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A LITERATURE REVIEW FOR REAL-TIME ESTIMATION OF TRAFFIC STATES USING
PROBE VEHICLE DATA

Chumchoke NANTHAWICHIT', and Takashi NAKATSUJIP

1. INTRODUCTION

Reliability of traffic state variables such as speed,
flow, and density requires for the development of
efficient control strategies and management schemes for
traffic networks in advanced traffic management systems
(ATMS) and advanced traveler information systems
(ATIS). On-line traffic information can be used for
various purposes such as dynamic route guidance,
incident detection, freeway ramp metering control, and
control of variable message signs. Mathematical models
to describe the traffic conditions are the key to achieve
that information system since it is impossible to obtain
the traffic data for a whole network by mean of field
observation. In general, traffic management schemes or
route guidance system applications concern with the
large scale of network. Among three classes of
mathematical traffic flow models, which are microscopic,
mesoscopic, and macroscopic model, the macroscopic
models describing the traffic states in an aggregate
manner seems to be the most appropriate for real-time
applications because of their lowest degree of
computation and fastest simulation time. However, the
results from classical static macroscopic model seem to
be not sufficient for real time applications. Several
strategies were introduced to integrated into the
macroscopic models to use for the real-time traffic
prediction. Various techniques including adaptive
filtering techniques (such as artificial neural network
(ANN) [13, 18], and Kalman filtering (KFT) [13]) have
been used for this purpose.

Other than the typically observation techniques such
as loop detectors, and video image processing techniques,
traffic data can be obtained from moving vehicles, which
is equipped with transmission equipment. Recently,
many projects, as mentioned in [17], are working on
experiment of using probe vehicles to obtain the
real-time traffic data, including the ADVANCE project
in Chicago, the Pathfinder project on a freeway in Los
Angeles, the FAST-TRAC demonstration project in
Michigan, and the project in Sydney Australia. Probe
vehicles seems to be a good alternative for collecting
traffic data, especially the road where the small number
of detectors are installed.

The objectives of this paper are to review past
researches on macroscopic traffic model development,
and real-time traffic state estimation. With the intention
of improving the accuracy of traffic state prediction,
finally, the authors suggested an idea of using probe data
to estimate the traffic states in real-time.

2. MACROSCOPIC TRAFFIC FLOW MODEL
Various forms of macroscopic traffic flow models
have been proposed so far in order to improve the ability
to capture the real traffic situations. They may be
classified into broadly two types according to the number
of partial differential equations consisting in the models.

2.1 Simple Continuum Macroscopic Model (SCM)
Lighthill and Whitham [6] proposed the
macroscopic model by determining the vehicular
movements in traffic flow as analogous to the particle
movements in a fluid. Essential three relationships
contribute to the simple continuum model. The first is the
conservation of vehicles equation:
dp  9q 1
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where p is the traffic density, v is the space mean speed,
g is the traffic volume, g(x,¢ is the generation rate (e.g.,
ramp-in, ramp-out), and ¢ and x denote time and space.
The second relationship is the fundamental relationship
among traffic volume, speed, and density:
g=pv @)
The last equation is an empirical relationship between
speed and density at equilibrium condition:
v=v,(p) (3)
One of the general expressions of equilibrium
speed-density relationship is:
b
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where pj,, is the jam density, vris free-flow speed and a,
b are sensitivity factors which are positive numbers.
The significant feature of the SCM is the expression
of the shock waves in traffic flow as characteristic speed
in the model is the kinematic wave speed. However, the
model contains some inherent shortcomings as pointed
out by several researchers [3, 5, 7]. First, the kinematic
wave theory might show the shock wave speed changes
infinitely with steep speed jump. That means the SCM
produces discontinuous solution even when the initial
condition is smooth due to the fact that the convective
term in nonlinear conservation equation is dominate.
Next the model does not allow the fluctuations of speed
around equilibrium because speed is determined directly
from the statistical equilibrium speed-density
relationship. The speed is adjusted instantanously
without any delay. Furthermore, the model cannot
describe the amplification of small disturbances in heavy
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traffic. It does not describe unstable traffic flow of the
regular stop-start waves with amplitude-dependent
oscillation. It does not describe the traffic hysteresis
phenomena, i.e., the average headway of vehicles
approaching a jam are smaller than those of vehicles
leaving a jam.

