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1. Introduction 
 

Most of models in transportation planning and analysis rely on the equation-based modeling. Agent-based approaches are 
still not as widely used as equation-based approaches. An agent-based model has the advantage of being validated at an 
individual level, since the behaviors encoded for each agent can be compared with local observations on the actual behavior of 
domain individuals. Understanding individual’s behavior is important especially in studying effects of transportation policies. 

Several works on route choice behavior by Nakayama et al.8)-9) are the examples of agent-based approaches in 
transportation modeling. Travelers are modeled to have bounded rationality, limited information and also capability to do 
cognitive learning. Klugl and Bazzan7) also studied route choice behavior by using a simple heuristic model. In travel mode 
choice, there are not so many works done by researchers. One of the inspiring works by Kitamura et al.6) is on travel mode 
choice by using a simple bi-modal transportation system and cellular automata.  

Our study focuses on commuters’ mode choice behavior. On the highway, all people have right of commuting by private 
car or public transport. As a common good, which is shared by people, a social dilemma1) situation may happen on the highway. 
Selfish behavior of people, who use cars based on their personal interest to minimize travel cost, creates traffic congestion, and 
furthermore increases travel cost for users both of car and public transit. By using a simple bi-modal transportation system, the 
social dilemma situation of travel mode choice is modeled. Travelers who use public transit, for example bus, are called as 
cooperative travelers, since they behave cooperatively for the sake of all people’s benefit. Car users are defective travelers 
since they consider only their personal interests.  

This study aims to provide an agent-based simulation model of travel mode choice in order to understand behavioral 
process of commuters on choosing travel mode. Interaction among travelers is one of factors that are predicted to influence 
choice behavior of travelers. A user equilibrium point may also be reached, but more important is the process to reach the point 
and the behavioral change of travelers during the process. By introducing evolutionary approaches into travelers’ learning 
process, the model is expected to gain an insight into the way of solving social dilemmas.  

 
2. Multiagent simulation model 
 

Travelers’ commuting behavior can be represented by 
behavior of autonomous agents in a simulation model. Agents 
behave based on behavioral mechanisms updated by an 
evolutionary approach. The model is also used to represent 
interactions among travelers and complex decision-making 
processes by travelers.  

Our model consists of two submodels (see Figure 1). In the 
traveler model, travelers decide mode based on the rules of 
expectations, which guide travelers on making decision. After 
all travelers decide the mode of commuting, then travel times 
are calculated in the transportation model. Generalized travel 
cost for each mode can be calculated and it returns to travelers 
as payoffs.  Payoff value of each traveler depends on the mode 
he has chosen. These decision making processes are iterated 
10 times for each generation. After that, there comes an 
evolutionary process to choose a type of expectations and to 
acquire adaptive behavior of travelers by means of simulating 
social learning mechanisms. 

 
(1) Transportation model 

A simple bi-modal transportation system, which comprises private car and bus as choices of commuting, is used as a 
transportation model. The two modes are assumed to be operated in the same lane so that there will be more interactions than if 
they are operated in exclusive lanes. This simple model is used in order to understand basic travel mode choice that represents 
social dilemma situation. 

All travelers own cars so that they can easily change modes and they only know the cost of mode they choose. Private car 
users are assumed to be solo drivers. For public transport, bus operating frequencies and fare are adjusted so that bus 
passengers can pay the full cost of operating buses. Equations and their parameters of generalized travel costs for car and bus 
are derived from the work of Kitamura et al.6) 

Figure 1: Multiagent simulation model 
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(2) Traveler model  
a) Decision making rules: expectations’ curve 

Behavior of a traveler is represented by an expectations curve, 
which shows traveler’ s belief about the influence of his action on 
others2). Two classes of beliefs were considered in the model: 
bandwagon expectations and opportunistic expectations5). For each type, 
there are three types of curve that represent agents’  level of expectations: pessimistic, normal and optimistic. In this paper, we 
deal with only the bandwagon expectations (see Figure 2). A probability of cooperating represents a degree of an individual’s  
beliefs about the influences of his action on others; and a criteria, which lies on 45 degree of straight line and the value is equal 
to the fraction of cooperation, represents a base of beliefs. 

