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A New Approach for Dynamic Traffic Assignment

Bin Rans, Toshikazu Shimazaki## and Yoshiji Matsumotos»#

Abstract. This paper considers a general problem of dynamic system op-
timal (DSO) traffic

the many-to-many DSO traffic assignment model Is established by using the

assignment. Distinguished from the previous approaches,

constrained optimal control theory. According to the characteristics of cost
functional, the DSO traffic assignment problems are divided into two groups,
the normal DSO problems and singular DSO problems. The necessary optimality
conditions are given for both kinds of problems. It is also shown that the
DSO traffic assignment problems can be solved by using the general con-

strained optimal control approaches.

1. Introduction

In most of the dynamic traffic assignment
models proposed to date, only very simple cases
are investigated. Merchant and Nemhauser [43.131
consider the dynamic system optimal (DSO) traf-
fic assignment problem for a many-to-one case.
Quite recently, Matsui 3] suggests a dynamic
traffic assignment model applying to a simple
one OD network by using the maximum principle.
In order to study the general dynamic traffic
assignment problems, the general DSO traffic
assignment problems are investigated at first.

In this paper, our objective is to provide A
-macro-model for minimizing total system cost' in
dynamic traffic asslgnmerit. The model of
many-to-many network DSO traffic assignment is
established in the first part. This
an advance over Merchant's many-to-one
It differs from Merchant's method by
using the constrained optimal control theory.

model s
model.
The model is described as following.

The model is a nonlinear constrained optimal

control problem. The - state equation of every
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link 1s presented In a general nonlinear form.
Suitable assumptions about cost function and
exit function on one link are made. The state
equations, tpgether with other constraints of
node conservation given 0/D
flow rate Q(t),

are given in order to minimize the total sys-

equations, the
and nonnegative conditions
tem cost.

Necessary optimality conditions  are con-

ducted as an application of the general
theory. According to the different optimality
conditions caused by different cost functional
assumption, the DSO traffic assignment problems
are classified into normal DSO and singular DSO
problems.

In the applications of optimal control
theory, the assumptions of cost function and
exit function decide the solvablility of the
problem and the characteristics of solutions.
Generally in normal DSO traffic assignment
problems, if the cost function is assumed to be
convex with respect to in-flow u(t), the unique-
ness of solution can be obtained. In the cases
of other cost functional assumptions, the
problem usually has no unique solution due to
the singular solutions.

The next sectlbn presents the models of
dynamic system optimal (DSO) traffic assignment.
The transformation of DSO traffic assignment
probiems to a canonical optimal control for-
mulation Is described in section 3. This section
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also highlights the principal flfst~order neces-
sary conditions of two kinds of DSO traffic as-
signment programs, but only to the extent
necessary for understanding the work herein.
The general solution approaches of DSO traffic
assignment are introduced in Sec. 4. In order to
make some comparisons with previous works in
this field, the
signment models is reported in Sec. 5. Conclud-

analysis of dynamic traffic as-
ing comments are presented in the last section.

2. Formulation of Dynamic System Optimal
Traffic Assignment

2.1 Basic Network Notatlonm
N: node set, (n: total nodes number);
L: 1ink set, (m: total links number);
Lox: set of links starting from origin k,
k=1,...,r, {r: total origins number);
Lax: set of links directing to desi:ination k,
k=1,...,s, (s: total destinations number);
Ni: set of nodes which are not origins nor des-
tinations, (nodes number: n, = n - r - s);
x1(t): number of vehicles on link | at time t;
u(t): admitted flow into link 1| at time t;
g.(t): exit flow out of link I at time t;
A(Q): {jE€L | j points out of node g};
B(q): {JEL | j points into node q};
Qow(t): generation in-flow from origin k at
time t;
Qawx(t): attraction flow to destination k at
time t;

Cix(t),u(t),t]: travel cost on link i for one
vehicle entering at time t.

In the following we give the mathematical
formulation of DSO traffic assignment programs.

2.2 Dynamic System Optimal (DSO) Traffic
Assignment Problem
Consider a performance index of the form

t.
I = Flto,x(to),ts,x(t2)] *+f folx(t),u(t),t] dt
. . to )
Here F{to,x(to),t1,x(t1)] is the total cost of the

system relating to initial and final state vari-

(2-1)

ables x(to),x(t,)‘ and the second term of (2-1) is

the total cost of the system during time Intexj-
val [to,t.]. The DSO traffic assignment problem
is to find the functlons u(t) that minimize (or
maximize) I and at the same time to satisfy the
following constraints:
The state function on link i is:

dxg(t)/dt = uy(t) - g.(t), (2-2)
The in-flow into origin k during interval [to,t.]

