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Fig. 2 Electro-magnetic exciter

Fig. 3(a) Distribution of exciters (Perpendicular
to damaxis)

Fig. 3(b) Distribution of exciters (along to dam axis)
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Table 1 Characteristics of model dam
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Table 2 Natural frequencies of model dam
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Fig. 6 Input and out put wave form
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Fig. 7 Responce curve of model dam
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Fig. 9 Displacement mode (a) lst order symmetric
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Fig. 9 Displacemet mode (b) 2nd order Symmetric
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Fig. 8 Displacement mode (d) st order Antisymmetric
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Fig. 8 Displacement mode (f) 3rd order Antisymmetric
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Fig. 10 Strain mode (b) 2nd order Symmetric
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Fig. 10 Stram mode (¢) 3rd order Symmetric

Fig. 10 Strain mode (e) 2nd order Antisymmetric
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Fig. 11 Nodal lines of normal vibrations

(a) Symmetric vibration

(b) Antisymmetric vibration
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A NEW METHOD OF DYNAMIC MODEL TEST OF ARCH DAM

By Dr. Eng., Shunzo Okamoto, C.E. Member Katsuyuki Kato,
C.E. Member, Motohiko Hakuno, C.E. Member

1. The modal method is an effective one

for estimating in an arch

seismic stresses
dam. However, in order to apply the modal
method to the stress analysis of dam, it is
necessary to have a good knowledge of charac-
teristics of its normal vibrations. For the pur-
pose of disclosing the characteristics of normal
vibrations of lower order, a model test is one
of the most effectual methods. In the ordinary
procedure of the model
table

case, as the

dynamic test, a
arch dam is mounted on the
and this

mass of the model dam and its foundation is

shaking
rocked. However, in
too large, it is not easy to rock the table
rapidly and to reproduce natural vibrations of
higher order of the dam. To aveid this diffi-
culty, a new method of dynamic model test,
named Seiken Method, has been developed in
In the case of the Seiken Me-
thod a model is put on a fixed floor. On the
surface of the model dam, a dynamic force is

our laboratory.

applied by means of electromagnetic exciters
which are distributed over the surface of the
model so as to the each exciter takes the same
amount of the model mass in its charge. When
applied force is harmonie, the normal vibration
can be excited and when seismic force is
applied, seismic strain can be reproduced in the
model.

2. This method is based on the following
principle. Referring to the coordinates, which
are fixed to the floor, force acting on the ele-
- mental mass of the model, which is mounted
table, is to be

composed of two kinds of forces, the inertia

on the shaking considered
force and elastic restoring force. However, if
the referring to the
coordinates which are fixed to the shaking table,
an apparent force must be added to each ele-

system is considered,

mental mass of the model. The magnitude of
the apparent force is equal to the product of

each elemental mass and the acceleration of the

shaking table. Therefore, in order to reproduce
dynamic stresses of the model, which is moun-
ted on the shaking table, in the model which is
put on the fixed floor, the above mentioned
apparent force should be applied to the model.

In the case of the Seiken Method, this apparent
force is applied by exciters electromagnetically.
It is a merit of this method that it is possible
to produce high frequency vibrations of the model
without using a large driving force and accordingly
to use a large sczle model in which complicated
ground conditions of a prototype can be easily
reproduced and moreover it is possible to apply
the complicated dynamic forces such as seismic
force to the model without difficulty. Fig. 2, in
original paper, shows an exciter whose core is
attached to the surface of the model by some
suitable binding agent. The allowable displace-
ment of the core should be limited within 2 mm
Figs. 3 and
4 show the arrangement of exciters for giving

to keep the exciting force constant.

the horizontal and vertical vibrations to the model.
Fig. 5 shows electric networks for driving exciters.
A harmonic vibration is made by this electric
network and the irregular vibration such as seismic
vibration is magnetically recorded on a suitable
taperecorder and afterwards is put into the ele-
ctric network from the taperecorder. Figs. 6 (a)
and (b) show the input currents from tape-
recorder and (a’) and (b") are corresponding
currents at the exciter. (a') shows current when
the exciter is fixed to a rigid wall and (b))
shows that when the exciter is attached to the
vibrating model dam. Curves (a’) and {(b’) are
nearly coincident with each other and because of
this agreement it seems that the influence of
movement of the core with the model on the
modulation of the exciting force is practically
negligible.