Figure 3 shows decision making processes of a traveler. Initially, travelers are given a type of curve and a randomly chosen 
mode. Travelers make decision at an asynchronous time so that only 10% of them observe current level of cooperation and 
make a choice at the same time. Another 90% continue to use their current mode of commuting. Based on travel mode they 
chose, travelers receive payoffs and accumulate them. After 10 iterations, the accumulation of payoffs is used as the fitness of 
agents’  type of curve. 
b) Interaction among agents: group-based interaction 

A possibility of incorporating employer-based TDM measures to solve a social dilemma of travel mode choice is studied by 
introducing a group-based interaction, where a group represents employees of a company. We also need this grouping to make 
travelers interact each other in order to acquire adaptive behavior by local interactions. A traveler interacts with travelers of the 
same company he works in a torus plane so that eight neighbors around him influence his choice of behavior. Each group is 
independent from others so that there is no interaction among members of different companies. Assuming limited information, 
a traveler knows only his own payoff information and types of expectations curve of eight surrounding neighbors.  
c) Evolution of expectations by imitation 

We apply an imitation game based on social learning mechanism in order to evolve expectations’  curve of each traveler. 
Two kinds of mechanism are used: payoff-biased transmission and conformist transmission3). The relative strength of each 
transmission depends on the strength of conformist (α) in a traveler’s  psychology4). For each traveler, there are α probability to 
use conformist transmission and (1 – α) probability to use payoff-biased transmission.  

 
3. Simulation Results and Discussions 

 
A number of agents, exactly 4096, are assigned into 16 homogeneous groups with size 256. Each agent has a type of 

bandwagon expectations curve (pessimistic, normal or optimistic), which is assigned randomly giving the same proportion of 
agents for every type of expectations’ curve. We run a simulation with various initial levels of cooperation, ranging from 0.2 to 
0.8 with increment 0.1. The strength of conformist transmission (α) ranges from 0.0 to 0.4. Simulations are run up to 100 
generations with 10 iterations per generation.  
  
(1) Social learning mechanism by payoff-biased transmission (αα = 0.0) 

The simulation resulted in an equilibrium point for initial level of cooperation from 0.2 to 0.7 (see Figure 4). According to 
the cost functions defined before, the number of bus users at the equilibrium point should be at 1222 or equal to 30% of 
travelers. High initial level of cooperation (0.8) resulted in full level of cooperation (all travelers chose bus) because for all 
types of curve, the probability of cooperating at a fraction of 0.8 was higher than the criteria (see Figure 2), so that all travelers 
suddenly cooperated.  

Observing which kinds of type exist at the end of simulation, all three types of curve still exist as seen in Figure 5. 
Pessimistic type was chosen by the highest number of members, around 2500 travelers. Followed by normal type with around 
1000 members and the rest is optimistic type.  

 
(2) Dynamics within a group at αα = 0.0 

Dynamics of behavioral change within a group can be seen in Figure 6, which is taken from a simulation run with initial 
level of cooperation 0.5. The number of bus users is taken from the average value of 10 iterations in one generation. Within 
Group 1, all members finally chose car. Pessimistic behavior dominates the group with around 200 agents. Small numbers of 
normal and optimistic agents could not increase the level of cooperation and furthermore they chose defection. 
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Figure 3: Decision making of a traveler 
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The situations between Group 7 and 9 are quite different. Group 7 shows the role of optimistic agents to elicit cooperation, 
since they acted alone as altruist agents following the fall of normal agents. They could maintain the level of cooperation and 
increased to the maximum level, after some pessimistic agents changed type to optimistic one. Group 9 has a different pattern. 
Almost the same numbers of pessimistic and optimistic agents dominate early 30 generations and maintain level of cooperation 
as high as the initial point. After generation 40’s , the number of pessimistic agents increased and followed by decreasing level 
of cooperation. Although the cooperation level increased again during generation 60-80’s , it was not stable and decreased 
gradually since there were not many optimistic or normal agents who could stabilize it. 
 
(3) Combining payoff-biased transmission and conformist transmission (αα==0.1 - 0.4) 

The strength of conformist is represented by a value of α. High value means high probability of using conformist 
transmission for an agent. For α=0.1 and 0.2, the dynamics are only slightly different from α=0.0, so that we will focus on 
α=0.3 and 0.4 (see Figure 7). The dashed line is the user-equilibrium line. At α=0.3, conformist transmission could push the 
system to converge to a higher level of cooperation than the general equilibrium point for several cases only. But at α=0.4, 
higher level of cooperation could be reached for all initial levels of cooperation. 

