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SENSITIVITY OF MACROSCOPIC TRAFFIC FLOW SIMULATION MODEL PARAMETERS
Chumchoke NANTHAWICHIT', Takashi NAKATSUJF, and Yordphol TANABORIBOON®

1. INTRODUCTION

Macroscopic traffic flow models, which are able
to handle large size of freeway systems with the fast
simulation time, provide an economical and effective
way to evaluate alternatives of geometric design and
control strategy. Such models contain a set of parameters,
which have to be estimated according to real traffic data.
Since model parameters have significant effects on the
performance of the simulation, they have to be identified
carefully. In general, the identification procedure is
formulated as a parameter optimization problem, which
can be solved based on iterative comparison of model
estimates with real traffic variables. Various techniques
can be used for this purpose. However, the choice
primarily depends on the nature of the parameters: If
they are insensitive to traffic situation, a static approach
can be used. If they posses non-linearity, a random
search technique will be effective to reach the optimum
value. If they are sensitive to traffic condition, a dynamic
method should be adopted. This study focuses on the
comparison of those method concerning with the
parameter estimation of a particular macroscopic model.
Three methods were selected; Nonlinear Least Square
technique (NLT) as static one, Box technique (BCT) as
random search, and Kalman filtering technique (KFT) as
dynamic one.

2. MACROSCOPIC TRAFFIC FLOW MODEL
2.1 Macroscopic Model
Traffic variables for the macroscopic traffic flow
simulation model, which was first derived by Payne and
later modified by Cremer [1] are
pj(k) : density of segment j at time k
vi(k) : space mean speed of segment j at time k
gqj(k) : flow rate at a point of boundary between segment j
andj+I at time k
wj(k) : time mean speed at a point of boundary between
segment j and j+1 at time &
ri(k) : ramp entry flow rate of segment j at time &
sj(k) : ramp exit flow rate of segment j at time £

The first equation is the continuity equation that
describes how density varies with time:
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where Az is time increment, and AL, length of 7 section.
The second equation, which is so called the momentum,
defines the variation of space mean speed over time:
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where 7 = time constant,

k = density constant,

v = anticipation constant, and

ve = speed at equilibrium state.
The third equation is the fundamental relationship
among traffic volume, speed, and density:

qj(k)' a(vj(k)* pj(k))+ (1-‘1XVj.l(k)* Pju(k)) (3)
where a=weighting parameter ranging 0sa <1.
The parameters identified in this study are t, v, k, and o

2.2 Equilibrium Speed-Density Relationship

The second term on the right side of Eq. 2, which
is referred to as relaxation term, defines the relationship
between speed and density at equilibrium states. A
general expression proposed by May and Keller [4] was
adopted in this study as follow:
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where pjan is the jam density, v¢is free-flow speed and a,
b are sensitivity factors which are positive numbers. In
this study, the identification of these parameters was
treated as another problem and estimated separately from
the macroscopic parameters. The values of v; = 113 kph,
Piam = 160 vpk/lane, a = 1.46, and b = 6.03, were
accepted with 10 percent of significance level.
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2.3 Study Road Section

Traffic data in this study were collected from
outbound direction of the Second Stage Expressway of
Bangkok between Vichaiyut Hospital and Kasemrat
Hospital on Wednesday, December 3, 1998. The total
length of study area is about 6.0 Kilometers. The traffic
volume and spot speed at the entrance and the exit were
observed by video camera, whereas the ramp data were
observed manually. Two sets of data were collected
during both peak hour and off-peak (14:00 to 15:30 hrs
and 16:30 to 18:00hrs) to cover the traffic situations of
both peak and off-peak periods. As shown in Fig.1, the
road section with three lanes was divided into 9
subsections ranging from 300 meters to 800 meters.
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3. PARAMETER ESTIMATION TECHNIQUE
3.1 Nonlinear Least Square Method (NLT)

The objective function J was set as the error
between observed variables and model outputs:

J=2(}'q'(qi'éi)z*'yw'(w,-"{‘\’,-)z) (5)

To minimize the error aJ
ap,

must be satisfied, where g is the model parameter of

v, k, and ¢, and Y40 ¥, Ar€ the adjustment factors of both

volume and the speed errors. Normally, the reciprocals,
1/0.,2 and 1/orw2, are used. The objective function is
pnonlinear with respect to the model parameters.
Applying the Taylor Expansion to the objective function,
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i represents observation data at each time step and m, !
indicate the individual unknown parameters. Iterations
are repeated until the changes of unknown parameters
are small enough or no more improvement in the
correlation between model variables.