Cus(t) = Qownlt) k=1,...,r, (2-3)
JeLok
and out-flow from destination k during time

i=1,...,m.

is given,

interval [to,t.]

Eg5[x5(t)] = Qux(t) Is also given, k=1,...,s.
JELax
For each node q&N,, we have the conservation

(2-4)

equation

L uy(t) = T gylxs(t)], q=1,...,n1. (2-5)
JeAlq) JEB(a)

The non-negative conditions are

x:(t) =z 0, i=1,...,m, (2-6a)
u(t) = 0, i=1,...,m. (2-6b)
The boundary conditions are

Xl(to)=X1o, i=l,...,m. (2—7)

We call (2-1)-(2-7) program (A). The 0D conditions
of (2-3) and (2-4) can also be given in an in-
tegral form, which means the total numbers of
in-flow and out-flow vehicles during Interval
{to,ty] are glven. The different types of 0D
conditions are preferred for different control

purposes and situations.

Exit Function. The exit function g.(t) repre-
sents a physical phenomenon and' is mainly de-
pendent on exlsting vehicles x(t) and in-flow
u(t). In a highly congested situation, density
distribution along link I can be assumed to be
constant and gi(t) = g,[x:(t)] can be thought as
a suitable assumption. Therefore in this paper
we use the following exit function assumption.
The other assumptions of exit function will be
discussed in other papers.

Exit Function Assumption (EFA). We say that
{g1lx:(t)]} satisfles EFA when
a) Exit function g:=gi[x,(t)] is a nondecreasing,
differentiable, upper bounded, and concave
function with respect to x;(t) for each link i;
b) g:[x,(t),t] is continuous on R™ x R*,
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Cost Functional. By changing the performance
Index, a wide variety of applications of DSO
traffic assignment models can be found. The fol-
lowing types of performance Index that may be
of practical interest have been discussed at
length:

1) The total travel cost of in-flow vehicles is
minimized in interval [to,ti]. The cost func-
tional is

t, m

1= Cug Cilx:(t),us(t), t]dt
to i=1

Here the cost function C;(t) on link { is as-

(2-8)

sumed to be dependent on existing vehicles
xs(t) and in-flow u,(t) on link i. Other cost
function assumptions, such as cost function
with link interactions, will be Investigated in
other papers. For convenience of solution, we
introduce the cost function assumption of the
present problem as following.

Cost Function Assumption (CFA): We say that
{CiIx1,uy,t]} satisfies CFA when

a. Ci[x:,us,t] is nonnegative, nondecreasing,
and convex with in-flow u.(t) for all link i

b. Cix:,uy,t] is differentiable with x, and is
continuous on R™ X R™ x R,

2) At the end of control(t=t;), the number of
vehicles existing on the network is minimized.
The cost functional is given as following:

n
I = D xu(ty) (2-9)

i=1

3. Necessary Conditions of D50 Traffic
Assignment

The cost functional, state equations, state
.and control variables constraints, and bound-
ary conditions determine the solvability of DSO
‘traffic assignment problems. The different
necessary conditions and the existence
theorems may make it preferable to deal with
one particular problem or the other. Herein for
two types of DSO traffic assignment problems,
or problems with normal solutions and singular
solutions, we present the necessary optimality
conditions, but only to the extent necessary
for understanding the works here. In order to

Ran, Shimazaki, Matsumoto :

keep consistency with the general optimal con-
trol theory, the following canonical form of
optimal control problem with general ¢on-
straints is adopted:

ta

min I = Flto,X(to),t1,x(t1)] + S folx,u,t) dt (3-1a)
to .

with respect to the state x(t) and conirol u(t)

which satisfy the constraints

dx(t)/dt - f(x,u,t) = 0, tostst,, (3-1b)
S(x,u,t) = 0, to=tst,, (3-1c¢)

X(to) = Xo given, (3-1d)

¢ [x(ta),ta) = 0. (3-1e}

For convenience, define the Hamiltonian func-
tion H as following:
Hx,u,t,A,p) = AT f + fo + pT 8. (3-2)
Since the constralnts S(x,u,t) in DSO trafflc as-
signment problems are linear in the elements of
control vector, the singular DSO traffic as-
signment problems can be defined as following:
an extremal arc of the DSO traffic assignment
problem is sald to be singular if the m x m
determinant

} Huau |
vanishes at any point along it. Hu. is the m x m
matrix with elements

=t
du; 3uy
If the Hamiltonian H is linear in one or more

1,j=1,...,m.

elements of the control vector then the ex-
tremal is singular. This is the case considered

in the second part of thls sectlon.

