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SIMULTANEOUS ESTIMATION OF DYNAMIC O-D TRAVEL TIME AND FLOW
USING A NEURAL-KALMAN FILTER WITH MACROSCOPIC TRAFFIC MODEL"

by Hironori SUZUKI", Takashi NAKATSUJI"™ and Yordphol TANABORIBOON ***

1. Introduction

So far, two types of approaches have been directed to estimate dynamic origin-destination (O-D) travel time and flow. One is the
approach that estimates O-D travel time and flow based on drivers’ behavior models. When the information on current O-D travel
time, traffic states and accident points are known, the model estimates how many vehicles diverge at intersections and how long it
takes for them to get to destinations. Trave! simulators are used to collect data on drivers’ response to the traffic information in order
to describe drivers’ behavior . In spite of extensive efforts, the drivers’ behavior models may not be reliable because they are not
successful in expressing actual drivers’ behavior.

The other is the measurement data oriented approach which estimates dynamic O-D trave] time and flow indirectly from measurable
detector outputs such as link traffic volume and time mean speed. Cremer and Keller ? first tackled dynamic O-D flow estimation
problem for a large complicated intersection. By counting entering and exiting traffic volumes at the intersection, dynamic O-D
flows were estimated recursively. Later Cremer and Keller ¥ modified this method as a Kalman filter problem. Bell ¥ developed
time-dependent O-D flow estimation mode! based on the approach by Cremer and Keller . This model has taken the platoon
dispersion phenomenon into consideration as it is applied to a road network. The approaches by Cremer and Keller ?® and Bell ¥ are
applicable only for an intersection or for a small road network. Studies by Ashok and Ben-Akiva ¥, Chang and Wu © attempted to
estimate either dynamic O-D travel time or flow for a long distance freeway corridor by Kalman filter technique. Ashok and Ben-
Akiva ® estimated dynamic O-D flows from link traffic counts alone, while Chang and Wu 7 used link traffic counts as well as exit
volume for estimating O-D flows.

Only a few studies have been reported for estimating dynamic O-D travel time. Cremer ® estimated space mean speed by a
macroscopic traffic model and calculated link travel time by dividing link length by the speed. O-D travel time is then given by
summing up the link travel times along an O-D pair. Fu and Rilett ® formulated an artificial neural network (ANN) model for
estimating dynamic O-D travel time on urban road networks. The O-D travel time is estimated from variables such as coordinates and
distance of O-D pair and departure time of vehicles. Wakao et al. '® proposed a method for estimating dynamic O-D travel time based
on a Kalman filter technique with a macroscopic traffic simulation model.

The measurement data oriented approach can be applied to estimate dynamic O-D travel time and flow, but there are some
problems associated with this approach. These problems are: (1) No model is applicable for estimating O-D travel time and flow
simultaneously within one process, (2) The Kalman filter technique cannot give accurate estimation of O-D travel times if traffic
states on road section of O-D pairs are not predicted in advance ', (3) It is sometimes difficult to define state and measurement
equations of Kalman filter in analytical equations, (4) Summing up link travel times with discrete time steps results in inaccurate
approximation of O-D travel time because the boundary between consecutive links does not always provide continuous travel time.

This study aims to develop a new model for estimating dynamic O-D travel time and flow on freeway corridors. The objectives of
this study are: (1) To establish a method of estimating both dynamic O-D travel time and flow simultaneously, (2) To introduce a
macroscopic traffic model for predicting traffic states in advance and investigate how the macroscopic model affects the estimation
of O-D travel time and flow, (3) To employ ANNs for defining coefficient matrices in state and measurement equations of Kalman
filter and analyze the effect of ANNSs on the estimation of O-D travel time and flow.

Basic concept of the new model is presented in this paper. Chapter 2 briefly describes the model formulation including the
definition of O-D travel time and flow, theory of Kalman filter, macroscopic model and ANNs. Chapter 3 discusses experimental
analysis required for evaluating the proposed model. Concluding remarks and further recommendation are shown in the final chapter.

2. Model description
(1) O-D flow and travel time
a) O-D flow

Consider a freeway corridor (Figure 1) which consists of ¥ road segments. For simplicity, only one way traffic is modeled.
Each segment can have a pair of on and off-ramps. Note that:

n{k) = the number of vehicles entering the freeway from on-ramp at segment / during time interval 4 ,
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5,(k} = the number of vehicles leaving the freeway from off-ramp at segment / during time interval £ ,
g,(k) = the number of vehicles leaving the segment ; during time interval ¢ ,
w,(k) = time mean speed of vehicles in the segment / at the beginning of time interval & ,
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Figure 1 A freeway corridor

x,(k) denotes an O-D flow between an O-D pair i - j during time interval f . Then 1 (k), 5,(k) and ¢, (k) are respectively given by:

e)= 35, ) s,<k>=h;z_"gb:<k»,<h> nd 0= 3 Set06] S0 o)

with the constraints: so

0<b(k)<I(1<i<j<N,h=12,....k) and Zb,,( )=101<i<j<N), )
where » is the maximum number of time intervals required to travel between an O-D pair; b} ( ) denotes the fraction of the O-D flow
that departed its origin ; during time interval » and arrived at j during time interval £ .
b) O-D travel time
If an O-D pair consists of several consecutive road segments, the O-D travel time can be calculated as sum of link travel times.
Given space mean speed, the link travel time 7, (k) on segment / can be written as: 7, (k)= A, /v,(k) .If ¢, is time length of unit time
interval and £; (k) is defined as O-D travel time for O-D pair i - j , then

b, (k)= 1, k=T, ()2, }+ 7, k), ®)
(2) Kalman filter 'V
a) State equation
State equation describes the relationship between current state variable and those of previous time intervals. O-D travel time and
flow are selected as the state variables to be estimated. In this case, the state equation can be written as:

