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FORCED PLUMES IN A STABLY STRATIFIED FLUID

By Dr. Eng., Mikio Hino*, C.E. Member

ABSTRACT

Predictions are given of the final height to
which a fluid emitted from a finite actual source
with buoyant force will rise in a stably strati-
fied fluid. The effects of velocity and temper-
ature of effluent are discussed. The results show
that the increase in the discharging velocity
does not necessarily contribute to the increase
in the height of the plume top, reducing it in
some cases of small mass flux and relatively
slow velocity, although increasing the temper-
ature is always effective. Also, virtual scurces
are determined which correspond to the actual
sources of mass, momentum and buoyancy.

One of the practical problems to apply the
proposed soluticn is an estimate of the neces-
sary amount of temperature or velocity increase
as required for stack gases of a thermal plant
which is sufficient to penetrate the top of in-
version layer in smog seasons and reach an up-
per atmosphere where they may be rapidly
diffused by strong turbulence; another such
problem will be encountered in sewage disposal
in the marine environments.

INTRODUCTION

Recently, several problems concerning the air
and water pollution are provoked owning to a
rapid developments of industral activities in the
urban districts, i.e., stack gases from thermal
power plants and other industries* 4%,
coolant gases with radioactivity from atomic
power stations®, detrimental wastes from
chemical plants, discharge of sewage™ ®'®, raw
These

problems are to be discussed from the stand-

or treated, in ocean waters and so on.

point of the diffusion phenomenon. This paper
is the first report of a series of researches on
the diffusion and the effects of velocity and
density of an effluent from a source, treating
the convection of plumes in a quiescent stratified

environment.

* Technical Laboratory, Central Research Institute of
Electric Power Industry, Komae-cho, Kitatama-Gun
Tokyo, Japan.

In a stably stratified layer, the fluid released
from a source, jet or plume, does not ascend
infinitely as in a uniform environment. The in-
crease in discharging velocity or temperature
seems to be an effective practice®” " to send
an effluent gas penetrating the stable layer, for
instance an inversion layer which prevails during
smog season, and reaching more turbulent layer
above. The solutions to this problm including
plumes with negative buoyancy are presented
in the following discussions.

Here, a historical review on the behaviours
of jet and plume in a calm ambient body fluids
will be described briefly. Table 1 shows a classi-
fied definition of jet and plume along with the
authors of main achievements. The theoretical
and experimental results of the studies have
been summarized by Abraham'® (1960) for the
case of a uniform environment,
theory of Morton' (1959) which was published

shortly before his report.

except the

The term jer means the motion of an efflu-
ent from a source without delivering buoyancy
flux, in a quiescent environment whose proper-
ties may be equal to or different from those of
the effluent ; whereas the term plume the motion
of an effluent with its initial buoyancy flux
under the action of gravity or buoyancy force'®.
In other words, the jet delivers mass and
momentum, while the plume a flux of buoyancy
beside them.
source delivers a flux of mass and buoyancy

If the plume generated from a

only, it is nominated as a pure plume; on the
other hand, the plume releasing mass, momen-
tum and buoyancy from a source is called a
Sorced plume. From a virtual point source
where the momentum flow is finite, there can

be no mass flow, because the momentum flux is.

of order (plume radius)®? X (characteristic
velocity)? and the mass flux (radius)® X
(velocity) = (momentum flux)*/* X (radius).

In this Table, the underlines show that the

works of these authors include the negative:
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Table 1

Jet

Ambient Fluid (no buoyancy)

Pure Plume | Forced Plume
(no momentum flux) !(mass, momentum, buoyancy)

' Tollmien (1926)
without gravity effect | Pai (1955)
(different gases)

. -

i

W.Schmidt (1941) Morton* (1859)

‘Uniform .
Yih (1951) Abraham* (1960)
. . Rouse et al. (1952)
th ty effect Morton (1959 Lee-Emmons* (1961
With gravity ettec 3 (1959) Morton et al. (1956) (1s61)
! F.H., Schmidt (1957)
: Morton (1959)
N Morton (1959) Morton et al. (1956) ‘Morton (1959)
Straitified Hino* (1962) Morton (1959) Hino* (1962)

Hino (1962)

buoyancy case, while the asterisks show that
they treated the actual cases with a flux of
mass from a source.

