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THE LATERAL MOTION OF SUSPENSION BRIDGES*

By Dr. Eng., Manabu Ito**, C.E. Member

Synopsis : The fundamental equations of small
lateral motion of a suspension bridge structure
are presented under the proper assumptions.
Then, the author derived the formulas to com-
pute the natural frequencies of lateral vibra-
tions, which contain some dimensionless parame-
ters. The coupling oscillations between cables
and stiffening frame that is missing in other
papers should be taken into account. The effect
of the vertical distortion of the structure inci-
dental to its lateral movement is estimated
by means of the energy method. Finally, the
results are applied to the analysis of suspension
bridges subjected to the static lateral forces.

1. Introduction

Recently, long-span suspension bridges tend
to be proposed in Japan, and engineers become
to feel interest in the projects concerned. As
well known, suspension bridges are unique, to
span long distance beyond several hundred me-
ters, as compared with other types of bridges,
but its substantial defects lie in the large deflec-
tion due to live load and the unfavorable
dynamic behaviors under external forces. There-
fore, various problems, such as the aerodyna-
mic stability and quake-resistant design, have
been tendered so far. It goes without saying
that the understanding of the modes and natu-
ral frequencies of a structure is necessary for
discussing its dynamic behaviors, especially when
the modal-analysis method is employed.

In this paper, the author would like to place
emphasis on a revised solution for small lateral
vibrations of suspension bridge structure, and
also to discuss the general characteristics of sus-
pension bridges subjected to lateral forces.

Although many investigators have studied
about its behavior under the lateral forces, any
convincible solution relating to the lateral vibra-
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tions of a suspension bridge seems not to be
found hitherto. In dealing with its stability
under wind action, A. Hirai® established the
differential equations of the coupling oscillations
for vertical and torsional displacements, and H.
Chikuma®” made some approximate corrections
to these equations considering the effect of lat-
eral displacement of the suspended structure.
Nevertheless, their theoretical treatment is only
valid to the wind action which contains uplift
and torque components, and can not explain
lateral vibrations. A formula to compute natu-
ral frequencies of vibratory lateral motion of a
suspension bridge was proposed by LK. Silver-
man®, but the author has some doubts in point
of the interaction between cables and suspended
structure. Because the cables and stiffening
frame are connected with deformable suspend-
ers, the coupling oscillations are believed to
yield. In the old papers written by N. Mono-
nobe® or T. Mogami®, even the action of
cables was not considered.

In reality, when a suspension bridge deflects.
laterally, vertical distortion will be accompanied,
and its effect will be taken into account, as the
second order approximation, in the later part
of this paper. If the acting point of lateral
force applied to the stiffening frame or the gra-
vity center of its cross section deviates from
the twisting center of the section”, the angular
rotation of the structure is also to be comside-
red. However, in order to avoid unnecessary
confusion, this is neglected in the present ana-
lysis and the following treatment may be pro-
per in estimating the natural frequencies of the
structure.

2. Oscillations in the Horizontal Plane

In analyzing the lateral vibration of a suspen-
sion bridge, the conventional assumptions are
made : that is, the elongation of suspenders is
neglected, the spacing of suspenders is consid-
ered very small as compared with span length,
and the rigidity and weight of structure are



The Lateral Motion of Suspension Bridges 11

constant through the span. Furthermore, the
additional cable tension caused by the inertial
forces is neglected as a small quantity, and the
effects of the deflection of towers and the pre-
sence of side spans may be also negligible in
this case.

the small lateral vibra-
The
notations are seen in the figure : p.(x,2) and

Refering to Fig. 1,

tions of a suspension bridge are discussed.

Pr(x, 1) represent the horizontal external forces
applied to cables and suspended structure, res-
pectively, and w(x,2) and v(x,£) are the hor-
izontal deflection of cable and suspended struc-
ture at distance x from end of span, respecti-
vely. As seen in Fig. 1 (¢), the force of res-
titution due to inclination of suspenders per unit
length of bridge is
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Fig. 1 Smal Lateral Displacement of a Suspension
Bridge.
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where w, is the total vertical load carried by
suspenders per unit length. Accordingly, small
vibrations in the horizontal plane about the posi-
tion of equilibrium are described by means of
the following differential equations :

wyr 0%v o'v | wy
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where EI, represents the lateral bending rigi-
dity of the stiffening frame, H, is the horizon-
tal component of cable tension due to dead

load, w./g the mass of cables per unit length

of bridge, ¢ the acceleration due to gravity,
and A(x) denotes the length of suspender at
distance z from end of span, which is expres-

sed by
h(x) hT——fx(Z —a)

hr representing the cable sag plus the hanger
length at mid-span. The fundamental equations
(2) indicate obviously the coupled vibratory
motion.

