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THE ENERGY LEVEL OF A LINEAR DYNAMIC SYSTEM
UNDER RANDOM EXCITATION

By J. B. Tiedemann®, C. E. Member

Summary : The expected energy level of a
linear dynamic system is expressed in terms of
the power input and energy dissipation rate.
Simple expressions are obtained relating the
energy level to the time-dependent autocorrela-
tion function of the disturbance.

The non-stationary response of a linear dynam-
ic system to a suddenly applied random dis-
turbance has been discussed by Caughey and
Stumpf?, and a paper by Sawaragi, Sunahara,
and Soeda” describes the response of non-
linear systems, The present paper will employ
a somewhat simpler approach based on the energy
level of the system that provides a physical
interpretation of the transient process and may
be applied to certain cases of mnon-stationary

excitatation.

Consider a liner'spring-mass-damper system
described by the differential eguation
Mz +Cé+Kz=f(2)
where f(¢) is an external disturbing force that
begins abruptly at t=0. If the system is initi-
ally at rest, the velocity at any instant is given
by the superposition integral

x’:ﬁV(r)f(t~-r)dr-----~---~-----------------~--( ')

where V(1) is the velocity response to a unit

force impulse,
.

Vi) =e"%r (cos gr— -Q—M-a-sin g r)
and
Y
M 4 M
The instantaneous power input to the system
is the product of the velocity and the external
disturbing force

pP=rOE
or
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For an ensemble of N systems, or for N exper-
riments on a single system, the ensemble av-
erage power input is

¢ 1 N
P“fuv(f)[“ﬁzl‘fscz')f,- (p:)]dr
or
P:“:VCT)R(K Fmt)d T crerereriaeeni (23
where
1 ¥
Rt =) =23 fi()f:G—7)

denotes an ensemble average autocorrelation

function.
The rate at which energy is dissipated in the
damper is
= L wreeersanrnereeineeantreesar et isenanaraenen (3)

Using the expression for £ from equation (1),
d:c[ J ;V@ f(t—r)dr:r
or
d:CI;J;V(T)V(/Df(t-—'r)f(t—l)drd/l
and the ensemble average rate of energy dissi-
pation is
D:CI;JSV(T)V(A)R(tAr, t—Ddedi (4)

where
1 ¥
R(t—=, 1-D=—= TfiGt—-02f:G=D
1
The rate of change of the energy level of a
single system is
de
Z TP
and the ensemble average rate of increase in
energy level is

dE 1 ¥
"dT=—N‘%'(Pi*dl)

Thus

dB 1 1
G T NI TN
0or
dE
——C—i?mP—-D .......................................... (5>

Using expressions (2) and (4),
dE—_ t Lt
-a?ﬁjoV(r)R(t, zuodrﬂfojo



The Energy Level of a Linear Dynamic System under Random Excitation 11

V(O V(DR(E—z7, t—2)dr d2
and

e —

VO VIORG—=r, t—0dtdddtememer (6)
If the disturbance f(¢) is random, the awk-

ward integrations in equation (6) may be avoid-
ed by employing an approximation valid for
systems with small amounts of damping. For
lightly damped systems, the motion caused by
a random force is approximately sinusoidal at
the natural frequency g, with random wvariations
in the amplitude, X, and the phase angle, 6
Thus, the motion of each member of the
ensemble may be described by

xy= Xsinlqi+0;)
and

dr=gq X; cos (gt+0;)
The individual rates of energy dissipation are

di=ci/=cg" X cos* (gt +6;)
and the ensemble average rate of energy dis-
sipation is

1 ha

D:(:qzw IZ'X,-Ecosz(qt—é—G;)
If the amplitude X; and phase angle 0; are
independent variables,

15 ., 15
D =cg* -j\—r—%’X,-] I:-F%'cos (q2'+0,-):|
and if all values of § are equally probable,
Dmﬂ.ig K2 e e 7
2 N
Moteover, the energy level of each system is
x
I
and the enﬂ:emble average energy level is
X I& l X*
Thus,
2K
N T/ - K
and from equation (7)
TR s
D=Lk (8)

Using expression (8) for the average rate of
energy dissipation in equation (5),

dE Cq F et e ar e aat et iariaieaiaany
—~ =P_ lx] ........... (9)

Remembering that P is a function of ¢ given
by equation (2), a first-order linear differential
equation in K may be written

dE
7 R
For systems initially at rest the solution of

(10 is
R L AP L A
Eee % X PUAE v, I¢8))
0

A further simplification may be made if the
disturbance is stationary and ergodic. In this
case the autocorrelation function is even and
independent of #, and time averages may be
used instead of ensemble averages. Moreover,
for a random disturbance the autocorrelation
function
R(t)=R({—t)=R(t, t—1)

vanishes for large v, Thus, from equation (2)

p:ﬁ V(oIR()d T uJ:V@Rcf)dmconstant.

for all values of # greater than the time T
beyond which the autocorrelation function is

negligible. The expected energy level thus
approaches

e LR (1B

qu‘*C(l ¢ TK ) .......................... (13)

for large values of £

In the case of white-noise excitation with
spectral density G in radian per second dimen-
sions,

RE©=ZZac)

where 8(z) is the delta function, and the power
input is
t =G
P=f0V(T> 2
Since v(O) =1/M,

xe
2M

V(o)

S(ddc= TZG

and
_ =GK L e,
Eﬂz—gim(l‘e E )

For lightly damped systems,

-

7= =31
Hence
E= ;g(lfe m,"cc‘) ........................... 14

is the expected energy level of a lightly damped
system subjected to stationary white-noise excita-
tion of spectral density G.

For completely undamped systems equation
(14) 1is indeterminate, but in the absence of
dissipation the expected energy level is

E:jo_[)(@dt ....................................... (15)



12 Trans. of JSCE, No. 91 March (1963)

where P(¢) is given by equation (2). For a
stationary whit-noise excitation the expected

energy level of an undamped system is thus

o T e,
s 2 16

The same equations may be applied to the
relative motion of a system disturbed by random
motion of the foundation. In this case the
equation of relative motion is

ME--Cr+ Ke=MZ,
where ¥, is the foundation acceleration. The

appropriate autocorrelation function is

4’ N
R(z, 13—7)-’*'—'{:,"?] B (E, (27
and the energy level is referred to a system of

coordinates moving with the foundation,

It is tempting to speculate on the application
of equations (6), (12), and (15) to the survival
of structures under earthquake shocks. Examina-

tion of strong-motion earthquake records®
shows that many are characterized by several
shocks of large intensity and short duration,
followed by a longer period of disturbance at a
lower level. During the imnitial stages of the
motion, transient phenomena in the response
may be important in determining the damage
done to the structure and its ability to survive
the remainder of the disturbance. For these
cases, analyses based on the timedependent

autocorrelation function might be informative.

Unfortunately, the motion of the ground during
the initial period of an earthguake is strongly
dependent on the nature of the soil beneath
the structure, and this effect must be accounted

for before meaningful time-dependent auto-

correlation functions can be obtained and

applied to real situations. FPerhaps the methods

used by Kanai? in correlating velocity spectra
with soil characteristics may be applied to the
problem of non-stationary disturbances,

The author wishes to express his apprecia-
tion for the kind assistance and valuable sugges-
tions offered by his colleagues at Kyoto Univ-

ersity and by Profs. Fujii and Kanai of Tokyo

University.
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