Tollmien'* (1926) was first to discuss the be-
Thaviour of a jet in a uniform environment. Since
then, so many theoretical and experimental
works!®'’® have been reported. The first con-
sideration of a plume in a uniform ambient
fluid has deen given by W. Schmidt'” (1941),
{followed by Yih'® (1951), Rouse et al.’® (1952),
and others. These authors based their theories
.on the assumptions that a similarity is preserved
as to the velocity and density profiles in the
cross-section of the jet or plume axis, and that
the mixture length theory is applicable in order
to determine the functional forms of velocity
and density profiles. The treatment which repr-
esents the width, axial wvelocity and density
variations, with simple powers of the distance
from source is not always justified, for instance
in the case of an upward plume with negative
buoyancy, and also in particular in the case
of the plumes in a stratified environment.

The solutins for a plume in a stratified
fluid from a virtual point source, including a
new approach for the plumes in a uniform
fluid have been given by Priestley and Ball*
(1955); Morton, Taylor and Turner®® (1956),
and Morton*®:?*20 (1957, 1959). They started
from the conservation equations of mass,
momentum and buoyancy, having the characte-
ristic velocity, density and width of plume as
fundamental variables. In general the plumes
in a stratified layer have been shown to have
final heights of ascent. This report discusses
the motion of an actual forced plume which

delivers a flux of mass, momentum and buo-
yancy from a source, extending the method by
Morton'® (1959), who solved forced flumes

from a point source only.
THEORY
A. Assumptions

The analysis to be developed is based on the
following assumptions about the nature of the
plume. First (a), since the laminar plumes are
so unstable to become disturbed quite close to
the source'”, the flow in most plumes will be
(b) The
profiles of velocity and those of density defici-

assumed to be effectively turbulent.

ency in any horizontal plane are assumed similar.
The results of experiments'™ " show that
in a uniform environment the profiles of jets
and plumes are Gaussian. However, in a stably
stratified ambient fluid, the assumption of the
top hat profiles, with constant wvelocity and
density across a plume width and zero outside
it, will be preferable, because the usefullness
of this assumption has already been determined
for the case of plumes in a uniform environment
# and a Gaussian profile seems incompatible
with this case. Of course, the similarity assum-
ption cannot be maintained in regions near the
source and the top of plumes. Nevertheless, no
serious error may result from our assumption
because the flow from a source rapidly
developes turdulent and a relatively little en-
trainment will take place near the top of a
(¢) The
local variation of density is small compared to

(d) The fluid

suffers no volume change on mixing with the

plume due to the low axial velocity.

some chosen reference density.
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amibent environment. Also, the fluid will be
treated as incompressible, although the results
thus obtained can be extended to include the
convection in compressible atmosphere where
use may be made of the conventional method
of potential temperatures and densities. (e) The
entrainment of ambient fluid into the plume is
proportional to the characteristic velocity of the
plume ; the validity of this assumption has been
investigated thoroughly by Ricou and Spalding®®
(1961).

B. Fundamental equations and analytical

solution

Let X be the distance from a source;r the
radial distance in a section of the plume; U,
(X,r) and U,(X,r) the vertical and radial
velocity, 0(X,7),0, and p,=p,(X) the densities
of the plume each at an arbitrary point, at the
source and of the surrounding fluid, respectively ;
and 7 the shearing stress.

Under the {oregoing assumptions the funda-
mental equations of motion for an axisym-

metrical plume are written as,

o U, 6U U
0X+ -+ =0 (1)
o0 U2 1 a(erU) 18(7‘1)
ox or r glo—re)
....................................... (2)
_ _1orWe)
‘aX‘UZW TroTer T (3)

which are the equations of conservation of
volume, vertical momentum and mass (density
deficiency), respectively.