In order to obtain the natural frequencies,
putting the right side of Egs. (2) to be zero
and assuming the displacement at any instant
t as

«Sin @t

. nrx
v=a, sin

. nTXx
u=>b, sin

the principle of virtual work was applied to
Eqgs. (2). Then, the requirement of this princi-
ple leads to the following frequency equation
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where 7, is the length of suspender at mid-
span. Since it requires the intricate calculations
in treating the forced lateral vibrations of a
suspension bridge that the length of suspenders
along a span is a {function of x, the use of the
constant length of hangers is desirable in prac-
tical analyses. Equating the result of Eq. (5)
and that by assuming /4 constant, it is found
that the reduced or mean length of hangers coin-
cides with A,, in Eq. (6). This A,, is the
value which corresponds to the n-th mode of
deflection form : namely, the reduced length of

suspender for the first mode (n=1) is A, =h,
+0.131 f and for higher modes hmné;hc+f£—
Introducing three dimensionless parameters

| H,
yh_l\/ [ s (7>
W,
S s (8)
h
and 4= 9
7 (9

the roots of Eq. (5) becomes
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Two solutions of the natural frequency o, ob-
tained for each value of n in the above equation
are corresponding to the same and opposite
phase of vibratory motions of cables and stiffen-
ing frame, respectively.

For a given integer value of n the parameter
2, is generally confined within narrow limits of
variation, while the values of v, and # have a
definite tendency to increase with span length.
The results of investigations for existing suspe-
nsion bridges including those under contemplat-
jon are plotted in Fig. 2 and 3. On the other
hand, the most important parameter to charact-
erize the behavior of a suspension bridge under

vertical loads is
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EI being the flexual rigidity of stiffening frame.
This value of v is the reciprocal of the stiffness
factor defined by D.B. Steinman though, the
above expression is more convenient to the
analyses of long-span suspension bridges for
which the deflection theory is applied. With

increasing span length the v-value increases
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Fig. 4 Natural Frequencies (In Phase)
almost linearly. Between v, and v there is an

approximate relationship

ity (JB) weeeeeeeeirereee s (12)
where d and b are the depth and the spacing
of stiffening trusses, respectively. Fig. 2 will
be understood from these facts.

The natural frequencies of the first (symmet-
ric) and second (asymmetric) mode of lateral
vibration are shown in Fig. 4 as a function of
vy. They are calculated from Eq. (10) where
n is taken as 1 and 2, and are the case that
cables and stiffening frame vibrate in phase. A
little variations in the values of 4 and 2, do
From this
figure it is found that in suspension bridges

not affects much on the frequencies.

having very long span the fundamental natural
frequency is almost inversely proportional to the
square root of cable sag and hardly influenced
by any other factor. It is very similar to the
results in their vertical vibrations.

When the cables are fastened to the stiffening
frame at mid-span, as seen in the Mackinac
Bridge and the Tancarville Bridge, the assump-
tion in Eq. (4) will be erroneous, because sus-
penders can not be considered as always vertical.
The better solution for this kind of structure
The forced lateral

vibration of a suspension bridge can be solved

will be discussed later on.

using Eq. (2). As an example of the problems,
the author dealt previously” with the lateral
stability of a suspension bridge subject to founda-
tion-motion.

3. Numerical Examples

The circular natural frequencies of the first
and second modes of lateral vibrations in a few
existing suspension bridges were calculated and
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Table 1 Circular Frequencies of Lateral Vibration
in Existing Bridges
(Effect of center ties is neglected)

Name of GOIdEr;te Mackinac ‘Wakato : Ohdomari
Bridge (USA) (Usa) : (Japan) | (Japan)
I (m) 1280 | 1158 367 150
£ () 143.3 | 105 35.0 15.0
Ap(m) 50 | 107 36.5 15.8
w #(t/m) 22.8 ‘ 10.2 12.4 3.6
we(t/m) 8.5 4.9 2.8 | 0.4
Hyy(t) 44300 | 28864 7312 757.5
EI,(t-m?) | 15.56x10° | 5.38x10° 3.58%10° |  1.08x107
v (=) 18| 14 7.2 2.2
vp(=) 7 8.2 1.6 1.2
8 (=) 0.37 | 0.48 0.23 | 0.11
i
o Gradjsee)| %% 4 % L 1253 250 B 8650
@y (ra‘”sec)“ s | %t or 030  ov9.618

Table 2 Circular Natural Frequencies of the
Wakato Bridge (rad/sec)

\\,\7 Mode ‘ ®; (symmetric) o, (Asymmetric)
Motion |
Vertical 2.08 1.56
Torsional 3.42 4.13
Lateral 1.26 3.33

Table 3 Amplitude-ratio of Cables to Suspended
Frame (Wakato Bridge)

Mode o ®
2
Phase lag

0° 0.960 16.275
180° -0.077 —0.272

Table 4 Results of Model Test (Circular frequen—
cies in rad/sec)

@y wg @3
Measured 38.8 150 369
From Eq. (5) 41.1 151 340
According to Ref. 4) 68.7 181 356

are shown in Table 1.

