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ON WATER-HAMMER PRESSURE DUE TO PERIODIC
OPENING AND CLOSURE OF VALVE

By Sukeyuki Shima,* C.E. Member, and Yoshio Ogihara,** C.E. Member

Synopsis : A water-hammer action develops in a pipe when the valve is periodically opened
and closed at the end of an elastic pipe. Since this phenomenon is similar in appearance to an
elastic vibration, there arises a question if a resonant vibration could be introduced at a certain
period of alternate opening and closure of the valve to render the resulting water-hammer
unstable. Questions have also been aroused as to the spatial and temporal distribution of the
water-hammer occurring under such conditions. The present study has treated of these problems

both in theory and experiment.

1. INTRODUCTION

As a recent trend a regulating valve of a hydroelectric plant has to be opened and closed periodically
in response to the demand of, such as, a strip mill of an iron work where power must be fed periodi-
cally. When a flow section is thus periodically varied at an end of an elastic pipe, the flow velocity
changes accordingly and as a result a water-hammer action develops inside the pipe depending on the
elastic characteristics and shape of the pipe and the elastic characteristics of water. Not much study has
been done in respect to this type of water-hammer action either theoretically and experimentally, and
key problems remain unsolved. This is due theoretically to nonlinearity of the boundary conditions and
complexity of the computation procedures involved, and experimentally to limitations imposed on the
pipe length and a special device needed for the structure of a valve model which must be opened and
closed in rapid succession.

Fortunately, we have succeeded in overcoming these difficulties and marking a step forward both in
theory and experiment. Our original purpose consisted in examining the question if this type of water-
hammer could be rendered unstable by periodic opening and closure of the valve as a resonance comm-
only observed in an elastic vibration. We also planned to study the effects of viscosity on divergence
of the water-hammer action. However, the results of our theoretical and experimental study have shown

that this type of water-hammer action is stable, and further that the effects of viscosity is all but

negligible.

2. THEORETICAL CONSIDERATION
The denotations used in this paper are defined below in reference to Fig. 1.

1) Denotation . .

@ Fig. 1 Generale view of water-hammer system.
x=distance from the reservoir along the pipe

v.

axis t =time
P,(x,f) =pressure inside the pipe at x=xz and

t=1r Reservoir

V{(x,f) =average flow velocity at x=x and ¢=¢

¢ =potential of external force
P(x,t)=P,(x,t) —pp D=1.D. of the pipe
L=entire length of the pipe

d=thickness of the pipe
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K=coeflicient of compressibility of water
E=coeflicient of elasticity of pipe material
p=density of water
C=Chézy’s constant
a=wave velocity of water-hammer pressure
g=acceleration due to gravity
¥ () =gate ratio function representing opening ratio of the valve
T=period of opening and closure movement of the valve
(2) Fundamental equations
Considering infinitesimal terms of relatively higher orders, the equations of motion and continuity for
a water-hammer pressure are given, respectively,?

O v 0V A0VE L 0P e

AT Frais 7y T Bz ~(1)
ovV.___ 1 (d9p 2 N )
e paz(at +VW> Ceeeterariaaaienens (2)

where

These nonlinear equations are linearized on the assumptions below.
‘(1) The pressure due to water-hammer is relatively small as compared with the hydrostatic pressure.
(2) Changes in flow velocity due to water-hammer is small as compared with the initial velocity.
(8) The density of water o and wave velocity of the water-hammer a are constant.
(4) Variation in gate ratio which represents the ratio of opening of the valve is small.
(5) The following relationship hold,
Plzx,t) =P0,0) +p,(x,0) +p,(x, ) l
V(o) = V(0,00 +on(a0) 4y | -(8)
Now that the initial conditions P(0,0) and V(0,0) are already known, our remaining problem is to
determine p,(x,0), v,(x,0), p,(x,8), and v,(z,2). The terms $:(x,0) and v,(x,0) are the stationary
solutions. Hence they can be determined on the assumptions already made and by further assuming that
these stationary terms are small as compared with P(0,0) and V(0,0).

1 84V(0,0)°
‘U1<x,0) v—E‘V(0,0) {exp.(mx )—1}

8 gV(0,0)2
XP'( @—V0,05CD" }

oa (4
i, =52 (1

Substituting these results and rewriting the fundamental equations 1) and (2) with p, and v,, we

obtain linear fundamental equations in respect to p, and v,, as follows.

v, v, 1 ap,  8gV,

5z +V, Fpe *_T 7z oD Upeeereseeerernnecnnionsnnininniiecn (5)
v, _ 1 {87 8 p,

e = A oy +V, 7o } e (6)

where
Vo=V(0,0) and P,=P(0,0).