3.1 Normal DSO Traffic Assignment Problem

First of all, we consider the case of the
first cost functional assumption (2-8) in section
2. Since the Hamiltonian H is nonlinear with
control variables {u,}, this problem belongs to
normal DSO traffic assignment problem. As the
problem here has a general form of Bolza op-
timal control problem with equality and in-
equality constraints of state and control, we
use the extended form of the maximum principle.
For the sake of convenience, the bounded state
variables and control variables are transformed
into unbounded forms.
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Introduce a set of. auxiliary state variables
{ys: 1=1,..,m} defined by

Xy - Y12 =0, i=1,....m, (3-3)
and replace state Inequallty constralnts (2-6a)
with Eq.(3-3). Next, compute the time derivative
of Eq.(3-3), discard Eq.(2-6a), and replace it

with the nondifferential constraints

Us - g:(X4) - 2yave = 0, I=l,...m, (3-4)
the differential constraints

dy:/dt = vy, i=1,....m, (3-5)
and the initial conditions

¥1(0) = vV (X10), i=1,...,m. (3-6)

Here, the symbol v, denotes an auxiliary con-
trol variable.

As ‘the control solution of the present
problem is not singular, we can transform the
bounded control into an unbounded form.

Introduce the set of auxiliary control vari-
ables {w,: i=1,...,m} and rewrite control in-
equality constraints (2-6b) in the form
(3-7)

In this transformation technique, the control

uy - w? =0, 1=1,...,m.
vector u(t) Is redefined so as to include w(t) as
an additional component. However, it should be
understood that the components of this aug-
mented control are not free, but must be
chosen consistently with (3-7), which becomes a
nondifferential constraint to be satls‘fled
everywhere along the Interval of integration.
The out-flow constralnts (2-4) from destina-
tions are equality constralnts which have no
explicit dependence on the control variables.

Gy = £gslxs(6}} - Qaul(t) = 0, (3-8)
jELdl
As the constraints are to apply for all tosts

i=1,...,s.

t., thelr time derivatives along the time path

must vanisi. ¥We must have

dGy = 8G, + « 3G, dx; =0, (3-9) or
dt at JELai =) & dt

dG, = ~dQas(t) +'T
dt dt

dgs(xy) [us(t) - gy(xy)] = 0,
JELas dx,

i=1,...,s. (3-10)
Now (3-10) has explicit dependence on u. The to-

tal time derivatives of (3-8) play the role of
control variables constraints of the type (3-
1c). In addition, we add a set of boundary con-

ditions (3-15) at t=t,.

In the light of the prevlous discussion, we
rewrite our DSO traffic assignment program (A)
in the following form (B) which is similar to the
canonical optimal control program (3-1).

ta
min 1= J folx,u,t)dt
to
t, o m
= f L uy Cilx:(t),us(t),t],
to I=1 -
with respect to the state x(t) and y(t), the con-

trol u(t), v(t) and w(t) which satisfy the follow-
ing constraints:

(3-11)

differential constraints (2m equations)
dx;/dt - fi(Xy,us,t) = dxg/dt - us(t) + galxa(t)]

=0, 1=1,...,m, (3-12a)
dyy/dt - frem(y,ve,t) = dy/dt - vy(t) = 0,
i=1,...,m; (3-12b)
equality constraints ((2Zm+n) equations)
Sy = Cuy(t) - Qoal(t) =0, i=1,...,r, (3-13a)
J€Los
Syer 7 ~dQay(t) + T  dgy(xy) [us(t) - gs(x3)} =0,
dt JELar dxy
i=1,...,s, (3-13b)
Sieres = L uy(t) - T gylx,(0)] =0,
JjeAl) JE€B()
I=1,...,n,, (3-13c)
Sien = Ug - gulXe) - 2y1vy= 0,
i=1,...,m, (3-13d)
Stanem = Uy - W32 = 0, i=1,...,m; (3-13e)
boundary conditions (2m initial conditions)
X1(to) = X0, i=1,...,m, (3-14a)
vi(to) = vV (Xy0), i=1,...,m; (3-14b)

side conditions

¢ a(ta) = Tegslx;(t)] - Qailts) = 0, i=1,...,s.
J€ELax
(3-15)
The above program (B) is one of the Bolza

type and ls characterized by the augmented

functional
s ty 2m . 2m+n
J=ZCpids +f[fo+ T Au(x:-f1) + £p. Sy ] dt,
1=1 to i=1 i=1

