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CHARACTERISTICS OF LAMINAR FLOW THROUGH
RECTANGULAR CHANNEL

By Kivoji Kimura®* C.E. Member.

Introduction

When the laminar flow is a uniform flow,
if an appropriate coordinates are applied, the
Navier-Stokes’ equation may be reduced to the
Poisson’s differential equation.  The same can
be said with the torsional problem of elastic
bar. In the case of a channe] of rectangular
section the result is the same as what has
been found by the Saint Venant’s principle®’.
As a different solution, it has also been found,
although under a certain condition, that the
energy dissipation of the flow owing to the
viscosity becomes minimum?.

In this paper, the author, putting the solation
simply
derived its exact solution, in the same manner

in a system of orthogonal functions,

as Navier did in the problem of the deflection
on the simply supported rectangular thin plate®.
Its results becomes the same to the latter above
mentioned. The discharge, the Darcy-Weisha-
ch’s {riction factor, the momentum correction
factor and boundary shear stress are calculated
here. And then, the effect of the side wall on
the flow in the wide channel 1s reported. All
these calculations have been catried out for the
open channels. In this paper, since the flow
are treated as the laminar flow, all these results
may be applied for the Reynolds number sma-
ller than 500 or so.

1. Veloecity Distribution

In the uniform flow, the Navier-Stokes’
formula is:
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where the boundary conditions are u=0 at y=
0, v=0and 2=0, end 6 #/8 z=0at 2= A (in which
u * local velocity, w : specific weight of water,
I :surface slope, p: coefficient of viscosity).
As a solution of this equation, let us assume
the following equation :
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in which m=1, 2, 3,---e2, and n#=0,1, 2,:--00.
Obviously, Eq. (2) satisfies all of the boundary
conditions. Calculating the terms of &#/8y°
and 8%/ 2* by using Eq. (2), and substituting
them in Eq. (1), we obtain :
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where m=1, 3, 5---c0, and n=0, 1, 2---eo. Also
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Anew, we represent n instead of #', and taking
into account
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where m,n=1,3,5,c0,
(1) When A/b<0.5
In this double series, since I converges

m
slower than ¥, reducing & according to the
7 m

Fourier series, we transformed the series into

the single infinite series of 3. Since
b
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is the Fourier expansion of

the following
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is the Fourier expansion of the {ollowing
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functions (where ¢ is constant)
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and also
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is the Fourler expansion of the {following
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therefore, Eq. (3) becomes as follows :
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(2) When h/6>0.5
In Eq.(3), since ¥ converges slower than X,
reducing 5 according to the Fourier series

similarly to the above, and transforming it into

the infinite series of X' only, we get :
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In the case of A/B=0.5, evaluating the velocity
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Fig. 2 Velocity and boundary shear stress
distribution A/ & =0.53.

from Egs. (4) and (5),
lines are plotted as shown in Fig. 2.

I1. Discharge

The discharge which flows through the rect-
br{n-d}"dz;
aj o

assume that

the some equi-velocity

angular channel 1s (J:== and as a

dimensionless discharge let us

QF = %'iiz , then we have
9 2l
QreBpy b (6)

<t z
£ i’ { il ) ”2}
b

where we used Eq. (3) for the velocity distri-
bution. Either using Eq. (4) or transforming

Eq. (6) by the Fourier series, we obtain
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And using Eq.(5),
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In Eq. (6), let us put 2/1/]7=;X, we have
QF = -1—2§f X). When the value of X takes to
zero or infinity, the discharge is obviously zero.
And

(X)) = o (Xm)?
J1(X= “m%' it {((Xm)?+n%?

and this function converges uniformly, When
N1, £ (X)>>0 and the dimensionless discharge
is an increasing function; when X >1, (X))

or transforming Eq. {(6), we
get

<0 and the dimensionless discharge is a decr-
and when X=1, f(X)=0
and the dimensionless discharge has its maximum
Because f(X)=7(1/X), the values of

the function at the variable X and its inverse

easing function;
value.
values are the same; for this reason, the value

of the function at X=1

maximum or minimum.

1s found also to be
In the same way,
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Fig. 3 Dimensionless discharge.
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using a geometrical progression as the X-scale
of the coordinates, we can understand easily
that the functions are symmetry with respect
to X1
I1I. Darcy-Weisbach’s Friction Factor

The Darcy-Weisbach equation is /=1 -

) 4R
%”; , where 1:{riction factor, R :hydraulic
radivs, i, : mean velocity, ¢ : gravitational
acceleration,  Substituting um**Q--—if)IA in the

above equation, we obtain
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of the coordinates,

in which R, is the Reynolds number

2 will be symmetry with
respect 1o h/b="0.5. ¢ evaluated by using the above
equation (9) is as shown in Fig. 4 which is the
same as given by L.G. Straub and others®.
IV. Momentum Correction Factor
Let us now denote % for momentum correct-
ion factor, then it becomes
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Using Eq. (3) for «, and taking the following
into account
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Fig. § Momentum correction factor.
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And, in the same relations, changing m lor n,
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and putting Q#E-Z?a, we have
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For the different ways, using Egs. (4) and (5)

as the we can induce

Eqs. (12) and (13) respectively.

in Fig. 5 is calculated by using the

equations,

V. Boundary Shear Stress

velocity distribution,
The curve

above

The shear stress upon the channel bed is

computed through the relation of Tb:r'l(%‘té>z-:c-
¢
Accordingly by using Eq (4), we obtain
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Similarly, by using Eq. (5), we get
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The shear stress upon the channel wall is

R
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computed through the relation of rw:ﬂ(%>
y=o. Then, by using Eq. (4), we obtain
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In Iigs. (15) and (16), if the value of the
hyperbolic  tangent is nearly unity, we had
better use the f{ollowing equation that converges

more quickly;
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where Y-/ and M=m in Eg. (15), Y=
2/2h and M=n in Eq. (16), and m, n=1, 3,
In the case of h/6=0.5, the boundary

shear stress Is plotted (on the normal direction

with each boundary surface) in Fig. 2. The
mean shear stress computed through these
equations bhecomes of course the well-known
form of wliR. ‘

VI. Effect of the Side Wall on Wide
Channel

In the Eq. (3), putting 7—%?— =05, and assum-

ing L-—co as in Fig. 6, we got—z—”:dB and
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Because the integration in this equation
becomes
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Let us assume that y-»oo, then we get the

well-known equation as follows
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Using Eq. (19), the shear stress on the channel

bed becomes
nwy
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and similarly, the shear stress on the channel

wall becomes
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In the above equation, when evaluating the
infinite series, we had better use Fq. (18) that
converges more quickly. Fig. 7 is plotted the
velocity and the boundary shear stress distrib-
utlon by using these equations.

For the purpose of investigating the effect
of the channel wall on the velacity distribution,
let us assume that [#],s.=u;, and we obtain

p

[ A A

A

Fig. T Velocity and boundary shear stvess
distribution on wide L-shape channel.
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Similarly, in order to investigate the efleet of
the channe! wall on the shear siress distribution
on the channel bed, let us assume that [t;],5e

=14, then we get

Fig. 8 Effect of the side wall on wide channel
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fl‘;;b:;f;”.ﬂ =%%1;l}z_exp(_%)= Nevoeennn IC))
This equation is equal tc z—0 in LEg. (22).
Evaluating N on the basis of these equations,
it becomes as shown in Fig. 8. The value of
N takes the greater part at the first term of
the infinite series, and especially the larger v/
becomes, the more correct. Accordingly, as
shown in Fig. 8, taking logarithmic scale for
N, the N vs. y/h curve becomes roughly a
straight line for each value of 2/A.
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