We may rewrite these fundamental equations by using 10 non-dimensional terms shown below.

Vs _ P
U= Vn, —‘*—PO
x t

~
G ==

T
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_paV, _ aV, __a_’I_’_
2p= 7, #gH’Zﬂ T 7
Ve Ve 8¢Vl  8VJSL
=P, gH’” C’DP, ~ CDH, (8

Vo
me=—=, f=2pm

tA)
O

Q=

where

V() =T 0) + v (®), H(x,t>=~p1—gp<x,t)

As a result the relationships (5) and (6) are reduced to

p Bu 6]
du 8h 6/1
4 pf—— T +__+2 af | R T TRy ¢ 11))

Further, the initial and boundary conditions may be rewritten by using the same non-dimensional terms

as follows.

Initial conditions :

u(&,0) =0, (—%) -0

.y =0 ceeeteeerenesein e e e ene e (11)
h(E,0) =0, <_1> -0
¢,0) 72 ).
Boundary conditions :
At the reservoir
JQ0,2) =0 eeerverreensemneeninnienienenn e (12)

If it is assumed that the Torricelli’s theorem holds, V(L,£) =% (¢)4/P(L,t) , and based on the previous

assumptions, this is linearized in a non-dimensional form as

1, N
1¢(1,z)=v{gp(z)+~h*(—2—%} ’
me N
where Vz_%%_:%)%),,:1+_;_ e 1-m2 [ __1} lr(l;})
CPLOY . s me e |
P(O 0 1Tm§1761 f§ J

In ordinary cases, the value of s is very small, so that we may put »=1, ,5:1»:[2‘__ Therefore, Eq.

(13) is reduced to

w9 =@ 1D (0)
z<1_7>

Further, if we neglect the effect of friction, Eq. (13') becomes
1w(l,2) =¢(2) ﬁ%(m”)
Taking into consideration the relationships (11), (12) and (13), and applying the Laplace transform®
to the equations (9) and (10) in term of z, and then rewriting in term of pressure, we generally obtain
= o\ ~v7e®shbé )
9= U 0 (Zo—jm ___F5 ) §Shb 0 2w bchb]' e (1)
os+nrd \ 20 400 ps+ul  2p

v
2
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where
_ Sfr2pms+2mOp
462 0— fm)

p=¥ Cf+20ms+2m 0’82 p— fom) (os*+usb)
462 p—fm)

The result function %(¢,s), corresponding to the boundary condition Eq. (13", is reduced to
__ 7z pat,
geshbe e (147)

R(E,s)=
a 1 al
e [( S T s a )shb+ o5 +,u0 ch bJ

where
__ S5
T 800

b= «/ ps +ulf s
8,00 4 p6*

is negligible as in the case of ordinary water-hammer

Further, when we assume that the value of f
analysis, Eq. (14") is simplified as
—fshb¢ e e (147)

R(E,5)= 1 7]
o shb + Py bchb

where
b= \/ os*+pls
4 p0*
In Eqgs. (14), (14") and (14”), s denotes the parameter of transformation and—a transformed result
function. The inverse transform of these relationships is too complex to obtain through an ‘ordinary

procedure of computation.

(3) In case where the flow velocity varies periodically at the position of the valve.

Here, we may use as the boundary conditions, instead of Eq. (13),
u(]_yz):gp(z) e e s tesree e et ree ettt ceraasreearaaren e

If we assume that 7, and f are small as in the case of Eq. (14”) the Laplace transform in respect to

- (15)

pressure is
R, :___—;;s_th_' 16)
Tsrar PRt

The inverse transform can be obtained and expressed as follows.

- : By » (_I)WISi"&IZ_i”E
h(f,z)z—ﬂfqo(z)—Sﬂﬁjol e % 2 Cn—D=
<[ sin@n-1ye0¢e-3) - e Ty e @D D) [ Fds (D)

Here, ¢(2) can be an arbitrary function, but, if so, the integration is rendered considerably difficult.