2.2 High-order Continuum Model (HCM)

Payne [11] introduced a new relationship called the
momentum equation into the SCM in stead of the
equilibrium relationship. The momentum equation
derived from a car-following theory and Taylor’s
expansion defines the variation of space mean speed over

time as the following form:

L P,
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where 7 is the relaxation time, and v is anticipation
parameter. Three physical mechanisms can be implied
from Payne’ model. First, the convection term, the
second term in the left side, represents the propagation of
a speed difference. The relaxation term, the first term in
the right side, represents the adjustment of average speed
to the equilibrium speed. And the anticipation term, the
second term in the right side, reflects the adjustment of
the speed to foreseen traffic condition ahead.

Although Payne’s model provides an improvement
over the SCM, it still presents several defects. In high
density conditions the model may present unrealistic
high densities. One may rectify this problem by
explicitly imposing constraints on speed and density so
that their values do not grow unrealistically [9]. The
model provides too slow relaxation, which implies
unrealistic traffic behavior at abrupt changes in roadway
or traffic conditions [15]. Additionally, no consideration
on traffic friction caused by vehicle interactions is paid in
Payne’s model [9]. Later on, a variety of HCMs were
developed aiming to overcome the deficiencies of
Payne’s model.

Papageorgiou [10] added a new term, -dvg/p, into
Payne's momentum equation to account for the influence
of on- and off-ramp traffic, where 6 denotes the
parameter depending upon the layout of ramp (0 < S<1).
g stands for on- or off-ramp volume.

Ross [15] claimed that deficiencies in Payne’s model
arise from equilibrium relationships between speed and
density. As a result, he proposed a macroscopic model on
the assumption that traffic is incompressible at jam
density and without any speed-density relationship
contained in it. The momentum equations are:
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where v, denotes a free flow speed, which is independent
of density. In addition, capacity limit was added as
another constraint. Machilopoulos [9] criticized on the
physical interpretation, claiming that Ross’s model does
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not address the anticipation and friction effects of traffic
flow. As long as density is less than jam density, traffic
flow is always in acceleration. In addition, it was
observed that the model allows the entire queue moves at
the same time with the head of a standing queue.

Semivicous model proposed by [9] and viscous
model by [8] introduced a viscosity term describing
traffic friction due to interactions such as lane changing
at entrance and exit ramps. In addition, the models did
not employ an equilibrium speed-density relationship.
Consequently the momentum equation of the viscous
model reduced to

oV 8
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where A is the viscosity parameter. & and { are
dimensionless constants.

Unlike the SCM, the HCMs are able to explain an
amplification of small disturbances in heavy traffic,
allow fluctuations of speed around the equilibrium
values, and describe traffic hysteresis [7]. However, the
models still have some deficiencies; First, stimations
from HCM can result in negative speeds at the tail of
congested regions because they have a negative
characteristic speed [3, 7]. In addition, HCMs always
exhibit one characteristic speed greater than the
macroscopic flow velocity. This implies that future
condition of traffic flow could be affected by the
conditions behind (upstream), which is not realistic {3].
Recently, some models have been proposed to overcome
those deficiencies. One of those is the model by Liu [7],
which the momentum equation is:

—vp
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Furthermore, they propose the relaxation time as a
nonlinear function of density, i.e., relaxation time at a
low density should be greater than that at a high density.
Nevertheless, it was criticized that this model might
present other inconsistencies.

