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ESTIMATION OF TRAFFIC STATES OF AN UNBAN ROAD NETWORK USING
A KALMAN FILTERING TECHNIQUE
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1. INTRODUCTION

So far many simulation models are used to
estimate traffic states on an urban network. However,
most of them are feed-forward models, in other words,
they do not consider the potential errors and biases
between the estimated traffic conditions and the actual
traffic conditions measured by detectors. In Japan,
different from western countries, traffic detectors are
densely installed on arterial roads. Although the traffic
data measured by detectors reflect the change of traffic
situations immediately and exactly, very few traffic
simulation models utilize the detector data successfully in
the current surveillance systems.

Kalman filter is one of feedback Approaches [1, 2]
that can extract the information that traffic detectors have
more efficiently and effectively. Cremer [1] proposed a
well-known Kalman filtering method to estimate the
traffic states on freeway by defining a macroscopic traffic
flow model as state equations and describing a
relationship between the state variables and measurement
variables as observation equations. However, the method
that was developed focussing on freeway systems cannot
be applied to urban networks because the traffic flows on
urban roads are quite different from those on freeways
due to the existence of intersections. The state equations
should be modified so as to take turning movements and
signal timings at intersections into account.

Another promising aspect of Kalman filtering
approach is that it can account for the influence of traffic
flow phenomena, which are specific to urban traffic, such
as in-and out-flows to/from side roads, parking vehicles,
and pedestrians, indirectly though noise terms in state and
observation equations. These traffic phenomena are too
complicated to be integrated directly into a macroscopic
model that is oriented to the application for large road
network.

This study aims to develop a feedback model to
estimate traffic states on an urban road network by using
a Kalman filtering method:

1) Modify an existing continuum model that was
developed for freeway to describe urban traffic more
accurately. In particular, incorporate the traffic
phenomena at intersections into the traffic state
estimation equations.

2) Define the observation equation for urban traffic that
relates the state variables to measurement variables.
In particular, the observation equation should
represent the relationship between signal timings and

traffic flow variables.

3) Propose how model parameters should be calibrated
and how they should be validated.

4) Investigate the sensitivity of noise-covariance matrix
of system equation and observation equation using in
Kalman filter method to correct the estimated traffic
states.

2. MODEL FORMULATION
2.1 Macroscopic Traffic Flow Model

The urban networks in this study are two-way
streets with different tummg movements as shown in
Figure 1. The urban street is decomposed into a set of
unidirectional links to represent the streets between two
successive intersections and nodes to represent the
intersections. Each link is subdivided into a few segments
with suitable length. Define the traffic variables of each
segment as follows:
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Figure 1. Urban Road Network

Cil (k ) traffic density in segment 7 link / at time £
Vil (k) space mean speed in segment 7 link / at time &
traffic volume leaving segment 7 link /
? time mean speed in segment / link /
length of segment 7 in link /

At time interval

According to Cremer [3], suppose that the density
and space mean speed are described as

de+1) = '<k)+ [q, (©)-4()]
1)
Wer) = AHER+0-pVEER)
where c(k) = aci‘(k)+(1—a L (k+1)
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The relation between the state variables and the
measurement variables are assumed to be

g (k+1) cl(k+1! (k +1)
wik+1) = vi{k+1) @

Different from freeway networks, the flow rate in
the state and observation equations for urban network
have to be modified in accordance with where the
segment is:
¢  First Segment of Entry Link

The flow rate ¢,(K)entering to this segment
has to be the inflow volume of the network.

e Last Segment of Entry and Intermediate Links
The flow rate ¢,{k) leaving from this segment
has to be a function of signal timing to account for
the flow interruption at signalized intersections.

e First Segment of Intermediate Link and Exit Link
The entering flow rate of this segment is composed of
the flow rate from three different direction (i.e. left,
through and right) of intersection segments which
enter link /.

e Last Segment of Exit Links
The flow rate at exit is not influenced by traffic
signals and the capacity of downstream segment is
large enough to store the outflows.

e Segments in Intersections
One segment will be allocated to represent the traffic
flow within intersections in accordance with the
turning movements as shown Figure 2. To simplify
the analysis of the macroscopic model, traffic
phenomena, such as on-street parking, in and out-
flows from/to side roads, and bus/contra-flow lanes,
are not considered.