(3-16)
where u, A, p are vector Lagrange multipliers

having dimensions s, 2m, (2m+n), respectively. It
is known that the minimization of (3-16), subjéct
to (3-12)-(3-15), Is identical with the minimiza-
tion of (3-11), subJect‘to (3-12)-(3-15), regard-
less of the choice of the multipliers g, 1, p.
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The Hamiltonian H is:

2m 2m+n
HX,y,u,v,w,t, 4 ,p) = T 2,8y + fo + £ p, Sy
1=1 i=1

(3-17)
The first-order optimality conditions are given

as following:

oH/Bu = 2T fu + fout pT Su =0, (3-18a)
AH/Av = AT fy + fov + pT Sy =0, (3-18b)
OH/ AW = AT fuw + fow + pT Sw = 0 (3-18c)
{3m algebralc equations)

AT = Hu= <27 fx - fox - BT Swr (3-19a)
AT = -Hy = -AT £y - foy - pT Syt (3-19b)
{2m differential equations)

)»T(tl) = (HT (ﬁx)t-cx. (3-203)
).T(tx) = (ﬂT ¢'Jy)t-t1~ (3-20b)

(2m boundary conditions)
In summary, necessary conditions for program
(B) to have an optimal value are: 2m differen-
tial state equations (3-12); 2m differential op-
timal condition equations (3-19); 3m algebraic
optimal condition equations (3-18); (2m+n)
equality constraint algebraic equations (3-13);
4m boundary conditions (3-14),(3-20); and s side
conditions (3-15). The system composed of the

feasibility equations (3-12)-(3-15) and the op- |

timality conditions (3-18)-(3-20) constitutes a
‘nonlinear, two-point boundary-value problem in
which the unknowns are the functions x(t), y(t),
u(t), v(t), w(t) and the multipliers 2 (t), p (t).

3.2 Singular DSO Traffic Assignment Problem
Consider the case of the second cost functional
assumption in section 2. The canonical DSO traf-
fic assignment program (A) can be rewritten as
program (C):

m
min 1 = F{x(t1)] = © x4(t1),
i=1

(3-21)

subject to
differentlal constralints (3-12); equality con-
‘straints (3-13a)-(3-13d); inequality constraints
(3-22)
boundary conditions (3-14); and side conditions
(3-15). )

In this kind of singular control problem, the

Stenem = -U; & 0, i=1,...,m;

Ran, Shimazaki, Matsumoto :

control inequality constraints are generally
kept as a set of Important conditions for op-
timality solutions. The Hamiltonian is

2m 2m+n
H(x,y;u,v,t,2,p) = L A4 fi + Ep1 Si. (3-23)
i=1 i=1
The necessary conditions on H is
SH/3u = AT fu+ pT Su =0, (3-24a)
3H/3V = AT v+ pT Sy = 0, (3-24b)

which have the similar form as (3-18) with the
additional requirement that

py = 0, Sy =0, I=l+n+m,...,n+2m, (3-24c)
p1= 0, Sy <0, I=1+n+m,...,n+2m. (3-24d)
Since the Hamiltonian is linear in the control
variables u(t) (but nonllnear in the state

variables), extremal arcs (H.=0) occur on which
the matrix Huw Is singular in pro'gram (C). For
such system, the coefficient of the linear con-
trol term in H vanlishes identically on a sin-
gular arc; thus, the control is not determined
in terms of the state and adjoint varlables, x
ané {X, 0}, by the necessary condition H.=0 (or
minimizing H) along the singular arc. Instead,
the control is determined by the requirement
that the coefficient of these linear terms
remain zero on the singular arc; l.e., the time
derivatives of H. must be zero. By incorporat-
ing equation (3-12), the following 2m algebralic
optimal conditions are obtained.

d?(Hu) = 2 + pT Su+2pT Su+ pT Su =0,
dtz

(3-25a)
d2(Hy) = A + pT S+ +2pT S, + pT Sy = 0.
dt2

{3-25b)
The other first-order optimality conditions are

AT = -He = -27 fxx -~ p™ Sx, (3-26a)

AT = -Hy = -AT fy - p™ Sy, (3-26b)
(2m differential equations)
and 2m optimality boundary conditions (3-20).
dA/dt In time derivatives
d2(H.)/dt® with optimality conditions (3-26), dif-
ferential equations (3-25)

We replace

will have explicit
dependence on control variables {u(t),v(t)}.
The equations (3-25) determine the 2m-vector

{u(t),v(t)} with the control inequality con-
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straints (3-24c,d).

