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Estimation of Traffic Flow Variélbles

Using Neural-Kalman Filtering Techniques
Nasser POURMOALLEM’, Takashi NAKATSUJT™

1. INTRODUCTION

Macroscopic traffic flow models, which are based on a
hydrodynamic theory of traffic flow phenomena, contain
several traffic variables and can therefore describe extensive
traffic states in great detail. By combining such a
macroscopic model with a Kalman filtering technique’),
several methods have been proposed for estimating traffic
states on freeways and urban streets, as shown by Gazis et
al® and so on.

Incorporating the Payne-type macroscopic model® with
the Kalman filter, Cremer® presented a feed-back method
for estimating traffic states on a freeway. In the method,
traffic density and space mean speed that were estimated by
the macroscopic model were adjusted so that the flow rate
and time mean speed at the observation points would
coincide with actually observed ones. This method is very
effective even for congested traffic states because it adopts
density and space mean speed as the state variables. And it
is very promising for future route guidance systems because
it can estimate the traffic states on real time.

This paper aims to investigate the ability of the neural-
Kalman filtering method to estimate traffic states on a
freeway. Intending to extend the Cremer method, we
examined how accurately a neural network model could
describe the state and observation equations and realize a
model parameter that was dependent on traffic states.

Cremer assumed that flow rate can be expressed as the
weighted average of products of density and space mean
speed on the adjacent segments. Similarly, time mean speed
is the weighted average of the space mean speeds on those
segments. That is, the observation equations were linearly
described. However, actual traffic flows are not so simple.
In particular, when traffic is in a congested state, the
relationships would be very complicated. So, it is necessary
to develop a non-linear relationship in the observation
equations. In addition, in the Cremer method, only the
traffic states in the nearest upstream and downstream
segments are employed in the relationships. This means that
the estimation precision depends on how long the segments
are, To reflect the traffic states in the segments which are
located farther, we need to modify the model, in which the
traffic states in any number of the segments are incorporated
into the observation equations, if necessary. Moreover, the
traffic states at a given point are strongly influenced by the
states in the upstream links when the traffic is in a free flow
state, whereas they are affected by the downstream states
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when the traffic is heavily congested. Any constant
parameter would not reflect such phenomena precisely. As
mentioned above, we introduced a parameter that was
negatively related to traffic density. In this way, some model
parameters should be dependent on traffic states. However,
such parameters would make the estimation procedure very
complicated because the differential operations required in
the Kalman filter would make it almost impossible.

Neural network models” have some promising abilities:
They can accurately describe non-linear phenomena; they
can organize their structures flexibly according to the
observed data; also, they can deal with any kind of numbers,
not only quantitative numbers, but also qualitative numbers,
and even fuzzy numbers. When they are applied to a
dynamic estimation problem, they can easily establish a
steady non-linear relationship between the input and output
signals. They require no preliminary knowledge of both the
state and the observation equations.

To cope with the above problems, we tried some new
approaches to the Cremer method. That is, we redefined the
method based on a neural network model; first, we

- described the observation equations using a neural network

model in order to establish a steady non-linear relationship
between the state and the observation variables. In addition,
we expressed the state equations, too, using another neural
network model. The introduction of the neural network
models made it possible to employ any parameters that were
dependent on traffic states because the differential matrices
in the Kaiman filter were easily derived. As a result, this
new method improved the estimation precision. We referred
this new approach to the neurai-Kalman filtering method.

2. THEORETICAL BACKGROUNDS
(1) Macroscopic Traffic Flow Modet"

We divide a road on a freeway into several segments. The
Payne-type model describes the traffic flow dynamic is
employed in the Original Cremer model (OC model), the
dynamic equations are defined as follows:
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where ¢,(k) is the density of segment / at time &, v,(k) is the
space mean speed, (k) is the flow rate, and w,(k) is the time
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mean speed. 7(k) and s,(k) are possible entrance and exit
ramp flow rates. AL, is the segment length and At is the
time interval of simulation. 7, v, x, and « are the model
parameters. V(cik)) in Eq.(2) is the steady-state speed,
which is defined by a density-speed characteristics (k-v)
curve®;
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where vyis the free speed, Cpax is the jam density, m and  are
the sensitivity factors.
(2) Kalman Filter Model "

Choosing c,(k) and v,(k) as the state variable vector x,, and
as the observation variable vector y,, we defined the
following Kalman fitter (KF P

s = M)+ 4 ©
Ve = g(xk) +& Q)
We linearize these equations as following:
Brgy) = Qpdrp + 4 ®
Ayk = l{"kAX'k +§k ©)

where 4 is the difference of vectors, & and {j are the noise
vectors. ¢, = &/a is the dynamic matrix and ¥, = /s

is the observation matrix. Calculating @, and 'F, step by -

step, we can correct the state variables every time we obtain
the newly observed data y;:

fk =% +Kk(yk~:v‘k) (10)
where ¥, = f(#,_,) and 3, = g(%, ). The vector ¥, and
¥, are referred to as the one-step predictor of x; and y,
and £ as the filtered estimate of x,. K, is Kalman gain

matrix.
(3) Variant-Weighting Factor Model”