2k +1)= A, (K)(k)+ A, (R)elk ~ 1)+ + A, (k)e(k — m)+ b(k) + p(), @
where zlk [x" (k)" ()] ¢ NV +1)x1 column vector), x(k)=[x,, (k) x, (k}....x )] » €(k) =T, (€)1, ().t R)F

(k) =
b(k) = constant term of state equation (4) ( N(V+1)x1 column vector),
( )= N g\/ +1)x1 system error vector,
AlhA

b) Measurement equation

Measurement equation defines the relationship between state and measurement variables. This study employs spot speed, link
traffic and off-ramp volumes as measurement variables. As shown in Equations (1), O-D flow has explicit relationships with some
measurement variables, whereas no analytical equation can be defined for the relationship between O-D travel time and measurement
variables. Therefore, the measurement equation is assumed given by Equation (5) with 3¢ x N(¥ +1) coefficient matrices

C.(k)C, (k)....C,. (k) :
Y(®)= C,(k)ek)+ €, ,(Wlk ~1) 5+ €, (el =)+ Ak + u(e) s)

A, (k) = coefficient matrices,

where M = the number of measurement points,
v(k) = [s,&ba (k) (e)...s,, (g, (k) w,, (k)] (30 *1 column vector),”
d(k) = 34 x1column vector which denotes intercept of measurement equation (5),
ufk) = 3M x1measurement error vector.

¢) Estimation algorithm through the filtering process of Kalman filter

The algorithm for estimating dynamic O-D travel time and flow is illustrated in Figure 2. At first, coefficient matrices
A (k)AL (k). A (k) and C (k).C, (k)....C,_, (), intercepts b(k) and d(k) are estimated in advance by regression analysis.
Next, initial values of state variables 2(0),z(~1)....,2z{~ m) and etror covariance matrix P[max(m,)] are given to the estimation system.
Then, state and measurement variables are estimated using equations (6) and (7):

2(k)= A, (Kl - 1)+ A, ()l -2)+-+ A, (k)alk —m~1)+b(e~1), Q)
yk)= C.kJzk) + €, (k)alk - 1)+ + C,, (k)elk = )+ alk). ™
When actual measurement variables y(k) and Kalman gain K(k) are given, estimated state variables 7(k) are updated in the final step

through the following equation:

#{k)=2(k)+ Klfylk) - 5k, ®

(3) Macroscopic traffic flow model ')
Wakao et al. ' have shown that the Kalman filter technique gives inaccurate estimation of O-D travel time on a freeway corridor
if traffic states along O-D pairs are not predicted in advance. This is because measurement variables do not include the information
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on traffic states before vehicles enter the freeway. To overcome this difficulty, Estimate coefficient matrices J

traffic states are predicted in advance by a macroscopic traffic model and AL A, k)ALLK C)C, ). €L
. . - . I
used for estlmgtlng coefficient n'1atnces of state and me.asurement equations. Setup imitial condition of state variables
The traffic variables to be predicted are spot speeds, link traffic volumes at 20) 2l 1) zlom)
measurement points, off-ramp volumes and O-D travel times. Spot speeds s— — T - -
and link traffic volumes are given by the following macroscopic model: Setup initial Cond““jf[‘ Of( ef;]of covariance matrix
3 | maxim,m
q,(k)=a~p,(k)~v,(k)+ (I_a)' pm(k)' Vm(k) ® o
k = maxm,n
w,(k):a-v,(k)+(l—a)~vm(k)’ (10) »
Estimate state variables
where, 2,(k +1)= p,(k)+ % lg,. &)= q,(k)+ n(k)-5,(k)], 50)= A R~ Ay -2t A, (B 1)+ )
!

I
" . Estimat t variabl
s D=0+ b -Gl p Y I =3 @9 b= 0 e et g

T
v -%'A, [PM (k)'pt(,%,(k)+ K] (11) Calculate Kalman gain

(k)
Here, v, and p,,, denotes free flow speed and jam density respectively. — 1
«,t,&, v, [, mand x are all macroscopic parameters to be optimized. Measure de‘(f)c“’r outputs
Off-ramp volumes can be calculated from link traffic volume and diverging .| yl
rate at the off-ramps. Also, approximate O-D travel times are determined by Update state variables
summing up link travel times using Equation (3). Substituting the value of ‘ )= 2e) Kl Yy ) -]

predicted variables into state and measurement equations (4) and (5), the
information on future traffic states can be included in the coefficient matrices
of state and measurement equations.

k=final step?