By carrying out integration with respect to a

plume section, equation (1) reduces to
9 [ e, 0GUY)
ﬁjo 27 TUldTTJ-OZTE TT

Denoting the plume widths for momentum and

dr=0

mass transfer by B and 1B respectively, the
above equation becomes, with use of the as-
sumptions (b) and (e),

d‘fX (= B*U,]= —2 = BU,

d
dXLnBUu—meBU --------------------- (4)
wnere ¢ is the entrainment constant.

Likewise, integration of equation (2) with

respect to 7, with use of equation (1), gives
d o0 00
WJ'O 27z 7o Utdr :fo 27 rg(p,—p)dr

which, by the assumptions of a small change

in local density and similarity profiles, becomes

2 L= BU =y

'0‘2—'0.7;/1232 .................. (5)

Similarly, equation (3) may be transformed
as follows ;

f 2z rUlﬁd, Tf
0

J"“ a(rUzp)

24’: o
or  or redr,

22 2nrtico-o |
_lo

_f :ZWO 1) O(rU )d’} =-2 ”(;7727)]‘»

0,
a o0
Wfo 2z reU,(oy—p)dr+2z BLU0,—0(B)]=0
d
7}?[” BU\(py—03]=—27 Be U,(py—04).
This equation can be further transformed with
the use of (4a) as follows,

"_‘i‘"rTB *U(0y—0)] =(0,—20¢)

ax - (”BUU

dX
X [z BzUl(Po*Pe)] - BZU1W(00“/’¢)

and then, with the assumption of (¢), into the

form
d o, .
dXL”B U (p,—0)]== B 12%_ ............... (6)
Introducing the transformations V=BU, W
=B*U,, F=BU,g(pe—0)/0,, and G= —gd:;;/;“
equations (4), (56) and (6) reduce to
daw
TR mZAV s D)
ave o
e TR EFW, s (8
dF
S = GW. €9)

Here, it should be noticed that oz V* means the
momentum flux, =g W the mass flux and zp, F
the buoyancy flux.
Usually, the excess heat flux or density defi-
ciency at a source, F, is held constant indepen-
dently of the discharge rate of both momentum
and mass (V,, W,) at the source. Thus, as the
bases most preferable for a non-dimensional
transformation, we find F, and also the gradient
of density variation of environment G. With the
following transformation designed to remove all
unnecessary coefficients,
X=27 @/ 1 By
V=214 272 |F. 12 G5 o |
W=25° @/ 104 |F, 15 G- w
F={Ff, )

we have a set of non-dimentional forms of the

G*E/B Al
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conservation equation,
dw

By, (11
du'
e FLD s e e s 2
Jr Sw, 12y
df
Al e 13
g w (135
and the corresponding boundary conditions at
x=0
v=, =V, {21433 F, 2G4} W‘
w:wu:WU/{ZS/SLXI/Z;\I/4|F013/4G-5/E} N (14)
Sf=sgn F,.
From equations (12) and (13), we have
1
2t - f 2= A=
2vt e fi=20,0 41 - 15
where the relationships
2w 1
ST —EE (18)
GV

has been introduced as a characteristic para-
represent the effect of
Then, the non-

dimensional buoyancy flux is given in terms of

meter in order to

momentum at the source.

the variable v, as

f:ibl - le/z
—v

=+ (1—=)TV2A =Y e (an
where
Fm 2L D) D e ene e s (18)
The sign in equation (17) should be de-

termined in accordance with the direction of
buoyancy force. Therefore, the equation (17)
may be rewritten

F=Tsgn FI(A =)7L =PV coverereenes (19)

From the first and the last of the conserva-

tion equations, (11) and (13), we obtain the
relationship

AP =2[Sgn F1vedf, eeerrerereenenarennnes 209
which, by integration along with (16), (17) and
(18), becomes

t
W= wy? 4+ 2L — ) f [sgn F1874 (1~ de.

.......................................... [&3))
Lastly, equation (13) gives
t
w=2 -y [ fsgn 114
dt %
Jl—f?\/—r—(l—u)s/w ‘Lsgn F1AA(L—D" 1 d1 ’
1—7 M ’
.......................................... 22
where a new parameter, 7, is defined by
21/4w"2:11r’ ................................. 23)

and represents the effects of the initial mass
flow rate.

