較するため、10月の平日で朝夕ピーク時間帯 に混雑する方向に走行した日時を選定した。

4. 位置データ取得精度に関する調査結果

(1) 誤差の算出方法

GPS で取得される位置データの誤差は、真値(実 際の位置) と GPS 測定値の距離を求めることで算 出される(図-3左)。しかし、プローブカー位置の 真値は不明なため、本稿では GPS の測定値と道路 との最短距離を算出し、それを誤差とすることとし た (図-3右)。

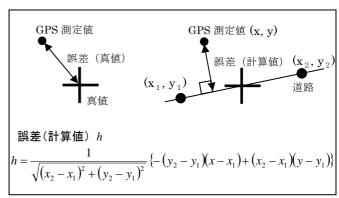


図-3 誤差の算出方法

(2)集計結果

①センサス区間 1033~1026 (山地~郊外部)

GPS 測定値と道路との最短距離を 1m 単位で集計し、表-2に示す。平均の誤差距離はタクシープローブが 4.3m、バスプローブが 5.4m とタクシープローブの方が位置データの取得精度が高いが、両調査手法とも十分な位置のデータ取得精度が得られていると考えられる。

衣	— Z =	只左渂釵	万个衣	(化) 代 巾	<u> </u>	
道路と	タクシープローブ		バスプローブ			
GPS測定 値の距離 (m)	データ数	相対度数 [%]	相対累積 度数[%]	データ数	相対度数 [%]	相対累積 度数[%]
0~	209	21.1	21.1	656	10.5	10.5
1~	191	19.3	40.4	776	12.5	23.0
2~	124	12.5	52.9	681	10.9	33.9
3∼	105	10.6	63.5	613	9.8	43.8
4~	71	7.2	70.7	509	8.2	52.0
5 ~	51	5.2	75.9	537	8.6	60.6
6 ~	53	5.4	81.2	492	7.9	68.5
7~	48	4.8	86.1	449	7.2	75.7
8~	28	2.8	88.9	225	3.6	79.3
9~	24	2.4	91.3	231	3.7	83.0
10~	12	1.2	92.5	221	3.6	86.6
11~	11	1.1	93.6	132	2.1	88.7
12~	7	0.7	94.3	164	2.6	91.4
13~	5	0.5	94.8	105	1.7	93.0
14~	4	0.4	95.3	64	1.0	94.1
15~	1	0.1	95.4	60	1.0	95.0
16~	4	0.4	95.8	38	0.6	95.6
17~	7	0.7	96.5	42	0.7	96.3
18~	5	0.5	97.0	34	0.5	96.9
19~	3	0.3	97.3	118	1.9	98.8
20~	27	2.7	100	77	1.2	100
計	990			6224		

②センサス区間 1025~1024 (札幌市中心部)

札幌市中心部では、朝夕ともにバスプローブの位置データが上手く取得できなかった(図-4)。これは、高層建築物等によって上空が遮蔽され、GPS衛星の捕捉が困難になったためと考えられる。

他方、タクシープローブの搭載機器はカーナビゲーションによって位置データを補正するため、郊外部に比べると誤差は大きくなるものの、誤差は最大20m以内となっている。

平均の誤差距離はタクシープローブが 6.8m、バスプローブでは 80.7m と大きな差が見られ、300m 以上バス路線から離れた GPS 測定値も見受けられた。(表-3)。

図-4 バスプローブデータ取得状況 (平成 15 年 10 月 16 日 8 時)

表一3 誤差度数分布表(札幌市中心部)

