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A Derivation of Logit Model and Its Implications
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The Logit model is the well-known probabilistic choice model, which
is derived in the random utility theory. While this model has some
merits because of its simple formulation, there are problems of the
independence from irrelevant alternatives (IIA) property and of
dealing with generated demand. This paper indicates a derivation of
the Logit type demand of model which is derived in the consumer
behavior theory and the model enables us to explicitly deal with
generated demand. Furthermore, some useful implications of this
derivation are shown with respect to the setup of the indirect
utility function from the demand function, the derivation of the
log-sum function from the Logit model, and the benefit definition

and estimation of the newly introduced tramsport facility.

I. INTRODUCTION

Economists have been paying increasing
attention to the application of the Logit
model in transport economic analysis, which
is used as the simplest and convenient proba-~
bilisticbilistic choice model. Nevertheless,
there are problems of the independence from
irrelevant alternatives (IIA) property, and
dealing with the generated transport demand
by the use of the conventional Logit model.
The former generated by the similarity of the
choice axiom has been almost overcome by the
development of the Nested-Logit model or the
Probit model, but the latter due to the g ven
total transport demand has not yet been
overcome.

In the framework of the random utility
theory, the Logit model is derived only by
assuming that the random component (¢) varies
according to the Gumbel distribution. On the
other hand, this paper derives a Logit type
of transport demand wmodel in the consumer
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behavior theory, and shows that the model
enables us to explicitly deal with the
generated transport demand.

In this paper, furthermore, some useful
implications of this derivation of the Logit
model are indicated. First, even if the
indirect wutility function is unknown, the
function form can be estimated by using the
system of demand functions and the Roy's
identity. Second, the log-sum function, that
is, the satisfaction function is derived
directly from the Logit model obtained here.
Third, the benefit definition and estimation
for the newly introduced transport facility
are processed by this approach in the
framework of Discrete-Continuous modeling.

II. A DERIVATION OF LOGIT MODEL

We follow the micro-economic theory of
consumer behavior in depicting the household
decision problem which can be transformed
into a demand function expressing the action
of &8 consumer. It is assumed that the
consumer maximizes its utility under some
given budget constraints.

Max.

x

U(x1,%2,...%),

(i.a)

s.t. = pix; sy, [§=1,2,...,n). (1.b)



where

- U(.) denotes the direct utility function
of individual,

- x; is the demand of service j, generally
assumed to be non-negative continuous
variable,

- p; is the price of service j,

- y is the income of individual.

The following is a solution which gives
optimal amounts of x; to above maximization
problem (1):

x5= x(p,y), [j=t.2,...,n}, (2)

Equation (2) is known as the demand function
which expresses the choice of consumer for
the given price vector p and income y.

The demand functions provide an
expression for the "optimal® consumption of
services that can now be substituted in the
direct utility function. As the result, we
obtain the maximum utility that is achievable
under the given price vector and income,
which is called the indirect utility
function:

V(p,y) = Max. [U(x)| = pix; s yl. (3)

The important property of the indirect
utility function which we will use as the
main tool in this paper is the Roy's identity
which yields the observed market demand
curves as a partial derivative of V(p;y),
that is,

sV(p,y)/aep:
L (p,y) = - ——————— . (4)
aV(p,y)/ay

To demonstrate this useful property, suppose
that the indirect utility function has the
form:

Vi{p,y) = =5 a; exp{b;y-c;p;). (5)

From the Roy's identity as shown in equation
(4), the demand function which corresponds to
equation (5) can be found by differentiation:

aic; exp[biy-cipi)]
xi(p,y) = - (8)
z; a;b; exp[bjy-c;p;]

This demand function is not the Logit model
exactly, but itself has the Logit type.
However, we can easily show that in the case
~when ¢, = b; for any i, this function becomes
exactly the Logit model. Also, the share
modeis the Logit form as:

x; a;c; exp[biy-cipi}
—_— = . (7)
Z;X; z; a;¢; exp[b;y-e;p )

As the result, shows that the share type of
the Logit model can be derived directly from
the specified indirect wutility function
without any assumption. Also, by using this
demand function we can easily and explicitly
deal with the generated demand. One of the
typical implicaticon of this can be used for
explaining of the newly introduced transport
facility. To emphasize our derivation some
useful implications are demonstrated in the
following section.