We have carried out the computation of Eq. (17) for a particular condition expressed by

9(2)=Bsin2z 2 rTrersesessten el (18)
As a result the following relationship has been obtained
16 B, p
h(€,2)=— Ficos 2 z— ﬂB(E+ gt %z)sm2zz
8B -4,
+ e % 2onF,+uF3 - (19

720
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where
bl C,
F=JF (~1)"'L, sin -t
n=1 28
3 ( DM, sin—= C"£
n=1
- c, cerenne e seneens (20)
F= 3 (—1* L, Sm—~cos Cuz
Fe=
- Co oo
2’ (=" N, sm EsmC,,z
=1
u 8
< ) {czn 1) +*~—}+(2n De { }
2 pr
L= 4 4
—~(2nf1)2[2(2 n) { = } + {(271—1 - } ]
: 2
o)
M,= T 7 N 2 ))
(271——1)1: < ) {(27z~ }—0— {(271—1)2— 5 } :l
2 pzw 8
2
(o) frenrt]
2 pr [
Ny = P 4 4 )2
@n-n] 2 (g5 ) {er-vrr—ef + {en-b- ]
Cou=(2n—1)aherrrreeeerernnenreen (22) Fig. 2 Relationship between maximum
water-hammer pressure and roughness
This relationship enables us to evaluate the press- for the pipe system of our experiment.
ure due to water-hammer at an arbitrary position hmax g
and arbitrary time for the case where the effect
of viscosity is considered. The results are shown \ =010
=0.ilm
in Fig. 2 in terms of Manning’s roughness coe- 506 L=100m
ficient # vs. maximum water-hammer pressure at ;=1<1>20m/ sec
h=1om
z—o0. The initial state of water-hammer pressure 400 \
derived also from this relationship is shown in \
Fig. 6 in comparison with other examples of 300 \
computation. By computing Eq. (19) it has been \
found that the maximum amplitude of water-ha- 200 \
1 T, .. N~
mmer pressure Occurrs at—0—=»2~+z (:=0,1,2,--).
100
Neglecting the effect of viscosity in Eq. (16) we
obtain 0 _ -1
10 1z 14 16 18 s
—2 pp sh ¢ s s
- 20 o e - LN
R(£,$) = ——— =207 ¥ (-v" {e a5 G g (2’”“‘)} oo (23)
M=
ch 50
The inverse transform is also obtained
[ee]
h(,2) = —2 ",rfo(“l)"[ z———(2n+1 o) - {z——<2n+1+5>}] e (24)
where
o(z—a)=0, z<¢z1
- (25)

=9p(z—a), zzaf
such that the computation is carried out relatively with ease when the effect of viscosity is neglected.

However, since these serial expressions converge poorly, the computation is considerably complex for a
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large value of z. The physical significance and computed examples of Eq. (24) will be discussed later.

(4) In case the valve is opened and closed periodically.

The water-hammer due to periodic opening and closure of the valve can be determined by computing
the inverse transform of Eq. (14). However, since this is generally impossible, we have confined our
objective to such cases where the effect of viscosity is negligible. Eq. (14”) then becomes

-2 pg?sh—sa &
G e (26)

14 hZﬂTChZG

which corresponds to the boundary condition Eq. (18”). It is all but impossible to obtain the
imverse transform of this equation for the arbitrary gate ratio function ¢(2) by using the residue theorem
just as done by George R. Rich for the special case shown below. However, our method has turned
out a result through a relatively simple procedure and also allowed a clear representation of its physical
significance. Let us briefly review the Rich’s method®. For a particular condition ¢(2) =Bsin2zz, where
a stationary state prevails after disappearance of a relatively earlier water- hammer i.e., for the limit

condition where z->0, the imverse transform of Eq. (26) becomes
]1(f,oo):-«Zszin_z—fsin(zn;z_Hg) e e (27)
h(l,ao)max=ZB]cosﬂiu..........-..‘.‘......................‘.4..............,....4(28)

where

cot—
B=tan™ {——p—}
The above method is not available for giving the water-hammer pressure at the earlier stage, but
suffices to give stable and unstable conditions of the water-hammer pressure which is generated by
periodic opening and closure of the valve.
- We have succeeded in obtaining a relationship which provides the water-hammer pressure at the

earlier stage and for an arbitrary function of (=), as follows.