In summary, necessary conditions for program
(C) to have an optimal value are: 2m differen-
tial state equations (3-12); 2m differential op-
timal condition equations (3-26); 2m algebraic
optimal condition equations (3-25); (n+m)
equality constraint algebraic equations (3-13a)-
(3-13d); m multipliers constraints (3-24c,d); 4m
boundary conditions (3-14),(3-20) and s side con-
ditions (3-15).

4. Solution Approaches of DSO
Traffic Assignment

Unless the state equations, the performance
index, and the constraints are quite simple, we
must employ numerical methods to solve DSO
traffic assignment problems. In section 3, the
DSO traffic assignment problem (A) are trans-
formed into two kinds of forms (B) and (C)
similar to the canonical optimal control
problem (3-1). The corresponding necessary con-
ditions are also presented. Therefore the algo-
rithms for solving this kind of standard optimal
control problems can be adopted. One of these
algorithms is simply explained in the following
in order to give an insight into the solution of
the DSO trafiic assignment problems.

4.1 Solution for Normal DSO Traffic Assignment

Over the past several years, a family of
sequential gradient-restoration algorithms
(SGRA) for solving the conical program (3-1)
have been developed by A. Miele and his as-
sociates '®), Therefore it's bosslble to apply
SGRA to solve our normal DSO fraffic assign-
ment problems. The idea of these algorithms is
explained in the following.
Approximate Mcthods. In general, the differen-
tial system (3-11)-(3-15) is nonlinear, and ap-
proximate methods must be used to seek a solu-
tion iteratively. In order to define conver-
gence In seeking the solution iteratively, let
the norm of a vector z be defined as

N(z) = z%z.

Then, let P denote the norm squared of the er-

rors assoclated with the constraints (3-12)-(3-
15), and let Q denote the norm squared of the
errors associated with the optimality condi-
tions (3-18)-(3-20).

tx . ta
P = N(x - f)dt + § N(S)dt + N(¢ )=ca, (4-1a)
to to
t. .
Q= f N(A + foc A + fox + Sx p)dt
to
ta
+ [ N(fu A + fou *+ Su p)dt
to
+ N(l o ﬂ)c1- (4-1b)

For the exact optimal solution, one must have

P =0, Q = 0. (4-2)
For an approximation to the optimal solution,
the following relations are to be satisfied:

P £ ¢, Qs €2 (4-3)
where g. and ¢ 2 are preselected, small, posi-
tive numbers.
Sequential Gradient-Restoration Algorithm.

Sequential gradient-restoration algorithms
involve a sequence of two-phase cycles, each
cycle including the gradient phase and the res-
toration phase. In the gradient phase, the value
of the augmented functional J is decreased,
while avoiding excessive constraint violation;
in the restoration phase, the constraint error
Is decreased, while avoiding excessive change in
the value of the functional. In a complete
gradient-restoration cycle, the value of the
functional is decreased, while the constraints
are satisfied to a predetermined accuracy.
Hence, this sequential gradient-restoration al-
gorithm, with complete restoration (SGRA-CR),
produces a succession of suboptimal solutions,
which Is important for the engineering pur-
poses. The algorithmic details of SGRA-CR can
be found in Ref. 6.

4.2 Solution for Singular DSO Traffic
Assignment

For the singular DSO traffic assi_gnment
problems, we have two kinds of methods to solve
them. One is the first-order, or gradient, ap-
proach suggested in this paper. In this kind of
approac}h, the necessary conditions H,=0 which
have no explicit dependence on control u(t),
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are transformed into necessary conditions which
provide information about u(t); i.e., the time
derivatives of H. must be zero. Then, the
gradient algorithm used in normal DSO traffic
assignment can also be used to solve the sin-
gular 'DSO traffic assignment problems.

As pointed out by Bell and Jacobson t*7J, the
convergence rate of gradient algorithm some-
times is low for solving singular problems.
Therefore they present a method which converts
the singular problem into a sequence of nonsin-
gular ones by adding a term

t.
¢ fuTu dt
to
into the cost functional (3-21). As ¢ 1is

progressively reduced toward zero, we find that
the solution of the e -problem tends to that of
the original one. This method is called ¢ -
algorithm. Its application in our singular DSO
traffic assignment problems will be studied in

future work.