11I. IMPLICATIONS

(1) DERIVATION OF INDIRECT UTILITY FUNCTION

As we know, the link Dbetween the
indirect wutility function and the demand
functions through equation (4) shows that: if
one has & specific functional form for the
indirect utility function, the form of the
ensuring demand functions follows from it
through differentiation, using equation (4).
If one has a specifie form for a demand
function, the indirect utility function which
corresponds with it .can be found by
integration, also using equation (4). This
property ensures that our derived demand
functions which itself has the Logit type as
shown in equation {6) can be use to derive
the indirect wutility function by using the
Roy's identity. To demonstrate this useful
argument, the basic idea used here is to
start from a specified functional demand
system:

a;¢; explbiy-cipi)]
2 (p,y) = , (8.a)
z; a;b; exp(bjy-c;p;)]

= - aV(p,y)/3p: aV(p,¥)/3y, (B.b)

where
-~ aj;,b;,c; are unknown paremeters.

For convenience, we consider a simple
example with three services (j=1,2,3). Denote
that the service with subscript j=1 is
composite goods and the other with subscript
j=2,3 are transport services, then we obtain
the system of demand equations for x,, x. and
x; as follows:

ai1¢: exp(biy-cipi)
x{p,y) = , (9.3)
z; a;b; exp(bjy-cip;)




82C2 exp(bay-cape)
e (P,¥y) = '
s; a;b; exp(b;y-c;p;)

(9.b)

azc3 exp(bsy-caps)

X3 (p,Y) , (9.¢)

%; a;b; exp(bjy-c;p;)

Note that the composite goods are taken as
numeraire, that is, p,=1.

Solve these linear partial differential
equation systems by applying the method of
completely integrable condition to derive the
indirect utility function form as function:
V(p,y)= f{z; a; exp(b;y-c;p;)]. (10)
Now we have a solution to the Roy's
identity, but we need to check whether we
have a valid indirect utility function which
arises from consumer utility maximization.
The derived function V(p,y) is monotonically
increasing in income if b; >0 and decreasing
in price if ¢;>0 and a;>»0 for any j=1,2,3
which satisfies the characteristicstic of
the indirect utility function. Also, if we
set exp{ylzy, exp{p;]zp; and b;zc; for any
j, then we can easily show that our derived
indirect utility function has the form of the
Indirect Addilog demand model. In addition,
according to the Roy's identity which is an
important property of the indirect utility
function which we used, if one differentiates
equation (10) with respect to p; and y, the
result obtained for demand systems must have
the form as given in equation (9). It
emphasizes that even if the indirect utility
function is unknown, the function form is
estimated by the system of demand function.

(2) DERIVATION OF LOG-SUM FUNCTION

The system of the demand function as
given in equation (6) has the charateristic
of which the function itself has Logit type.
Its useful and convenience in which we can
derive the indirect utility function already
demonstrated in the first implication.
However, it is interesting to show that if in
the case when b, =0 and c;=b; for any j#i, the

function given in equation (6) become
exactly Logit model as follows:
a2b, exp[bz (y-p2)]
X2 (p,y) = , (il.a)
£; ajb; exp[b; (y-pi )]
8sbs exp[bs {y-ps)]
%3 (p.y) = (11.b)

=; a;b; exp[b; (y-p;i)]

Solving this partial differential equation
system (11) by the same method those used
before. The solution given is the indirect
utility function:

Vip,y) = In 2;8; exp{b;(y-p;}]+ C, (12)

where
- Constant C takes any suitable value.