Eq. (26) is rewritten in exponential terms
s s
207 (€3¢ —e %)
8 S
(I+p)e2s +(A—p)e 25

R, =~

1 . . .
<1, the relationship is developed in terms of

Considering further that o is a positive value and

p—1
p+1 "

28 —e€ 29

G P

o—1 _s@n+i-¢) _S@n+1+¢€)
Tvo? nop+1>{e f )

Thus the inverse transform of this equation is obtained as follows.

—— Zp s p_l " 1 L — _— -—_1»,_ = z ---------
h(€,2)=— i, 7£0< ] > [@ {Z—W(Zn +1 5)} 90{2 5 2 n+ 1+f)f] (30)

where
pz—a) =0, z<dl - (25)
=p(z—a), zzaf
By using Eq. (30) the water-hammer pressure at an arbitrary position and time can be computed for
and arbitrary function of ¢(2). Moreover, since » is relatively approximate to unity, convergence of
this series is extremely good. When compared with Eq. (24) which has been derived for the condition

where the flow varies periodically, the physical significance of Eq. (80) is also evident.
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The physical significance of Egs. (24)
and (80) is illustrated in Fig. 3. The
first term represents the pressure at the
instant when the water-hammer wave
initiated at the position of the valve
passes the position £=¢; the second
term the pressure at the instant when
the same wave passes £=¢ after being
reflected from the reservoir; and then
the third term the pressure at the instant
when this reflected wave once again
passes ¢é=¢ after being reflected at the
valve and propagates as a progressive
wave. The subsequent terms show that
these phenomena are repeated in succe-
ssion. Since ¢(2) is generally not such
a simple function as Bsin2zz, it is
necessary to determine ¢ (2) by the
actual measurement in advance and
from this to obtain the water-hammer
pressure diagrammatically through Eg.
(30). An example is given in Fig. 4.

For ¢=1 at Eq. (30):

(@) if o>1, A(1,2)
— 52 () [5)
_g,(z_’l_;ﬂ)] e (31)

(b if o=1, h(1,2)
=—9(2) +¢<z—%> ......... (32)

(© if 1500, h(1,2) =
1+p 2, (b7 <1+p>

e )-oe-i

By using these formulae the temporal
distribution of the water-hammer press-
ure at the position of the valve can be
determined.

Let us now consider the spatial dist-
ribution of the water-hammer pressure.
At the early stage of time it is as shown
in Figs. § (a), (b) and (¢). For 2z
o, i.e., after a considerable length of
time the number of the terms of Egq.

(3) becomes infinite, which implies that

Fig. 3 Progressive and reflected waves

of point &.
_’%"——
- f
—
1<}
=&
1+
- -~
3—&
C —

Fig. 4 Water-hammer pressure at é=1, obtained
diagrammatically through Eq. (80).

. ]
W1, 2Z) F=0.55
A

Fig. 5 Transient and stationary pressure distribution
along pipe axis.

o

( d') l o ,,,,,,//////////////////////////// 7 =0 <

l o 0 o _lp‘ %
(e) ' _///////////////////// 7+ |>lp>_%

"///////////////////////

f ;/////// 22 ,////// ‘Z——voo §>_‘_>|
(f) ' 2z
|
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physically the pressure distribution co- Fig. 6 Numerical results obtained by three different

mes to be stationary. Let us examine equations.

Eq. (80) for such condition. Since ¢(z) K2

is a function of the period equal to g

unity, we obtain the condition on which . 60__:2;::;{;ecpn:i):;3l24 D=0.10m L=100m - ;;

the relationship £(¢,%) =0 holds inde- ig [ e 1000m/sec Al [

pendently of the value of z, as follows. 30 Hy=15m //\\ Ii \\ / \\

E=10 (i=0,1,2., ...... ) ......... (34) fg /“\ 7\ 1

Such value of ¢ which gives the max- 0 .

imum £ (¢, ©) can not be obtained —i0 Iv ‘\ / 4 “\ / z

unless the expression of ¢(2) is determ- :;g \V \ ] \ ]

ined. For a particular case where ¢(z) o T :;‘ ((,3; \/ \\/l

=Bsin2z 2, Eq. (30) is rewritten :Zg‘ &g (30} - '\‘,,
h(€,00)=— iilj sinnff n}':o (%)ncos 2z {z+ﬁ2;;_1 } e (35)

giving the same expression as Eq. (27) which has already been discussed. Hence the value of ¢ giving

the maximum /A(€, ) is, in this case, evidently,

5___<%+ ,') 6 (i=0,1,2, S e (36)

Taking into account these results, the spatial distribution of the water-hammer pressure is illustrated as
shown in Figs. 5 (d), (e), and (f), which are quite similar to the vibration pattern of a string or a
tuning fork.