Equations (17), (18), (21) and (22) provide
a parametric solution in terms of the variable
t. These are rewritten in the following forms
according to the sign of f.

(i) When the fluid discharged froem the
source is lighter than its surroundings and has.
an upward momentum (F,>0 and V,>0), f
decreases steadily from its initial value +1
through zero-buoyancy section into the negative
buoyancy region, finally reaching the top of the
plume where the momentum flux becomes zero
and f==—(1—v)""/*; the corresponding behaviour
of the value for ¢ is that # increases steadily
from t=v (<£1) at the source to the maximum
t=1 where f vanishes and then decreases to
zero at the top of the plume.

Thus, for v<e<1

Fm (L) WL )2 covneniee (24 a)

WA A =) =5/ {I-i-:(l VY B — B

=271 — )"

¢ dt on
J e - (26 2)
F VIR B B,

where B(#)
function with p=5/4 and ¢=1/2,

expresses the incomplete beta

B(t):J.to tﬁ—l(l_.t)q—ldt. .................. 20

For 1>v>0.
Fm e (L= 2) V(L= )Y e, (241)

W= 2711 — )™/ {1%1(1—»)3/‘

+2 B(1)—B() 430)} ............... (25b)

2=278 (L=,

il :
” A/Tft\/l{—_a—u)w +B(O-BW)

N . dt N ]
¢ w/ﬁx/li;(l—u)a/uZB(1)~B(u)~B(t)

...................................... (26 1)

(ii) When the
heavier than its environment and has upward
momentum (F,<0, V,>>0), # decreases from its

initial value v to zero, and correspondingly f

fluid from the source is

varies from —1 to —(1—»)7"/*, and
Fm (L) VAL )Y, e (28)
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w? =271/ (1 — ) 3/4§~_<1‘u)3/4 Bo)—B(o! |

Z=2"/31—p)"/*

f” — (30)
¢ 1/1—“/1—_—7—(1—1/)3/4+B<v)~B(z‘)

(i11) When the fluid is discharged down-
wards, the behaviors of the plume are exactly

the same as those with inverted sign of buoy-
ancy at the source.

The final height of a plume is given by sub-
stituting z=0 in (26b) and (30). The effects
of discharge momentum and mass (or dis-
charge velocity and density deficiency) at the
source will be discussed later.

A comprehensive discussion including wholly
the positive, negative and zero buoyancy plumes
can be developed by applying the following
transformation (31) to equations (7), (8) and

=
Wi —1+2‘1/4[ — (

K Fm 25t AW PG fy. 1
V=2 a2 W 3G e,

W=W,swy.

Xv:2_5/605‘2/31‘1/3W‘,‘/aG‘l/e.xﬂ<
The reduced non-dimensional fundamental equ-
ations are exactly the same as those already de-
rived in the preceding section,

Lo (31)

‘2‘;’* EDg rereeereneeenee e (32)
*

df{i’:> = f Wi weeeererees e (33)
R

O (34)

with the corresponding boundary condition, at
Xg= 0
Fa= o=/ PP W, G/ F, \
V= Vg =25 AW, PGV, 0 (35)
wWy=1 [

The parametric solution is

o= o (1 5)

fx=TIsgn f*][—l—_—g + <—_L]¢]—> Aty (3T

7 )2:'3/4 t (8GR fy B4 L — £)TUAAE «+rveeeenreiinrii e (38)

dty

1—
r 1/8
o g3 T [ o

where

2 'U*OA

§ =
1420

+ (a characteristic parameter

for discharge velocity)---(40)

f*o
T fal

(a characteristic parameter
for buoyancy)::r-eeeeveeeeee (41)

SISl A R
/’_LLFT (1*‘%) PR (42)

The relationships between the parameters in-

and

troduced in these equations (6 and ¢) and those

in the previous ones (r and v) are represeneed

g . ™\ v

=21 R PP
2 () (75), 2

P (LN
() “o
and xy is related to x through the relationship
1\
x*:2l/24<—r> Z.