Figure 2. Segments for Turning Movements

Shock Wave

To represent the interfering between queues and
flow from upstream, the concept of shock wave is used. It
describes how the queues propagate and dissipate after
traffic signal turns green.

.. —Flow
In actual numerical calculation, it can happen that
the density is greater than the jam density or less than
zero. In fact, the density that exceeds the maximum must
be adjusted to upstream segments so that the spill-over
occurs and the density that is less than zero must be

adjusted so as to be absorbed in the downstream
segments:
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ci (k) = ey (k)+ci (k)
cifk) = 0
2.2 Kalman Filter

By choosing density and space mean speed as state
variable vector x(k) and flow rate and time mean speed as
observation variable vector y(k), the macroscopic model
can be rewritten as follows:

State equation
x(k+1)=Ak), u(k)+Qqk)+ To(k) %)
OB . ,
y(E)=g(elk), u(R)H (k) (6)
where
xT (k) :[clll ,vll‘ ooy c}x‘ ,v:,‘ 5 ci‘ L " vi‘ b ” c:}‘,l‘ ’i vi{,l* yeens
R IR
yT(k)—_- [qili’wi]i’qilﬁ;vi]ii’-“: . (8)
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u(k) control vector assigned by traffic signal light
g(%) inflow volume from inflow links
Q  coefficient matrix of inflow volume
Te(k) noise matrix representing modeling errors
C(k) noise matrix representing measurement errors
N total number of segments of whole network
n number of observation points of whole network

In this study, the extended Kalman Filtering
technique is applied to develop a non-linear estimation
model. By linearizing Eqs. (7) and (8) around the nominal
solution x"(k), the state equation and observation equation
reduce to:

(k)= A(k)%(k —1)+B(k — 1)k - 1) (10)
+d(k—1)+Qqlk — 1)+ Tk -1)
F(k)=Ck )% k) + Dk Julk) +e(k)+C(k) (D

where
%(k), 7(k) onestep predictorof x(k), y(k)

#(k-1) filtered estimateof x{k —1)
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It should be noted here that the derivation requires
lots of carefulness because different state and observation
equations have to be chosen in accordance with signal
timing, lane configuration, and whether detectors are
installed or not. Calculating A(k), B(k), C(k) and D(k)
step by step, state variables can be corrected as follows:

£ +1)= (k) + KE)yE)- 5(F)] (13)

where
K(E) = MECTECEMEC )+ WE]
PE) - MEKECEME) w
M(k +1)= AkK)P(K)AT(k)- V(K)
V(k), W(k) are noise-covariance matrix of system
equation and observation equation, which can be defined
as follows:

V(k) =T o)
W) =Elc) ()] (13
@) =E[pk)p” ()]

The one-step prediction, X(k) and y(k), are
directly calculated by using the macroscopic model. V(%)
and W(k) were assumed constant over the whole time
period. Also, the signal control scheme have no influence
on derivative matrixes A(k) and C(%) since it is assumed
to be pre-time.

3. MODEL CALIBRATION

Taking an isolated intersection as example, the
performance of Kalman filtering method was examined.
The data in this study was produced by TRAF-NETSIM
simulation software package {4]. Traffic detectors were
virtually installed at all entrances and exits. The flow rate
measure at entrances were used as inflow volumes and
the spot speed as well as the flow rate measured at exits
were used as measurement variables in the method.