3.2 Box Complex Technique (BCT)

This method is a random search technique, which
has proven effective in solving problem with nonlinear
objective function subject to non-linear inequality
constraints. The procedure shouid tend to find the global
maximum due to the fact that the initial set of points is
randomly scattered throughout the feasible region [3].

Unlike NLT, Box Complex algorithm does not
require any derivatives. Even so, it is still not easy to
decide whether the global optimum is reached. It needs
to repeat the procedure while changing initial values.

3.3 Kalman Filter Technique (KFT)

KFT has a potential for future traffic control
systems because it can estimate traffic states in real time
based on a feedback concept without any driver's
behavior model. The parameter identification problem
can be integrated into state estimation problem [6] by
treating the parameters as another set of state variables in
the state equation. First, formulate Kalman filter, Egs. 1
and 2 were treated as state equations, while Eq. 3 as the
observation equation along with the following equation:

wi(k)'avj(k)"’(l_a)’/u(k) (10)
where parameter « is the same as Eq. 1. In addition, the
white noise errors were induced in both macroscopic
model formula and measurement process. Thus, the state
equation becomes as follow:

x(k +1) = £[x(k )]+ Tolk) (11)
For the observation equation,
ylk) = elx(k )+ wik) (12)
where X(k)"(pvvv PisViseooPrsVys TrV, K, O ) (13)
( ) (qo’wu’qmw (14)
o) = 0 )l L) (15)
pk)= (‘Po o ,wf,wtﬁ) (16)
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o(k) and g(k) are referred as to modeling etrors and

measurement errors, respectively. Finally linearize the
state and observation equation around the nominal
solution, %(k) using Taylor’s expansion.

%k +1)= 12k ]+ (x(k) %(k)+Tolk) (18
= Ak)x(k ) b{e)+ ol
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(k) is the estimated state vector before observing new
data, y(k). (k) is the updated vector after obtaining

actau]l measurement variables, y(k). ® and ¥ are the
error covariance matrix of state equations and of
observation equations, respectively.

4. CALIBRATION AND VALIDATION

To obtain reliable model parameters robust for
various traffic conditions, the parameters have to be
identified for extensive traffic situations. It is almost
impossible to obtain such data only from actual fields. It
requires vast efforts for data collection and compilation.
In this study, the traffic data were generated by
TRAF-FRESIM. The field data collected at the study

area during a time period were used as input for FRESIM.

The outflow volume, and spot speed at the exits were
used to calibrate the influential parameters of FRESIM.
The parameters calibrated are:
*  Free-flow speed: 112 kph
¢ Parameter for collision avoidance time period: 1
*  Minimum separation for generation of vehicles: 1.7
tenths of a second
After the parameters were justified for the traffic
data measured during another time period, extensive
traffic data were produced using FRESIM by changing
inflow volumes at entrances.

5. NUMERICAL EXPERIMENTS

Three cases are examined:

1) Case 1: Off-peak period: Similar to traffic data
observed during 14:10 to 14:30 hrs.

2) Case 2: Peak period: Similar to traffic data observed
during 16:40 to 17:00 hrs.

3) Case 3: Smooth traffic situation with inflow volume
between 4800 to 5200 vph.

The results by simulation runs of macroscopic model
with a certain parameter sets estimated by the three
techniques were compared with the real. As the statistics
to evaluate each method quantitatively, the objective
function J and root mean square of error (RMSE) of
speed and volume were calculated.

5.1 Comparison between NLS and BCT

In NLT, the model parameters were estimated with
changing the initial values randomly in 50 sets. 7 and v
were constrained in the range from 0 to 9999, x was from
0 to 200, and a was from 0 to 1, respectively. In BCT,
three sets of initial parameters shown in Tables 1 were
first applied. They are coming from Cremer [2],
Papageorgiou [5], and Cremer and May [1], respectively.
Furthermore, different numbers of complex points,
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which yielded 10, 25, and 50 sets of initial values, were
also examined. The estimated parameters for each case

are summarized in Tables 2.