Let us now consider the water-hammer pressure at the position of the valve for the condition ¢(2)
=Bsin 2z z. The results are illustrated in Fig. 6 for the following three cases. (a) Water-hammer
pressure due to periodic variation of the flow velocity, considering the effect of viscosity (n=0.014) ;
(b) Water-hammer pressure due to periodic variation of the flow velocity, neglecting the effect of
viscosity; (c) Water-hammer pressure due to periodic opening and closure of the valve, neglecting the
effect of viscosity. As a result, it is found that the water-hammer pressure is extremely unstable when
the flow velocity varies periodically at the position of the valve, while it is stable when the valve is

opened and closed periodically. In practice, however, such phenomenon where the flow velocity varies

periodically seldom occurrs.

3. EXPERIMENTS

In the preceding chapter a theoretical analysis of the water-hammer pressure has been discussed for

the cases where the valve is opened and closed periodically. We will now proceed to verify the theor-
etical results through experiments.

One of the greatest difficulties encountered was the structure of a valve model which is durable to
high-frequency vibration. After a series of futile efforts we have fortunately succeeded in designing a
valve of special type. Outline of the experimental equipments and a part of the experimental results
will be discussed below.

Fig. T gives a schematical representation of the experimental equipments, which includes (1) pipeline,
(2) high-head tank, (3) low-head tank, (4) notch weir, (5) lift pump, (6) main valve, (7) cock,
(8) motor and speed regulator, (9) pressure gauge, (10) strainmeter and oscillograph, (11) manometer
for calibration and pressure unit, (12) valve for calibration, (13) terminal contact, (14) signal for cali
bration, (15) air valve.

First the lift pump (5) is operated to send water from the low-head tank (3) to the high-head tank
(2), and then by opening the valve (12) water is passed down the pipeline (1). The discharge is



ON WATER-HAMMER PRESSURE DUE TO PERIODIC OPENING AND CLOSURE OF VALVE 9

measured by the 60°-notch weir (4). Now, the
main valve (6) is started by the motor and
speed regulator (8) to produce a water-hammer
wave inside the pipeline (1). The wave is
recorded by the pressure gauge (9) and the
oscillograph-amplifier unit (10). In the mean
time the opening and closure movement of the
main valve (6) is transmitted electrically by
the terminal contact (13) to the oscillograph
recorder. The calibration procedure consists
of first cutting the flow by closing the cook
(7) completely, filling the pipe with water by
closing the valve (12), raising the pressure
inside the pipe to a known valuw with the
pressure unit (11), and then recording with
the pressure gauge (9) and the strainmeter-
oscillograph unit (10) .the pressure which is
being gradually diminished. In the mean time
the water pressure is measured by the mano-
meter (11) and transformed into an electric
signal by the key (14),
which is then transmitted

to the oscillograph (10) and

recorded there simultaneo-

usly with the water pressu- ® _F)
re. The air inside the pipe

is removed through the air

valve (15). The phase vel- L

ocity of the water-hammer ®

pressure is determined from

the wave profiles resulting from the instant
closure of the valve. The pipeline is made of
steel and of a circular cross-section 10.5cm
I.D., 0.45cm thick, 97.60 cm in total length,
and 16.7m inl head.

The arrangement of the main valve and the
motor and speed regulator is illustrated in
Fig. 8,
(2) speed regulator,

showing in position (1) motor,
(3) pulley for arm con-
(5) holes for connecting

nection, (4) arm,

arm, (6) main body of valve, (7) contact for
revolution indicator, (8) cook and (9) pipe.

Power is supplied from the motor (1) to
the speed regulator (2) which controls the
period of the opening and closure movement
of the main valve through the pulley (3) plus
the arm (5). The pulley (3) is equipped with

two holes, denoted No. 1 and 2, where the

F

1/ sec

2.0

Fig. 7 Schematic representation of the
experimental equipment.

‘Fig. 8 Main valve, motor and speed regulator.

to oscillograph

ig. 9 Discharge characteristic for different
stroke and opening.

parameter - stroke

Opening
A

3
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arm is connected and each hole gives a different length of stroke. The holes (5), denoted A, B, C,
D, E, and F, can produce six different angles of revolution of the main valve to control the variation
ratio of the discharge through the section of the flow, i.e., the gate ratio.