5. Analysis of Dynamic Traffic
Assignment Models

5.1 Existence of Solution and Uniqueness
of Solution

The existence of solution of the above mathe-
matical programs can generally be conducted
from many existence theorems of optimal con-
trol. The strict mathematical reasoning of the
existence of solutions will be discussed in
another paper. In singular DSO traffic assign-
ment programs another important problem of
solution remains to be answered. The statlonary
solutions or singular arcs sometimes may not be
'minimizing. This point also needs to be studied
in future work.

For the uniqueness conditions of solution, we
have the following general statement [27: [f
the function fo[x(t),u(t),t] in cost functional lIs
smooth, coercive(i.e., grows quickly at infinity),
and convex with respect to dx/dt, thls problem
has exactly one solution for almost every end

condition. But for the actual problems, the

Ran, Shimazaki, Matsumoto :

constraints to the programs, such as the 0D
time-varying conditions and initial-end bound-
ary conditions, together with the assumptions
will be

the main factors determining the solution to be

of cost functions and exit functions,

unfque or not.

5.2 Comparisons With Other Dynamic Traffic
Assignment Models

Merchant and Nemhausert41{s! present a
dynamic system optimal traffic assignment model
which 1s applied only to a many-to-one case.
The cost function assumed in their model is
only dependent with state variable x(t). In fact,
the assumption in our presentation that cost
function depends on both state and control
variables is more general than that in theilr
model. As pointed out by Merchant and Nem-
hauser, it's difficult to extend their own model
to the general many-to-many cases. The neces-
sary conditions in their model are conducted by
using Kuhn-Tucker conditions. As it is well
known that Kuhn-Tucker conditions are not ef-
fective to deal with dynamic problems, their
approaches are not preferred for general DSO
traffic assignment problems.

Matsuif®? uses the discrete maximum principle
to treat the dynamic problem. But his results
only apply to one OD network with parallel
links. In his analysis of dynamic user equi-
librium, he introduces the Lagrangian function.
But the constraints of state equations
dx/dt=f(x,u,t) don't appear in his Lagrangian
function. If the constraints which shouldn't be
omitted are put into the Lagrangian function,
it's impossible to get the similar results with
his one. In his application of discrete maximum
principle, an approximate form of cost function
Is used through the transformation of triangle
approximation. But his method is not applicable
to a general situation.

The dynamic models have several characteris-
tics distinct with the static models. The con-
cept of path flow Is difficult to define due to
the differences of link flows of one path even
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at - the same time. The in-flows into links become
important in determining the solvablility of
dynamic problems.

As an important characteristics of dynamic
problems, two groups of variables, control
variables and state variables, exist in order to
decide the dynamic system. This has brought out
great difficulties in conducting the similar
user equilibrium patterns to static case due to
the coupling function of control variables and

state variables.

6. Conclusions

This paper represents a new direction In the
development of dynamic traffic assignment
theory by introducing the optimal control
theory. The general DSO traffic assignment
probiems are formulated as the Bolza type op-
timal control problems. The normal and singular
DSO traffic assignment problems are transformed
into a conical form and the first-order neces-
sary conditions are presented. Therefore it's
possible to apply the sequential gradient-
restoration algorithm to solve our dynamic
problems.

There are many theoretical, computational,
and empirical questions that remain to be
answered. Foremost among them is the quality

of the model. In particular, the assumptions

of cost function and exit function need to
be checked empirically. The uniqueness of solu-
tion should be considered carefully and
suitable conditions for uniqueness of solution
should de conducted under strict mathematical
programming. As the further research direc-
tions, the efficient algorithms of solving DSO
traffic assignment programs should be estab-
lished and the practical computational tests
should be done. Furthermore, the feasibility of
applying DSO models to more realistic networks
should be studied.

The dynamic problems are quite different
from the static problems. The alms and ap-
proaches should vary with the characteristics
of dynamic problems. It's important to study the

dynamic traffic problems by applying the cor-
respondlng dynamic approaches.
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Appendix
Notes of Symbols. The transpose of a vector or
matrix is Indicated by a superscript following
the symbol, e.g., XT or AT. The partial deriva-
tive of a scalar or vector about one scalar or
vector is Indicated by a underscript following

the symbol, e.g., Hu or ¢ x.
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