3. The model dam, 1/50 in scale of the
existing arch dam for which we have already
performed dynamic tests and observed its dyna-
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mic behaviors during earthquakes, was used for
The dam body and

the foundation rock are made of a plaster,

our experimental studies.

diatom earth and water
1:1:1.76
curves of the model dam to the

in proportion of
in weight. Fig. 7 shows response
harmonic
exciting force and Figs. 9 and 10 show the
distribution of deformation and strain of the
symmetric and asymmetric normal vibrations
of the 1st, 2nd and 3rd order respectively. In
Fig. 9, solid lines show radial displacements and
dotted lines show tangential displacements. In
Fig. 10 solid lines show the strains on the upst-
ream surface and dotted lines those on the
down-stream surface and chain lines, those on
the middle surface. Values measured by means
of the model are converted to those of the
prototype according to the following laws of
similitude.

Formula of similitude for time is repre-
sented by eq. (5) in order to hold the similitude
of natural frequency, and the notations used
therein are shown in Table 1. The application
of the harmonic force of amplitude %, and of
circular frequency w,, to the model is correspon-
ding to the application of harmonic {force of
amplidude 7%,,/2 and of circular {requency ta,, to
the prototype. In this case, harmonic {force,
whose amplitude is 0,,D,,7,0,"° and circular
frequency w,,, is applied to the unit area of the
model. Therefore, the ratio of the stresses pro-
duced in the model and the prototype is given by
eq. (7) and that of the strains is given by eq. (8).
For instance, when a force applied to the unit
area of the model is equal to f,,sinw,t, the
strain produced in the model is equal to the
strain produced in the prototype which is under
the harmonic force whose amplitude and circu-
lar frequency are given by eq. (10).
has

revealed that the vibration same as the normal

4. The observation of earthquake
vibration of lower order of the existing arch
dam generally takes place predominantly and
therefore we can generally suppose that the
pattern of the seismic strain on the surface of
the dam is practically similar to that shown in

Fig. (10).

Moerover, if necessary, it is possible

to measure seismic stresses directly on the
surface of the model dam by applying the ele-
ctromagnetic exciting force, whose wave form
is similar to that of the earthquake motion on
the ground, to the model dam, assuming that
the influence of the difference of damping con-
stants between the model and the prototype can
be corrected. The damping constant of the first
symmetric normal vibration of our model is
5%, whereas that of the existing arch dam is
about 3% and their difference is not so large
that the influence of their difference on the seis-
mic stresses can be theoretically corrected.

However, it is future problem to make the
model which has the same damping characteris-
tics of existing dams for all their normal vibra-
Fig. 12 (a)
earthquake observed at the foundation rock and

tions. shows the acceleration of
(b) and (¢) show examples of strain due to the
earthquake (a) being determined by the model
test. From these records, for instance, it can
be seen that the maximum seismic arch stress
on the up-stream surface is 6.7 kg/cm® and that
of on the down-stream surface is 7.4 kg/em?®,
when the maximum acceleration on the ground
is 100 gals assuming that the damping constant
of the dam is 5%.

5. From the above studies, it is seen that
this apparatus is able easily to reproduce a high
frequency vibration of the dam during earth-
quake as well as its low frequency vibration
and also is able to be used for large scale mo-
del test as well as for small scale model test.
Moreover, as it is inexpensive, the availability
of this new method of dynamic test of model
dam for estimating the precise distribution of
the seismic stresses on the dam is assured.

Table 1

c, 2, 0, E: ratios of time interval, length, density and
Young’s modulus of the model to those of the
prototype respectivery,

/3 : stress,

D : thickness of the dam,

e : strain,

Y : displacement,

I4 : length,

%, @ :amplitude and circular frequency of earthquake

motion respectively.

Suffixes m and # mean the values for the model and
prototype respectively.