The OC model assumes a constant weighting factor in
Egs.(3) and (4). However, when traffic is in a free-flow
state, flow rate and time mean speed at a given point are
mainly dominated by the traffic states in the upstream,
whereas when traffic is in a heavy state, they are largely
influenced by the states in the downstream because some
growing congestion generated in a downstream segment
propagates upwards. A constant weighting factor cannot
describe such phenomena. We introduced a weighting factor
that was dependent on density:

a(ci(lc)) = e—'Bci(k) (1)

where B is a curvature in the range of 0.0 to 1.0. We called
this model a variant-weighting factor model (VWF model).
Since this function decreases monotonously with density, it
can represent the above-mentioned traffic flow phenomena
very well. It should be noted here that the introduction of
such a factor would make the structure of both the state and
observation equations complicated. Consequently, it would
become burdensome to differentiate the equations and

derive the matrices @, and % This is why we introduced a
neural network model in this paper.

(4) Multiple Section Method”

We extended the OC model so that we were able to treat a
road section where there are any number of observation
points. The original model is applicable to a single road
section where traffic data are observed only at both/either
entrance and/or exit of the section. When the model is
applied to a long road section, in which several observation
points are located inside, we have to divide it into several
subsections at every observation point. Since this
subdivision not only interrupts the propagation of traffic
flow over the whole section, but also increases the
frequency of extrapolations in Egs. (3) and (4), the
estimation precision would be inevitably decreased. We
treated such a road section as a single section.

We redefined the dynamic equations so as to correspond
to the observation condition. For example, for the flow rate
gk) in Eq.(1), we used the actually observed ones. This
inevitably required the redefinition of the matrices of @
and ¥ We called this generalized model the multiple
section model (MS model).

3. NEURAIL-KALMAN FILTER
(1) Neural Network Model®
We used a multilayer neural network model as shown in

Fig.1, which consists of three layers;
Signal

Error 7

Fig.1 Multiple neural network model.
an input layer (B), a hidden layer (C),, and an output layer
D). xf represents an input signal and y,-B an output signal.
The output signal y,° is calculated as follows:
e =h(2 WiDh(ZWUBCh(xE)]J (12)
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where h(x) is the sigmoid function. For adjusting. synaptic
weights, we need target signals that are given by theoretical
equations or observed data. We repeated the back-
propagation operations® until the following average squared

sum of the between output signal y,° and target single z,
became sufficiently small:

L of L
J = —N—;- E: (yk -z k)
where Nj is the number of neurons in the output layer.
It should be noted here that it is very easy to produce the
derivative of an output single y° to an input single x/
because Eq. (12) is definitely defined by analytical functions.
It follows:
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As will be stated later, this derivative function constitutes
the components of matrices @, and ¥%..

First, we developed a neural network for the state
equation of Eqs.(1) and (2), as shown in Fig.2(1). We
emulated the basic structure of the equation. Traffic
variables on the right sides were used as input signals, while
variables on the left sides were used as output signals.
Although the average speed V(c(k)) in Eq.(5) was
dependent on c%k), we treated it as an input signal because
it contains some independently-determined parameters. We
produced the target signal using Eqs. (1) and (2). It should
be noted here that the neural models here were used only
for estimating the matrix & because Egs.(1) and (2) could
accurately estimate the traffic states. Second, we developed
another neural network for the observation equations, as
shown in Fig.2(2). Although we emulated the basic
structure of Eqs.(3) and (4), the state variables not only in
the nearest segments but also in the more distant segments
in both the upstream and the downstream segments were
employed as input signals. Naturally, the target signal came
from the actually observed data. The neural models here
were used not only for estimating the observation variables
but also for defining the matrix ¥,

We produced both the neural network for each segment.
Preparing a lot of target signals for extensive traffic
conditions in advance, we adjusted the synaptic weights so
that the difference between the output and the target signals
were minimized. The completion of the training of synaptic
weights makes it possible produce the components of
matrices @ and ¥,
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(1) Neural network for state equations.
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(2) Neural network for observation equations.
Fig.2 Neural network modeling of state and observation equations.
(2) Neural-Kalman Filter
In conventional Kalman filters, both the state and the
observation equations have to be analytical functions. Here,
we proposed an alternative filter, in which the equations
were described by neural network models. This made it

possible to construct the observation equations as precisely
as the observed data were. The introduction of a model
parameter, such as the weighting factor in Eq. (11), that was
dependent on traffic states required no difficulties in
deriving the matrices @, and ¥ because the synaptic
weights were already adjusted so as to reflect the effects
and Eq. (14) easily produced them. Although it is beyond
the scope of this paper, since neural network models can
deal with even qualitative numbers as the input signals, it
would be possible to represent any local characteristics of
each segment into both the state and the observation
equations. We referred this new approach to the neural-
Kalman filtering method.