The HCMs reviewed above are the macroscopic
models derived from hydraulic theories. One can refer
those as the high-order Payne-type models. There is
another group of macroscopic models that originated
from mesoscopic considerations, i.e., the gas-kinetic
models. The gas-kinetic (Boltzmann-like) model, which
describes the dynamics of the velocity distribution
functions of vehicles in the traffic flow, was first
proposed by Prigogine and Hermann [14]. Unfortunately,
the gas-kinetic traffic models are not very suitable for
computer simulation because they contain a large
number of unknown parameters and model structures
that must be estimated from traffic observations along
with a large number of independent variables. It requires
more  complicated computation compared to
macroscopic models. Hence many researchers, such as
Phillips [12], and Helbing [4], have applied the concept
of gas-kinetic models to develop the macroscopic traffic
flow models. For instance, the model of Phillips



expresses the momentum equation as:

v v 1 9P adp (10)
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where P(p,v) is traffic pressure defined as the product of
density and the variance of traffic speed distribution.
This kind of models has a potential for development of
multilane or multi-class model. However, their
calculations are still very lengthy and rather difficult, and
complicated to estimate the parameters.

3. TRAFFIC STATE ESTIMATION

Classical methods to estimate traffic states are to use
mathematical models to describe the traffic variables.
Thus, the improvement of traffic flow models plays a
significant role for traffic state estimation. Other than the
choice of model form, the accuracy of traffic estimation
depends on the model calibration through an adjustment
of the model parameters according to the traffic pattern
and roadway geometry of a particular site. Moreover,
numerical scheme to solve the differential equations
(discretization) also has a significant effect on the
accuracy and efficiency of model, as illustrated in Lui [7],
Michalopoulos [9], Lyrintzis [8]. Accordingly, before
using any model, one should realize that the outcomes of
continuum model are very sensitive to the data and to the
numerical approximation used [3]. The models should be
carefully calibrated for a certain traffic condition.

To enhance the traffic state estimation, several
strategies have been introduced into this problem, such
as the use of neural network, KFT, etc. The examples of
this application are: Zhang [18] developed a
feed-forward ANN to emulate a high-order continuum
traffic flow model; Pourmoallem [13] integrated a ANN
into the macroscopic model combined with the KFT.

4. KALMAN FILTER TECHNI QUE (KFT)

KFT was introduced to traffic flow engineering as a
tool to improve traffic control and management
applications. Other than the estimation of traffic states, it
was used for estimation of travel time in Chen [1], and
parameter identification in Cremer [2], etc. KFT has a
potential for online traffic control systems because it can
estimate traffic states in real time based on a feedback
concept without any driver's behavior model. Moreover,
it is suitable for real-time digital implementation
because of its recursive algorithm. By applying the KFT
to a macroscopic traffic model, traffic states are
estimated by the macroscopic model and then adjusted
according to KFT algorithm. The adjustment of state
variables at a certain time increment is proportional to
the difference between real observation and model
prediction values of observation variables at the
previous time step.

To apply KFT with a macroscopic traffic flow
model for estimation of traffic states, traffic density and
space mean speed are considered to be the state variables,
where as traffic volumes and spot speeds are treated as
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obsevation variables. Thus the state variable vector, x(?),
and the observation variable vector, y(?) are:

x(t)z(pl’vl""pisvi!"'pn’vn)g)’ (11

Y{)= (G0 Worrrs € W (12)
where w is the time mean speed. n denotes the number of
segment, and m denotes the number of observation
points. To formulate KFT, Eq. 1 and a momentum
equation were treated as state equation, while the
observation equation consists of Eq. 2 and the presumed
relationship between spot speed and state variables. In
addition, the white noise errors were induced in both
macroscopic model formula and measurement process.
Thus, the state equation becomes as follow:

x(z+1) = fx{e )]+ Bule )+ £(%) (13)
The observation equation is,
yie)=glx(t)]+¢ &) (14)

where u(?) is the inflow volume from inflow links; B is
the coefficient matrix; £() and {(#) are noises vectors
representing the modeling errors and measurement errors,
respectively. Finally, the state and observation equations
are linearized around the nominal solution, 3(¢)using