Low initial level of cooperation (0.2) gave a quite different behavior, because in the beginning the cost of bus was lower 
than car, so that most of users preferred bus to car. The level of cooperation suddenly increased and the conformist 
transmission spread cooperative behavior to other travelers. If the strength of conformist were strong enough then cooperative 
behaviors could spread fast to make all group members cooperate and stabilize cooperation within the group, without giving 
payoff-biased transmission a chance to push the global cooperation to the equilibrium point. It can be seen that low initial level 
of cooperation 0.2 gave higher convergence value than initial level 0.3, 0.4, 0.5, and 0.6. 

Middle to high initial value of cooperation (0.4-0.7) had different processes. In that range, the higher the initial level, the 
higher is the convergence point. Let us focus on the case of α=0.4. In the beginning, cooperation increased suddenly because 
of the existence of optimistic agents who chose cooperation, since the initial fraction of cooperation was higher than the criteria 
of cooperation. They were followed by some normal agents who later also cooperated, after observing a certain level of 
cooperation which was higher than their criteria. Finally, payoff-biased transmission that has probability 0.6 (1-α), had pushed 
the cooperation level to lower state before the system converged. High initial level of cooperation (0.8) favored cooperation for 
all types of expectations so that full level of bus users was achieved. 

Figure 7: Dynamics of cooperation level (α= 0.3 and 0.4) 

Figure 5: Type of curves at the end of simulation 
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Figure 6: Dynamics of behaviors within a group (α = 0.0) 

Figure 4: Dynamics of cooperation level (α = 0.0) 



   
 

 
(4) Dynamics within a group at αα = 0.4 

Early dynamical processes within a group are complex and important to determine the succeeding processes and ending 
results of simulation (see Figure 8). Conformist transmission helped the spread of a type of expectations’  curve and later the 
group would become homogeneous with an only type of curve. In some groups, optimistic expectations may dominate. But in 
some other groups, pessimistic or normal expectations may also dominate. 

These results prove that the conformist transmission might be able to stabilize cooperation when it is strong enough 
compared with payoff-biased transmission. By using a complex process of interactions among agents, a combination of payoff-
biased and conformist transmissions, and also other emergent components, high level of cooperation can be achieved. 
 
4. Conclusion 
 

A simulation model of multiagent learning for commuters’ mode choice was built and applied to examining behavior of 
commuters. The same user equilibrium point as predicted by conventional analysis can be reached and stabilized, by 
interaction process among travelers and by behavioral-change process of each traveler. Outside the system, there is no central 
or external rule that organizes objective function of the system. The equilibrium is a result of self-organization and complex 
process among travelers. 

Based on the phenomenon within a group, it could be inferred that cooperation level is highly related to the existence of 
type of expectations within a group. Domination of pessimistic agents would make a group converges to all defection and the 
appearance of optimistic agents is very important to pioneer cooperation within a group. This also shows that the global 
behavior of all agents may make the system converge to the equilibrium point, although local behaviors within a group 
converge to their own convergent point. 

When the strength of conformist transmission is relatively high (0.4), once a type of expectations becomes common then it 
will quickly dominate and homogenize a group. Within a group, if optimistic agents were quite common and the conformist 
transmission were strong enough, then optimistic type would spread through all group members and the maximum level of 
cooperation could be achieved. The only chance for ‘cooperative type’,  like optimistic type, to spread is by dominating the 
group as fast as possible, without giving a chance for ‘selfish type’,  like pessimistic type, to spread with the help of payoff-
biased transmission. Once a type spreads widely enough then it will dominate the group. 

There are three conditions that produce cooperation as a possible outcome. The first is beliefs and expectations. This study 
assumes that travelers have bounded rationality since they do not directly choose mode based on payoff they receive, but based 
on the expectation of their actions to affect others. The second is limited information. Grouping among travelers, as a way to 
represent employer-based interactions, limits travelers’  knowledge about behaviors of other groups’  members. They can 
observe the behavior of all their close neighbors, instead of all group members. The third is the conformist transmission. When 
travelers do not feel economic rationality as a must, they should observe other kinds of learning process such as conformist 
transmission, which is formed as a motivation to copy majority behavior of a group. 
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