Fig.3 is the block diagram to estimate the traffic states
using the neural-Kalman filter. The painted boxes depict
what are different from the conventional Kalman filter.
However, the fundamental algorithm is identical to it. First,
based on the estimates X,_, at the previous time £-/, we

predicted the state variable X, at time k using Eqs.(1) and

(2). In this process, the flow rate and the time mean speed at
the points where traffic data were not observed were also
estimated by the neural network g but not Egs. (3) and (4).
Prior to obtaining the actual observed data y,, we estimated

¥, using the neural model g. At the same time, using the

neural derivatives of Eq.(14), we calculated the matrices
@, and ¥, which determined the Kalman gain X;. Then we
corrected the predicted estimates X, and obtained the new

ones % 4 according to Eq.(10).

Neural Network
Neural Network
G
Initial Training
G
Observation
Equation
v Z
Eoaleag
Ke
Kalman Gain
v
B =% +Kk('vk _;k)
R ]

Fig.3 Block diagram of neural-Kalman filtering method.

4. NUMERICAL EXPERIMENT
(1) Traffic Data

The observed data used here came from a road section,
which was 5130 meters long with two on-ramp and three
off-ramp, on the Yokohane Line of the Metropolitan
Expressway in Tokyo. We used the traffic data from Oct. 28
to Nov. 1 in 1993. We defined three subsection, which were
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divided 3 or 4 segments and a checking point (CP). We

assumed that traffic data were only at four observation

points (OP), as shown in Fig.4.
OP1 OP2

oP3 OP4
AN N\
I RNISONE I ERED
NN\ A Y A NN
CP1 CP2 CP3

—* : Observation Point, j : Checking Point, [] : Segment
Fig.4 Overview of road section for numerical experiments.
(2) Initial Training
(a) Observation Equations
We trained the Neural network model for the flow rate and
time mean speed equations. We supposed two types of
neural structures, as shown in Fig.5. Fig.6 depicts the
average RMS errors of output signals for 60 checking
patterns at four observation points for each type of the NN
model. We can see that the NN model of type 2 gives
smaller RMS errors for all the observation points. This
means that by incorporating the traffic states of the two
adjacent segments in both upstream and downstream into
model, we can estimate the observation variables more
precisely.

type OP1 OP2 & OP3 OP4
T = =
i i+l n
s ETT IIEITI IT=
1 2 T T i+2 n-1 n

Fig.5 Types of neural network models of observation equations.

13:30-14:30, Oct. 29,1993
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Fig.6 RMS errors of neural observation systems for checking data.

(b) State Equations

We trained the NN model for the state equations of Eqs.
(1) and (2) to produce the derivative of the matrix &
According to whether segments have an on-ramp or an off-
ramp, we classified the segments into three types, as shown
Fig.7. That is, the number of neurons in an input layer is 7
for segments that have no on- and off-ramps, and 8 for
segments that have either on- or off-ramp. In this analysis,
we always allocated five neurons to the intermediate layer.
Fig.8 depicts the average RMS errors of output signals for
120 sets of checking data at all the segments. We can see
that the errors are small enough except for a few segments
where the errors exceed 10%. It should be noted that the
estimates are not corrected yet by the actually observed
data.

tvpe: (&) (2) (3)
i i+1 i i+1 i i+1

Fig.7 Type of neural network models of state equations.
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Fig.8 RMS errors of neural state equations for checking data.

(3) Estimation of Traffic States

Fig.9 shows the comparison of the average RMS errors of
flow rate at three checking points for the OC and the NKF
models. The NKF model produced much better estimates
for all the data sets than the OC model. And the RMS errors
are sufficiently small. Moreover, the deviation of RMS
errors of the NKF model was smaller than that of the OC
model.
13:30-14:30, Oct. 29,1993
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Fig.9 Comparison of average RMS errors of flow rate evaluated by
_the OC and the NKF models.

5. CONCLUSIONS

The major findings are summarized as follows:
(1) Integrating a NN model into a KF, we proposed a
procedure to estimate the traffic states on a freeway road.
(2) The NN models for describing state equations and
observation equations made it possible to easily produce the
derivative matrices that were needed in the KF.
(3) The neural observation model was somewhat better in
estimating flow rate and time mean speed than the analytical
equations used in the OC model.
(4)The NKF model produced much better estimates for all
the data sets than the OC model.
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