In Table 2, the theoretical natural frequenc-
ies of vertical, torsional, and lateral vibrations
In this
bridge which has a center span of 367 m, the

in the Wakato Bridge are compared.

largest in the Orient, cables are actually fastened
to stiffening frame at the center of span, but
the computed frequencies shown in Table 2 do
not take into account this effect. The amplitude
ratios a,/b,—see Eq. (4)—of cables and stiffen-
ing frame in this case of lateral vibrations are
seen in Table 3, in which the amplitude of sti-
ffening frame corresponding to the second
mode of vibration in phase is very small com-
pared with that of cables. Accordingly, in this
case only the cables apparently wvibrates and
such a phenomenon was observed in the model
tests.

Next the result of a small-scaled model test

conducted to verify the theoretical treatment is
refered. The suspension bridge model used in
the experiment has a single span, straight back-
stays, and the following dimensions :

!=300cm, f=30cm, Ar=33cm

El=0.14x 10°%gr-cm?, El,=18.3x10%°gr-cm?
wyr=15.14 gr/em, w,=3.17 gr/cm, w=18.31 gr/cm

H,=6.9kg, £==0.21, v,=0.6
Stiffening frame and towers designed as a rigid
frame were made of brass and steel, and each
main cable is a ¢ 2 mm stranded wire attached
by distributed dead weights. Making use of the
shaking-table especially designed for this purpo-
se, the natural periods of lateral vibration were
The test
results are shown and compared with theoretical

read from the recorded oscillopapers.

values in Table 4. The theoretical values cale-
ulated from Eq. (5) are in fairly good agreem-
ent with the test results, but in order to get the
better results for the fundamental period of
lateral vibration the upward distortion of susp-
ended span should be taken into consideration
and it will be necessary to assume the following
several terms expression instead of Eq. (4).

. TX .
v=%’aksm 7 -e8iN @,,¢
o SRR (13)
u=3b; sin -eSin @, ¢
7 14 J
4. Energy Method applied to Lateral
Vibrations

The energy method gives a more satisfactory
approximation to the true natural frequencies
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by taking into account the upward deflection of
cables and suspended structures, 7, and 7, resp-
ectively, incidental to their lateral movements #
and v (Fig. 5). Since # and v are very small
quantities as compared with 2 (length of hang-
ers) or y=hy—h etc, the upward distortion

#, and 7, under the lateral motion are given by

(cables) 1

7= 2y (v2 :> (frame) /[

The maximum value of the potential energy
stored in the whole structure vibrating laterally
is assorted as follows, provided u and v are the
amplitudes of vibration :

1. The strain energy of lateral bending of
the suspended structure

EL, [V [ d*v \?
Vlz—Thfo < dx"z ) dz

2. Due to the restoring force of suspenders

_ Wy (v u)z

2 o A
3. Due to the deflection of cables

H, [t ( du \*
VFTL(?E)‘Z

4. Due to the upward distortion of the cables

\ 1 we [V
V,,—ch'o ndx= B J'O—de

5. Due to the upward distortion of the sus-
pended structure

R e

Consequently, the maximum value of the total
potential energy is given as a function of u, v
and their derivatives
4 2 2 . 1 2
v B f (22 ar (Y ac
wy [* _ Wetwr
20hr—hmn) Jo

‘where the length of suspenders are assumed as

the constant value of 4, (the reduced length)
given by Eq. (6) for the simplicity of calcula-
“tion.

The maximum value of the total kinetic en-
ergy of the entire structure, denoted by T, is
approximately given by the integral

i 13
T= ;g (wa’ de"‘ch’ u2dl‘> ............... (16)

when the kinetic energy caused from the incid-

«ental vertical motion is neglected, because 7, and
7, are small quantities of the higher order than

u and v as seen in Eq. (14).

The Ritz Method is employed to obtain the
natural frequencies. Assuming the deflection as
in Eq. (4),

the requirements are

WT-V)

9an ‘01 .................................... an
ATV |

an /

As T'—V obtained from Egs. (15) and (16) is
a quadratic form of a, and 4,, Eq. (17) repre-
sents a system of two linear equations determ-
ing the paramaters a and &. Since the equations
(17) are homogeneous ones, the following fre-
quency equation determing , for the first mode

of lateral vibration is derived.