道路と	タクシー			バス		
GPS測定 値との距 離(m)	データ数	相対度数 [%]	相対累積 度数[%]	データ数	相対度数 [%]	相対累積 度数[%]
0~	96	64.4	64.4	506	27.3	27.3
10~	53	35.6	100	250	13.5	40.8
20~				452	24.4	65.2
40∼				53	2.9	68.1
60∼				17	0.9	69
80~				34	1.8	70.8
100~				39	2.1	72.9
120~				22	1.2	74.1
140~				16	0.9	75
160~				79	4.3	79.3
180~				94	5.1	84.4
200~				19	1	85.4
220~				57	3.1	88.5
240~				18	1	89.5
260~				31	1.7	91.2
280~				45	2.4	93.6
300∼				53	2.9	96.5
320~				35	1.9	98.4
340∼				11	0.6	99
360∼				15	0.8	99.8
380∼				9	0.5	100
計	149			1855		

5. 走行特性に関する調査結果

平成 15 年 10 月 16 日 8 時上り(中心部)方向の 旅行速度を図-5 に、平成 15 年 10 月 23 日 18 時下 り(郊外)方向の旅行速度を図-6 に示す。

朝夕ともに郊外に向かうほどタクシープローブ の旅行速度の方が高く、中心部に向かうほど両手法 で得られた旅行速度の差が小さくなる。

特に朝8時の調査結果では、その傾向が顕著であ

り、バスプローブの旅行速度の方が高い区間もある。 一般国道 230 号では、センサス区間 1026 から 1028 の区間で午前7時半から9時までバス専用レーンを 設定しており、バス専用レーンの設置効果の高さが 伺える。

次に、道路交通センサスの旅行速度と比較したところ、センサス区間 1026 から 1031 までは朝 8 時、中心部に向かう方向のタクシープローブ調査で得られた旅行速度と近似した結果が得られた。

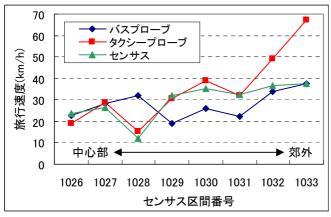


図-5 各調査手法による旅行速度の比較 (平成15年10月16日8時、中心部方向)

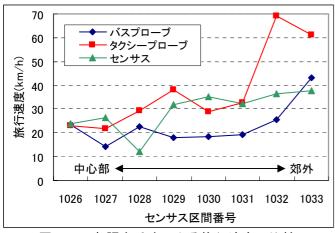


図-6 各調査手法による旅行速度の比較(平成15年10月23日18時、郊外部方向)

6. まとめと今後の課題

今回の調査結果から得られた両プローブ調査手法 の特徴は以下のとおり。

(1) 位置データ取得精度について

カーナビゲーションによって位置データを補正するタクシープローブ調査の搭載機器の方が位置データ取得精度は高い。特に、高層建築物などで上空が遮蔽されて GPS 衛星の捕捉が困難になる札幌市中心部ではタクシープローブで用いているカーナビ型

の搭載機器の方が優れている。

しかし、都市中心部や高架下など上空が遮蔽される区間以外では、位置データを補正する機能が無くとも十分な位置データ取得精度が確保できるため、 搭載機器のコスト面を含めて考えるとバスプローブの搭載機器の方が優位にあると考えられる。

(2) 走行特性について

都市中心部から遠ざかるほど、両プローブ調査手 法で得られる旅行速度の差は大きくなる。これは、 路線バスは時刻表に従って運行するが、タクシーは 車両の流れに乗って走行するためと考えられる。

バス専用レーンの設置区間においては、バスプローブの旅行速度の方が高くなる場合が見受けられた。 バス専用レーンの設置効果が高いことを示す一方、 バス専用レーン設置区間では旅行速度を実際よりも 高く評価する可能性があることを示唆している。

プローブ調査では、それぞれ搭載機器や調査車両 の走行特性に特徴があり、その特性を十分把握・認 識した上で道路交通調査に適用していくことが必要 と考えられる。

参考文献

- 1) 宗広一徳、高橋尚人、浅野基樹:タクシーGP Sデータを活用した札幌市における冬期道路交 通特性の把握、第29回土木計画学研究発表会・ 講演集
- 北海道開発局道路計画課:平成 11 年度全国道路交通情勢調査