C. Virtual point source

A plume generated {rom a source of finite size
delivers a flux of buocyancy, momentum and
mass. It will be shown in this section that there

is always an equivalent point (or virtual) source

1/1~z 21/4[—-«+( L

T84 [fx

e ) ] “Lj, [sgn fule/*(1— )/ ds

of buoyancy and momentum only which pro-
duces the same flow as the extended source
above the level x=0. It has already been noted
that there can be no mass flow from a point
source. Therefore a virtual source can be cha-
racterized by only one paramenter which is
made of momentum and buoyancy flux(V,’ and
F; ie

Y EIV.L. O — .

which is equal to the value of ¢ at a virtual
source.

The equivalent virtual plume which is gene-
rated from a source (F’,, V’',,0) situated at a
certain height x= —x,, must satisfy the same
non-dimensional equations as the forced plume
from the source (F,,V,, W,) and the modified
boundary conditions v=7r v, w=0, f=u at x
and v=v,, w=w,,

=—x =sgn f, at x=0.

The solution is the same as that for the forced

v

plume except that each of the lower limits of
integration, v, should be replaced by o.
Before proceeding to determine o, the motion
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[C#Fozo0 |

case A—case D-»case F—case H—------ (Fy=>0)
case C—case B—case E—case G—-- - (Fy<<0)

{ L Correspondingly, the route of integration
) ! : So | - \ 2 to determine ¢ must be traced in a com-
f<o \\\ < N © )
f=o0 - 3 { 7 / \ \; T / plicated way.
f>o ® j L \ )// v \Q® For instance, for F, >0
N
* ’ (case A)
~i~(l;y)3/4:J'ut1/4(1~t)“/2dt, )
' 1 -7 a
f<o (case D)
f=0 —7— , 0
$>0 /\ ]j (1—v)*= ;j £l -7V de
- { “pr—p e
70
: “n
(case F)

NG

- 1
I—;j(l—u)a/‘:j £ =D de

f=0 —

f>0

o A
RIVIN

|

Fig. 1 The real and imaginary behaviours of plums.

of a plume from a point source will de dis-
cussed. The first stages of virtual plumes are
represented in the left hand side of Fig. 1. The
behaviour of an actual plume can be projected
on one of these plumes from a point source
with varying ¢. However, for a plume with
larger flow of mass and small momentum at
the source, the equivalent source cannot be ob-
tained by only considering the real behaviour of
a plume, no matter how the source intensity
may be increased. Thus, an imaginary point
source is to be considered. The first order of
a fictitious flow has an opposite direction to the
actual flow until it spreads sideways at its final
limit (when #=0 ie. v=0), returns upon itself,
and passes through the source with the appro-
priate rates of W,. As the mass flow from an
actual source is increased, we must further
consider the higher orders of imaginary be-
haviour.

if we treat here only an upward delivered
plume, the virtual source should be sought
successively, as in the order shown below,

0
-—[ £t —Yde
J1

+J” pr-D e, |
0 /
When ¢ is determined by either of these
equations, the position of the virtual
source, x,, can be found easily, and F,’

and V.’ are given respectively by

1=\
F, 4Fo<m> e (48)
Vo = Vo (0/0) M4, cvreeeeeeeiiniienieennn, (49)

The discussion on a virtual source will be-
come significant when we treat the motion of
plumes in multiple layered stratified fluid,
which will be presented in a succeeding paper
dealing with two-dimensional plumes accompa-

nied by experimental investigations.

NUMERICAL CALCULATIONS AND
DISCUSSIONS

In order to provide numerical values for the
motions of plumes, it is necessary to modify the
equations derived in the preceeding sections so
as to give high precision with relatively facile
procedures ; because the integrands involved in
these equations are not only so complicated to
reject any mathematical method except for a
numerical integration, but they diverge infinitely
at the upper andj/or lower limits of integration.