2 1p s, 2
TR g e
_i 1_1_ 1+ 772+ 14"’9 —_ imle =0 <18)
2y Ay 8 hr g
T

The effect of the upward distortion of structur-
es was taken into account in this equation.

Upon putting the numerical data of the Wakato
Bridge, solution of Eq. (18) yields the two roots
©,=1.365 and 4.561.
results in Table 1, the lowest frequency is aug-
mented by 99%. If the effect of the upward

distortion of structures is not considered, namely

As compared with the

V, and V, are neglected, the total potential
energy is written as

() e
thnJ (U —U)PdL oomrvrrmnmrnnneennnins 19

The same process as just mentioned leads to

the frequency equation (5), as a matter of cou-
rse,

Here the suspension bridge with cables fasten-
ed to the stiffening frame at the center of span
is dealt with. As the first symmetric mode of
lateral vibration the following assumption is
employed

. T
V=a s

I l
(20)
x|

‘ .3
+(b—a)sin 7 J

. Tx
u=bsin 7

Using the expression of the total potential ene-
rgy V in Eq. (19), the Ritz Method leads to
the frequency equation
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The solution of this equation for the Wakato
Bridge is @, =1.256 and 4.240, that is, the fund-
amental natural frequency in this case is a
little augmented. Putting a=1, the vibration
mode of the cable corresponding to ,=1.256
becomes

3zx
A

Thus a far better approximation is possible for

—0.010 sin

% =0.990 sin ”lx

the analysis of the small lateral oscillations of
suspension bridges. However, the author belie-
ves that the result of Eq. (10) is of practice
with satisfactory accuracy.

5. Behaviors under Static Lateral Forces

When the cables and the stiffening frame are
subjected to uniformly distributed lateral forces
P and p, respectively, the following equations

may be obtained in connection with Eq. (2)

ELLv'""" () +-—2— h( ) [v(x) — u(x)]“f)f

...... (22)%
~Hyu" (x)—m[uor) —u(x)]=pe
1+__ (1) f‘éi” A+ -1
16V 327 v 1+ 818”4 0
_y 0 1+ 0,A+8)
0 1 S

The term r(x):% (v—u) in Eq. (22)

indicates the force transmitted into cables from
suspended structure in consequence of the lateral
deflection of the bridge. Actually, the suspen-
ded structure sustains the force p,—# and the
cables do p.+r, and this was pointed out by
Moisseiff et al. When the cables are fastened
to stiffening frame at the center of the bridge,
similar treatment is made under the condition
that the deflections of cables and suspended
Fig. 6
indicates the variation of »(z) along span in

structure should be equal at mid-span.

*where a prime denotes the differentiation with
respect to x. Assuming the displacements as
v(x) =2n’an sinﬁrg—x 1
o ((n=1,3,5,) ............ 23

u(x):%‘bn sin——y— J
and making use of the variation method, the
equation to determine the unknown constants
a, and b, is obtained. A. Selberg® already deri-
ved the same expression as Eq. (22) for this
problem, but he solved them by expanding the
second term of the left side of the equations
into Fourier series. Since the convergence of
Eq. (23) is very rapid, first two or three terms
approximation of Eq. (23) will give easier and
satisfactory results in this case. Similar problem
was discussed by L.S. Moisseiff whose solution
is known as the uniform distribution method
and the elastic distribution method. However,
to obtain accurate results his method also leads
to very intricate calculations. If the two term
approximation is taken in Eq. (23), the unkno-
wns a, and b, (n=1,3) are determined by the

following equation :

/ 8
o e .
8 £
-1 as B 4 IIT (1_ 972 —h;—)pf/s
27 = 8 :
Fan b T (12
9t ! 8 f
L5248 | b, <1—9n 7l—-)pc/s
............................................. (24)

the Wakato Bridge, when p,=0 and the two-
term solution is employed. It is found from
these results that the presence of center ties
diminishes the force transmitted from stiffening
truss to cables.

6. Conclusions and Acknowledgements

The motion of a suspension bridge in the
In the lateral

vibrations, vertical distortion is accompanied,

horizontal plane was discussed.

but their contribution to the kinetic energy of

entire structure is so small to be neglected.
The effects of the presence of side spans and

the center ties may be also negligible in the
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Fig. 6 Static Load to the Wakato Bridge
(».=0; h,=1.5m)

lateral motion of a suspension bridge. The
present theoretical treatments for computing the
natural frequencies and the displacements under
the action of lateral forces are believed to yield
practical solutions with sufficient accuracy.

Finally, the acknowledgement is made to Prof-
essor A. Hirai, the University of Tokyo, who
gave the author an opportunity to study this
subject. The author also wishes to appreciate
Mr. N. Narita who carried out the experimen-
tal work when he was a graduate student at
our department.
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