Taylor’s expansion. The model becomes:

R(e+1)= Al )x )+ b(e)+ Bu(r)+ () (15)
¥ = Cle)xe)+d @)+ L) (16)
af af .

where  A()= — b{t) = f[i(t)]—x x(7)

ct)=25.  a)=gf(]-3E50)
() is the estimated state vector before observing new
data, y(?). x(;) is the updated vector after obtaining
actaul.observation variables, y(#). The state variables can
be adjusted according to the correction steps of KFT as:
(D 3() =£[z(e-1)]
(2) M{)=Al-D)PE-1)AT(r-1)+=
(3) Kl)= MO EhelME)cT()+ 2]
(@) §0)= olx0)}
(5) %e)=Xe)+K)lyl) -]l
(6) P(r)=M(t)-K(s)Cle)M{t)
(7)sett=t+1 , and then repeat the whole steps untill the
required simulation time step is reached. = and Z are
covariance matrices of £(z) and (t), respectively.

5. ACQUIREMENT OF TRAFFIC DATA

Traffic density and average speed are the preferable
measure of traffic flow for several reasons; they are the
variables that can be directly used in ramp control
algorithm. Formerly, section densities and speeds can be
obtained only through aerial photography, which is quite
cumbersome. Moreover, such a technique cannot be
employed in real time applications. Nowadays, the most
common mechanism for traffic data collection is the
traffic detector. Traffic detector data provide the
information of traffic volume directly, while traffic



density and average speed has to be interpreted from
percent occupancy and spot speed, respectively. The
shortcomings of traffic detector are that the error in
counting may occur occasionally, such as in case of the
vehicle has more than two axles. As the network is larger
the number of detectors required for efficient network
surveillance is increasing.

A new traffic data collection technique, namely
probe vehicle technique, attracts much attention recently.
Vehicles are used as the probes to experience the traffic
conditions which they traverse and transmit the traffic
information to a traffic information center [17]. The
procedure is performed as realtime manner.
Additionally, the data from the links that no detector
installed can be obtained. The probe vehicles can collect
several types of information. As in ADVANCE project,
the major information collected by probe vehicles are
link ID with lane used, link travel time, congested time,
and congested distance [16].

Several researchers studied about the application of
probe vehicles. Sen {16] used probe data to estimate
travel time for arterial road and determine the number of
suitable probe vehicles. They found that after a certain
number of probes , additional probes do not significantly
decrease the variance of estimate. Therefore, the high
level of probe deployment is not reasonably good quality,
as long as all important links are covered by at least a few
probes. Srinivasan [17] found that the number of probes
required depends on the measurement time interval (less
measurement period, require more probes), size of
network, and traffic condition. Chen [1} used KFT to
perform travel time prediction based on real time
information provided by probe vehicles.

6. CONCLUSION AND SUGGESTION FOR

FUTURE WORK

Traffic state estimation plays an important role in
traffic control and management strategies. Mathematical
models were continuously developed aiming to improve
the ability to describe real traffic situations. To suit with
the real-time applications, some additional algorithms,
such as KFT, and ANN, were integrated into the
macroscopic model.

Probe vehicle seems to be a valuable source of
real-time traffic information. Currently many projects
concern with assessing the feasibility of using probe
vehicles to collect real time traffic data for advanced
traffic management and information systems. However,
so far, the probe data are used mainly to estimate travel
time. There is no attempt to use that kind of information
to improve the estimation of traffic state (i.e.,speed, flow
and density). Consequently, future work of the authors
will be focus on using probe data to improve the traffic
state estimation. The travel times from probe data may be
converted to the speeds to use as additional observation
variables for the KFT with some adjustments in the
formulation. :
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