(4) ANNs 12 Figure 2 Algorithm

Both state and measurement equations play important roles in the
estimation process by Kalman filter technique, but there are some cases which have difficulties in defining analytical functions for
state and measurement equations. Also in this study, no explicit analytical functions can be found for state and measurement equations
(4) and (5). ANN enable to estimate coefficient matrices A, (kLA (k)....A,_, (k) and C,(k)C,_ (k).....C,_,{k) without defining
any analytical functions. Furthermore, some measurable factors which affect O-D travel time and flow can be taken into account by
the use of ANNs.

An ANN model has two or more layers of neurons. Each neurons in one layer is connected to all the neurons in the adjacent
layers. This study will employ ANN models with three layers (Figures 3 and 4). Supervised learning scheme will optimize the
connection weights between each pair of neuron. In this scheme, outputs are computed by:

Y, =f[‘hZW,,,, Azw, ~f(x,-))], (12)

where X, are input variables, /¥, denotes connection weights between input and middle layers, W,, defines the weights for middle
and output layers. Then, the outputs ¥, are compared with the desired outputs Z, for their inputs. The error information, difference
between Y, and Z,, are propagated backward from the output layer to the hidden layer. Each entry of the coefficient matrices can be
computed by the following equation: '

oY,
R AN RATIAA (13)
The Kalman filter technique which state and measurement equations are formulated as ANNSs is called Neural-Kalman filter.
Figures 3 and 4 depict ANN models for state and measurement equations, respectively. For state equation, previous state variables
are presented to the model and the supervised leamning scheme optimizes the connection weights to find out appropriate function F.

x{k - nr) x(k-n) ] —>
t(k ~m) t{k - n)
x(k-m+1) x{k~n+1)

t(k—‘llH-l) —_— tlk~n+1)| —>

Figure 3 ANN for state equation Figure- easurement equation
(5) Procedure of the development _

Figure 5 illustrates the procedure of the development. In the first stage, dynamic O-D travel time and flow are estimated without
using a macroscopic model as well as ANNs. State and measurement equations of the Kalman filter are formulated as regression
models. In the second stage, a macroscopic model is introduced before the estimation of coefficient matrices of state and measurement
equations. ANNs are used for formulating state and measurement equations instead of regression models in the final stage.
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3. Required experimental analyses
(1) kmpact analysis
It has been shown that O-D travel time is strongly affected by various ’

factors such as the number of lanes, drivers’ characteristics and visibility

Prepare two sets of data

of road conditions '*). This study investigates which factors affect O-D T Paramorer identification
travel time and flow and takes into account these factors for estimating - Calculate diverging rate
dynamic O-D travel time and flow. Macroscopic >
The factors to be investigated are the number of lanes, width of each model Esti ffic .
lane, road alignment and road gradient. These factors are assumed to stimate coefficlent matrices
have linear relationship with state variables such as O-D travel time and : =
flow. Then, t-statistics in regression analysis evaluate how the factors - O-D travel time
contribute to the estimation of O-D travel time and flow. : 0‘%_‘;‘?1 time . Un;([)r;z.l?’vvzlum .
(2) Observability condition Reghession 1 axn - Spot speed
Observability condition defines the ability of the system to determine Analysis - Off-ramp volume
state variables from measurement variables. If this condition is not met, State equation R:g eliss'l';" ANN
optimal estimation cannot be obtained. However, it is a difficult task to Measurement equation
find out how many measurement variables or measurement points are :
required to fully satisfy the observability condition. Therefore, this study Estimation of
employs the observability index proposed by Schutt and Cremer *). This O-D travel time and flow
index does not give any absolute criteria to determine the number of =
measurement variables or points, but gives the relative quantity for Validation
comparison with different number of measurement variables or points.
(3) Model calibration and verification Figure 5 Flowchart of the Procedure

The proposed estimation system consists of three different models; a macroscopic model, ANNs models and Kalman filter
model. Only the Kalman filter model gives the final outputs. Each model should be verified and validated. Also, all parameters of the
macroscopic model will be optimized for a specific condition so as to minimize the difference between estimates and actual detector
outputs. These parameters will be calculated for each road segment.

(4) Application

The proposed model will be applied for the first and second stage expressways in Bangkok, Thailand. Because of the insufficient
traffic volumes, it may be difficult to obtain satisfactory O-D travel time and flow from field data collection. Therefore, artificial
data will be created by a traffic simulation software. Artificial data is better than actual field data when it is used for investigating the
influence of factors which affect O-D travel time and flow. Later, empirical field data also will be collected and used for evaluating
the proposed system.

4. Concluding remarks
The concept of a new approach for estimating dynamic O-D travel time and flow on freeway networks is presented in this paper.
In the new model, the Kalman filter technique is extended to cover state variables of several previous time steps. The extension is
necessary especially when the model is applied for long distance freeway corridors. More accurate estimates of O-D travel time and
flow are expected by the use of a macroscopic model and ANNs models. Further research will focus on numerical analyses for
evaluating the proposed system. :
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