It is necessary to point out that the derived

indirect utility in equation (12) has the
log-sum function, that is satisfaction
function. From this result, we come to the
conclusion that the satisfaction function
itself is the indirect utility function. In
this sense, it contributes one more piece of
evidence for the hypothesis that the

inclusive value is superior to the other
proposed definitions of benefit measurement.

Obviously, if given the indirect utility
function as (12), the Logit model will be
derived.

(3) BENEFIT ESTIMATION OF NEW TRANSPORT MODE

The economic evaluation of the newly
introduced transport facility, which had not
yet appeared at the time of investigation,
often plays an important role in the public
transportation policy decision whether or not
to introduce the new mode. In the application
of the conventional ©benefit measurement
framework, there is aproblem of imagining the

situation of "before-introduction” for
assigning the level of transport service of
which it have not yet realized. In
particular, there is the problem of

estimating the cost of the new mode in the
"before situation" which is often used as a
basic tool for approximation in conventional
approach., By application of this framework,
the equivalent variation (EV) as an exact
measure of welfare change is computed
directly from an indirect wutility function
which is derived from the specified system of
demand equations and the use of the Roy's
identity as mentioned above.

Almost all of the conventional treatments
of consumer behavior congider the
maximization of the utility function defined
over continuous variables. But for the new

facility, the Discreate-Ccontinuous model
which has both discrete and continuous
variables, is more convenient because it can
fully -express both ‘"existing" and “"non-
existing"® situation of that new transport
mode and take it as discrete variable

accompanied with continuous consumption of
the other goods. Let us consider a simple
case in which there is existing only one



trangsport service with its demand, say x..
Now the situation includes one new transport
mode that is introduced with its demand, say
X3 . Recall the subscript i=1 which denotes
composite goods as z. In the framework of
Discrete-Continuous choice model the above

maximization problem can be expressed as
following:
V(p,y)= Max. U(z,%z,%X3), (13.a)
. X
8.t. y= z+pzXs, (X3=0), (13.b)
¥= Z+p2Xe+psXa, (X3z0), (13.¢)
where

- (13.b) when the new mode doesn't exist,
- {13.c) when the new mode exists.

Within this framework, the above maximization

problem which 1is explained by Discrete-
Continuous choice model can be easily
processed, not only in the case of three

goods but alsoc for the many goods case.

As the result, obtained by solving this
maximization problem when dealing with the
constraint (13.c) show that the derived
indirect wutility function given in the
equation (10) is solution where the consumer
maximizes his utility by controlling 3z, x»
and X3 under his budget constraint which
corresponds to the "after situation" with the
introduction of new transport mode. By using
this framework the welfare change by the
newly introduced transport facility can be
expressed as follows:

a. "before situation®

Ve (a3=0,y) = Max U(2,x2,%3=0)
T, x2
t. zZ + paXxe

5. =y

—— Newly introduced
! Transport facility

b. "after situation”
Vi{as,y) = Max U(z,%2,Xs)
z.x2.x3
3.t. 2 + paXz + p3X3z =y

For convenience and comparision, we set x;=0
at the “"before situation"”, where x3=0& e
a;=0, and this notation expresses the
situation when the new mode does not exist.
From the definition of the equivalent
variation( EV) that is defined as the minimum

amount of compensation which is needed for an
individual in order to give up the project
while sustaining his welfare level at the
"after situation". For this case the welfare
change, EV, can be defined formally as:

V{as=0,y+EV) = V(as,y), (14)

that is,

a, exp{bi (y+EV)-cipi |
+ 8e exp(ba (Y+EV)-cape ]
a; exp{biy-cip}
+ az exp[bay-cepe ]
+ as exp[bsy-csps].

(15)

The value of EV which satisfies the above
equations system is the benefit caused by the
newly introduced transport facility that we
are looking for. In term of the expenditure

function:
EV = e(pe,Vt} - ya, (16)
where
- e(p®,V') is the correspond expenditure

function followed by equation (10).