In order to determine the expression of the gate ratio ¥(#), a discharge under the hydrostatic head
was measured for the variable angle of revolution of the pulley (3) and the expression of ¥ (¢) was
estixﬁated from the following relationship.

Q=a¥ () /2 gH, =constx ¥ (£)
This relationship shows that the expressions of ¥(2) and @ are similar. The results are shown in
Fig. 9.

Measurements of the water-hammer wave were conducted by using a strainmeter and an oscillograph.
Fig. 10 shows the profiles of the water-hammer wave for the boundary conditions of the valve shown
in Fig. § (a). A theoretical sol- Fig. 18 Comparisons between theoretical and experimental
ution, based on Eq. (33), is also water-hammer waves.
plotted for the purpose of com- ® #=1.54 cycle
parison. The amplitude of this

water-hammer wave varies accor-
ding to the period of the opening

and closure movement of the val-

ve, and the relationship between
the period and the amplitude is
shown in Fig. 11. This figure
shows that the water-hammer

| /\ i
\.

wave, without diverging due to

periodic opening and closure of
the valve, merely attains a maxi-
mum at a certain valve of frequ-

ency. The figure also plotts the

theoretical values derived from
Eq. (83) as well as the Rich’s
theory. Comparing these plottings

it is understood that our theory

LARRAR Gk b R R A

f/\/\/\/\/\f /\j
\\/\\/\«\ J_./_\_

which satisfies the boundary con-

ditions of the valve gives a better

agreement with the experimental

results.

4. CONCLUSIONS yu r"x.«u‘ha.a"t'..,.—‘ e A S T . A
@ n=4.85 cycle
The results of our theoretical
and experimental study on the AR ‘ NARNAR ,
A o e o —
water-hammer pressure phenome- 0’ EIRNY O’f o\ 1.0 W\ sec

T T
AA .'\ Ao ;*.‘ An A
Ao L A \/\
'\\ '\'x‘\.-'\'\ \ f\k" ]

AAARRARRAAN

Hence it follows that, when the | T T T T T T T 'r-.l.r-'u}-rilhu

non have been briefly discussed,
particularly dealing with the case
where the valve is periodically

opened and closed. It has been

demonstrated that our theory and

experiment agrees favorably.
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opening and closure movement of the Fig. 11 Comparison of the maximum pressure between

valve located at the end of the pipe theory and experiment.

is relatively small and as a result the [} MaXimum pressure abtained by experiment

. . —=—— Theoretical curve &¢ (30
cross-sectional area of the flow varies urve € (30)

Pmax Theoretical curve &g (27)

by as much as ¢(2), the average flow ;
1 kg /om?
velocity accordingly varies by “=y A

¢(2). It is evident that this variation 0,30

10 po

) = = O d
water-hammer pressure A=—2pu P /f\ N
2p O, N
ij_—pga(z) as would be shown also 4 \

by the Joukowsky formula. The /

of the flow velocity gives rise to a O (
Py

water-hammer pressure thus produced 0.20 / / \O
. ) [ i
propagates toward upstream and is ! g / \

reflected at the position of the reser- \

. . \
voir. If a total reflection occurrs, the \ |
symbol is reversed and as a result the /

20 \
water-hammer pressure 7 o (2) oo / / \ /
travels backward from the reservoir ! o
toward the valve. The wave then / \

reaches the valve and is reflected ! /

there again; but this time there occ- !

urrs a partial, instead of total, reflec-

tion depending on the value of p. It 0 | 7 3 4 5 6 T el

is evident from our treatment that this

. .o -1 . . . -
coefficient of reflection is expressed by le . If the valve of ¢ is approximate to unity, the term ,%_—Fi

is nearly equal to 0, i.e., the pressure wave is barely reflected at the valve but virtually absorbed
there. Our experimental results seem to verify this assumption. It also follows from the preceding
discussion that this type of pressure can not be reduced unstable at a certain period of the opening and
closure movement of the valve.

However, a further study is necessary for such cases where the opening and closure movement of the
valve is so large that the resulting water-hammer pressure is also large as compared with the hydrostatic
head, and where the mass and the elastic and electric supporting conditions of the valve must be taken

into account.
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