Firstly, the influential model parameters, such as
free flow speed, saturation headway, and start-up lost
time, of TRAF-NETSIM were calibrated by traffic data
actually measured at an intersection in Bangkok [5]. Then,
two sets of simulation data were created by TRAF-
NETSIM; one for calibration of the macroscopic model
and another for verification of the new model. The inflow
volumes at entrances were varied from 1100 to 1300 vph.
For simplicity, the inflow volume assumed to be same for
all entrances. Since the percentage of heavy vehicle was
less than 4% in the actual traffic data, only passenger cars
were considered in the simulation by TRAF-NETSIM.

Table 1 shows the simulation conditions and the
parameters calibrated by a set of traffic data. A t-test of
stop delay for another data set justified those parameters.

Table 1. Simulation Conditions and TRAF-NETSIM
Parameters Calibrated

Parameter Remarks
Simulation Period 30 minutes
Inflow Volume 1100, 1200, 1300 vph.
Traffic Composition Passenger car 100%
Traffic Signal Scheme Pre-timed with 4 phases
Free Flow Speed 64 kph
Saturation Headway 2.2 sec.
Start-up Lost Time 2 sec.

The density vs. speed curve and weighting factors
a and f in Eq.(1) are significant model parameters in
the macroscopic model. Figire 3 depicts the density vs.
speed curve identified by the first simulated data. Both
«a and f were optimized as 0.4 in this case.
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Figure 3. Density vs. Speed Curve Identified

4. NUMERICAL EXPERIMENTS

Using the second simulated data produced by
TRAF-NETSIM, which were not used for calibrating the
model parameters, it was investigated how Kalman filter
contributed to improve the estimation precision and how
sensitive the noises in both state and observation
equations are on the estimation precision.

4.1 Model Verification

The road network of isolated intersection analyzed
in this study has eight exit links. The traffic flow rate and
spot speed estimated by the Kalman filtering method
were compared with those simulated by TRAF-NETSIM
at the exit points of those links. An index of the average
absolute percentage difference (AAPD %) is effective to
evaluate the overall estimation precision:

Measured, , —Estimated,
| s | x100(%)
Measured, , (15)

N
AAPD(k):%I—*Z
i=1

where N is the number of measurement points. The flow
and was accumulated for 2 minute and the spot speed was
also averaged over 2 minutes.

Figure 4 illustrates AAPD Error of a) spot speed
and b) flow rate for inflow volume of 1300 vph. The
Kalman Filtering technique s effective in improving the
precision for both variables. For other inflow volumes of
1100 and 1200 vph,
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Figure 4. With and Without Kalman Filter Figure 5. Effects of Noise on Estimation Precision.

4.2 Sensitivity of Noises

In the previous analyses, the elements of noise
matrices were determined using the calibration data so
that the difference between the estimated and simulated
variables should be minimized on a trail and error basis.
Figure 5 exhibits how the noises in a) the state and b) the
observation equations affect the estimation precision of
flow rate. For simplicity, all elements in both V and W
matrices were multiplied by 0.5 or 2.0. They show that
the noises have little influence on the precision. This is
because the road network analyzed here is very small,
isolated intersection, and the detector data used here are
coming from a software package, NETSIM, which is not
contaminated with noises.

5. CONCLUSIONS

To improve the accuracy of estimation of traffic
states on an urban road network, a new method, which
is based upon the feedback concept of Kalman filtering
technique, was proposed. First, a macroscopic model was
modified to represent traffic flows at intersection. Next,
the state and observation matrices that are necessary in
the linearization process of Extended Kalman filter. The
new method was applied to an isolated intersection. The
comparison between the estimated and actual values for
both traffic flow rate and spot speed justified the new
method to be effective in improving the estimation
precision by several percent. It was also analyzed how

much the noises in the macroscopic model and the
measurement equation affect on the precision.

The estimation method proposed here is still far
from practical implementation. A lot of subjects remain
unsolved: The method should be verified with actual field
data. It should be applied to a large road network. The
macroscopic model also should be modified so as to
represent other traffic phenomena, such as lane changing,
parking.
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