Here the problem is the form of the
function e{(.) which we can not express
mathematically in explicit form. However, by
using the conventional technique and if given
all the available market data then from the
demand systems equation (9) all
parameters will be estimated by econometric
procedure. Substituting these coefficients
into equation (16) and using the computer
program package, we can easily calculate the
quantity EV as the exact measurement of the
welfare change. Also, the quantity obtained
for welfare change can be developed in this
process by using the concept of the
compensating variation CV.In the sense of the
practical application, since the conventional
methods can deal only with the improvement
case, this approach seems preferable because
only available market data is required. In
addition, with the well-specified system of
demand function we can calculate exact
welfare change by the newly introduced
transport service without any approximation.

We have derived the exact welfare change
process from the specified demand systems
which can be summarized as following:

Step 1 Solve the partial differential
equations system obtained by using the
specified systems of demand equations and
Roy's identity equations. By doing so, we can
derive unobserved indirect utility function,
expenditure function and expression for the

in



equivalent variation
expenditure function.
. Step 2 : The equation obtained for (EV) has
all unknown parameters of demand functions.
Thus, we can estimate these parameters
through the specification demand equations by
econometric procedures using the available
market data.

Step 3 : By substituting all the estimated
parameters into the equation obtained for EV,
we can compute exact welfare change due to
newly introduced transport facility.

(EV) in term of the

1V. DISCUSSION

Let us consider some of the other well-
known systems of demand equations.

a. The Translog functions

"
q’_l(tl, +- Z 1/,] lll(h )

=1

ritg b= n n n
Z 1y -+ Z Z ]'l'nr In I
A=1 k=1 m=1
where
~ b;; are positive parameters for all i

and j and b;;.b;,

qi = pi/y,

~ p; is the price of service i,
-~ y is the income of individual,

and the share mode obtained:
n
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~ n
Z qp Hag +
k=1

£y

”n

—
—2 Tk

k=1

i': I’km In din )

me=l1

b. The Diewert functions
"
—-1f2 1f2 —-1/2
Zbi;’% /‘1,‘/ + boig; /

=1
n n
+ E hf)rn ‘Ivln/;’

Z i: D q;_/zq
m=t

k=) =1

Sty =

1/2

m

and the share mode as follows:

"
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k=1

"
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These above systems of demand functions

also have characteristic of which the
trangformation of the share has the Logit
form just simple take exp{in(.)]. However,

these function itself do not have the Logit
type. And also it is rather inconvenient to
handle in this approach. In addition, from
these system of demand function we can not
derive the indirect utility function as the
log-sum form. Thefore, the system of demand
function we used here is significant and
validity.

V. CONCLUSION

We have derived the Logit type of demand

model within the framework of the consumer
behavior theory, and also have demonstrated
some of its useful implications. This
approach seems to be worthwhile on three
espects. First, we can use this demand model
to explicitly treat with the generated
transport demand, while the conventional
Logit model does not have such ability. Also
the system of demand functions used here is
more convenient and easy to handle,
especially, when setting . the demand function
of the newly introduced transport facility.
Second, this approach is more generalized
because we do not depend on the assumption of
probabilistic distribution of the random
component, but we still can derive the Logit
model from the specified indirect utility
function as the log-sum function form.
Third, this method can be used to measure the
welfare change both for the improvement and
the newly introduced case. For the newly
introduced case, this approach 1is very
gignificant because it enables us to directly
measure the exact welfare change without any
approximation.

However, this approach has been
developed only in the framework of the
consumer behavior. But in the general

equilibrium approach how can it be adopted ?.
Also, based on individual choice mode which
we have demonstrated in this framework how
should it be developed generally in a joint

choice framework such as route choice,
destination choice and so on., We hope these
questions can be brought out in further
research.
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