TABLE 1 Initial Value for BCT

No. T v K
1 340 [ 216 | 200 | os0
2 720 | 20 | 400 | as0
3 204 1 239 | 400 [ 095
TABLE 2 Average Parameter Estimated by NLT and BCT
Case 1 Case 2 Case 3
asel
Technique NLT BCT NLT B_('IT NLT | BCT
() | MA1 | BIZ | 5I8AT | 2251 | 0% | 41953
v G’y | 15941 | 1953 | 156540 630.02 | 166208 740.00
x (vkp) 2000 | 173 | 200 ] 1509 | 2000 139
o 1000 | 0888 | 0961 [ 1.000 | 0963 0.989
J 6057 | 5550 | 15360 | 140.27 | 1399 10.13
RMSE, (vph)| 32323 | 31250 | 57207 | 5404 | 618 £6.27
RMSE, (kph)l 33 | 365 559 | A37T | 19 IRE

In NLT, different initial values often resulted in
absolutely different solutions for all three cases. In other
words, the parameters strongly depended on the initial
values. Furthermore, little improvement was gained even
if the program started with different initial values. This
seems to be because the objective function is nonlinear
and has a lot of extreme values. Due to the nature of NLT
based on derivatives, it is very difficult to escape from a
local minimum once entrapped.

As shown in Table 2, BCT produced better
estimates for all 3 indices, including objective function
(7), RMSE of volume and spot speed, than NLT in all
cases. The initial values had small effect on the final
solutions because BCT has such a mechanism that
generates a number of random points automatically with
avoiding a local minimum. Consequently, the method
successfully yielded the parameters that were
substantially different from the initial values. The
calculation process of BCT is much simpler than NLT
because it does not require any derivative and matrix
operations as NLT. In addition, Table 2 indicates that
BCT was effective in estimating the parameters for the
off-peak of Case 1 and smooth traffic state of Case 3.

However, the estimation is not successful in Case
2. Fig.2 shows the variation of traffic volume and spot
speed predicted by the macroscopic model with the
parameters by BCT for case 2. Although the estimated
speed and volume approximately follow observed one on
the average, the variation in the short term is still large.
As shown in the spot speed of Fig.2, there was a sudden
speed drop around 600 seconds. In other words, traffic
situations became congested after the time point. To treat
this phenomenon more precisely, the data set of Case 2
was divided into two parts; before and after the abrupt
change of speed. And then the parameters were
identified separately. Table 3 exhibits the parameters for
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each time period. With being aggregated for both periods,
the separation was effective in improving both the
objective function and the RMSE of spot speed.
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FIG. 2 Volume and Spot Speed Estimated by Optimum
Parameters Using BCT for Case 2

TABLE 3 Parameters before and after Speed Change

(Case2)
Period first 600 sec | last 600 sec | Aggegate
¢ (sec) 6374 ﬂ
v (km’/hr) 1901.7 34093
x (vkp) 2000 2000,
a L0 100
] 18.27 49.28 12759
RMSE, (vph) 521.53 568.30 54542
RMSE, (kph) 6.17 2.96 4.340

5.2 Kalman Filtering Technique

The results in the previous section suggest that the
parameter should be identified in accordance with traffic
situations. That is, the real time estimation of model
parameters may work well in the ultimate sense. The
KFT simuitaneously estimates model parameters as well
as traffic state variables in real time manner. The state
variables and model parameters are adjusted every time
step so that the difference between estimated and
observed measurement variables should be minimized.

Table 4 presents the value of objective function and
the RMSE for Case 2 using the KFT with the initial
values estimated by BCT, as shown in Table 2.
Unfortunately, KFT was not effective in improving any
indices. The deficiency may have arisen from some
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causes. First of all, it may be caused by the spatial
variation of the traffic situation, In this study, the
observation points are only at the entrance and the exit of
the road section with locating far away each other. The
traffic situations in the intermediate points were not
considered. Next, generally in KFT, the statistics of
noise variables have significant effect on the estimation
precision. In this study, arbitrary values were assigned to
them without the validation of actual data.

TABLE 4 Performance Indices for Both BCT and KFT

Parmees I | RMSE, | RMSE,
hialConditon 14023 | 5413 537
Opth zed byBoxCampkx)

Bstmaed byKaman ferng | 170.28 | 55849 | 631

6. CONCLUSIONS

The BCT was superior to the NLT in estimating
the macroscopic model parameters. It provided better
results and required less computation effort. The NLT
failed to estimate the parameters if appropriate initial
values were not given. The BCT provided further
improved outcomes for the transient situation by
identifying the parameters depending on the traffic
condition, The dynamic technique such as KFT should
be applied to this problem. Anyhow, the program in this
study has to be modified in its formulation:
Consideration should be made on what parameters
should be included into the state and observation
equations, how to adjust the error matrix, and how to deal
with the parameter constraints. And the traffic data from
intermediate  segments should be considered.
Furthermore, the mathematical relationship of the model
parameters with traffic condition, such as density, and
the relationship among model parameters should be
investigated.
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