A. Incomplete BETA function

The incomplete beta function defined by
equation (22) can be expanded into a power
values of ¢

series ; for relatively smaller
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B() :fo (1 — )" de

4../5 19
_Zpnp( 2 = 2

5t F(4’2’4’t>
s 2!
71:0(—2——1—71)22” (n1)®

and for values near unity

2

f
B(t):J P21 =2 de
0
1
:J t11/2<1_t/>1/4dtr
4
— li_t'/1z__/14/
_B<2,4> J-ot A1 —¢)'V e

e-3)

15 bl
—pl — ) r(n+1/2)
,@(2,4) oIV, N
4 2 )
....................................... (50 b
Where D T (51)

B. Calculation of x

The formulae for x are modified by “integ-
ration by parts” in order that each of the in-
tegrands may not diverge within the range of
integration ;

(da)
x:xl(t):2*7/8(1~u)1/ﬁ[2 Iz {1_7_7(1_@3/4} ~172

2T e BOY BOY)

T

1—<

=271 { <1‘7”>3/4*B(V)+B(t)}l/z

T

1—7

+2 { (1w)3/4—B(y)+B(y')} v

+J”'ﬁ/4 {I_E—T(lw W)/~ B +B(;)} o2y

>

7l—J.tlt—5/4 {1 :,,<17V)3/478<V)+B(t)} 1/zdLF

where an appropriate value should be chosen
for v/ within the range v<'<¢ so that both of
the integrands may not diverge too large, within

the integration regions.
(ib) Similarly,
-
=z, (D) 4270 =) 2070
T 12
ey By B

_2 {1—:—;1%)3/44—3@)‘3(1)} v

I Warrs {Ti—;ufy)va@ —B(t’)% o

1 1 T 1/2
——J 5/ {'*(1~»)3/4+B(V)—B(t)} dt
2 )y 1-1

+Jt' #1174 {1 L (1—»)¥ B ;B(z)} wE a
? -—T

where ¢’ should be £<z'<1.
Gi)
x:2‘7/8(1~u)“/5[2 oy

e Boy-Ban]

T

l1—=

1/2
—21/‘1/4-{ (1—;»)3/4} P o T

. {T:—;(l—u)a/“—l—B(y) _Bo:)} e

T

1—r

2 T2 (A B G -Ben|

1 _ T 172
'Tj ' 5/%{ (l—u)3/4+B(u)~B(t)% dr
2 | 1—1

+2ﬁ”11/4- { (L= + B - B(z)} - Zdt:]

where ¢'* should be also chosen so that the in-
tegrands of the equation may not diverge too
large.

C. Results and discussions

The non-dimensinal final heights of plumes
(x and %,) have been «calculated from the
equation given above with z=0, by applying the
Gaussian method of numerical intrgration.

x
3

) L 5 1

o ) 05 VI).)

Fig. 2 (&) The final height of plume with positive
initial buoyancy; v represents a para-
meter characteristic of discharge velo-
city, whereas 7 a parameter of dischar-
ge volume. [Eq. (26 b)]
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Fig. 3 (a) The final height of plume with 22048 ]
negative initial buoyancy. [Eq.
CON ] 1

The results are illustrated in Figs. 2 to §,
which demonstrate clearly that the increase in
discharge velocity of a plume cannot always be 2
effective to affect the ascent of a plume in a
stratified environment; for relatively smaller
mass flux (¢) of positive buoyancy, the top of
the plume decreases at first steeply and then
gradually as the discharge momentum (v) is
inereased from zero, and only for extremely high
value of v it increases rapidly towards infinity.
On the other hand, for zero and mnegativy

buoyant plumes, the increase of v is always

effective. In general, the heat excess, F,, is kept

constant. Hence, the figures also show that the o

. &
increase of mass flux from the source and

therefore the increase in density or the decrease Fig. 4 The final height of plume. [Eq. (39)]



in temperature of plu- X
mes gives rise,
cases,
effects on the ascent of
plumes.

This behaviour of the -
plumes may be explained
physically by the fact
that, e.g. for the buoy-
ant plumes, the increase
in the discharge velocity
results in the

in the entrainment near

the

buoyant ambient fluid,
thus reducing the energy
of buoyancy per unit -
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in all

to unfavorable

increase

source of the less

j
/
=

volume which has been

possessed originally by the plume.
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