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ON THE MOTION OF THE FLOOD-FLOW RUNNING DOWN
THROUGH THE RIVER

——Mathematical Treatment and its Applicability——
By Takeo Kinosita, C,E. Member

Synopsis : Combining the equations of motion of fluid with the equation of continuity, the author solv-
ed numerically differential equations of flood-flow which 1s one kind of unsteady flows. The system
of the flood flow under cosideration is nonlinear with a finite amplitude. In this paper, first, his

method 1s justified by comparing calculated floods with observed floods.
Chapter 1 Introduction

We have improved many rivers since very old days. The term ¢river improvement’”’ means to
change physical constants and coefficients of a river, for examples to increase the bottom inclination
by means of short-cutting, to adjust the friction coefficient by means of dredging or spur dikes, to
smooth up the river-bed and so on. When we make a plan to improve the river, we must know quanti-
tatively how much influence this improvement has upon the flood-flow which is not a steady flow, of
course. But it is hard in general to predict these influences due to river improvements. We had closed
up open levees or cut off meandering parts for land utilization, thereupon we often experienced that
the flood crest ran down faster and it became higher than ever. The damages are swelling up rece-
ntly with economical developments of river basins. Although we cannot conclude easily the causality
of flood damages, we ought to make efforts to save the cost of improvements and avoid unexpected
damages by means of investigating previously natures of floods. The river improvement is based upon
social and economical requirements, but it is the problem of hydrodynamics to research and predict its
effects upon flood-flows.

In this paper, the author wants to find natures of flood-flows through the mathematical computa-
tion based on hydraulics. Another way of investigation of floods is the model experiment. However
the similarity law restricts unfortunately our experimental approach, that is, Froud’s numbers for an
actual phenomenon and an experiment must coincide with each other on one hand, and both Reynolds’
numbers must do also on the other hand, so that water cannot be used in experiment for phenomenon
of water. Unsteady flows are made in a small glass channel at Institute of Industrial Science, Tokyo
University”, without consideration of similarity law, and friction formula in the model channel is
quite different from one in the actual river, because the flow in the channel is neither turbuleni nor
laminar but in complicated state. There are some objections 1n such an experimental research.

The flood-flow is unsteady, of which the water-level and the discharge vary with time and space.
In this case, the motion of a water particle is so complicated that we can hardly formulate it strictly
with respect to every water particle. For this reason some simplifications are necessary, and cheir
results give differential equations for the mean velocity in the open channel.

From upstream to downstream, x-axis is taken along the river. At a certain time and a certain
cross section, taking the average of the water velocity, we define it the mean velocity of water «.
The differential equations consist of # and the water depth % on x and ¢ co-ordinates. There are velo-
city components which are perpendicular to the x-axis. We call them secondary flows and take them
for a kind of turbulence, their effect being included in a friction term. Through these procedures,

the equation of motion is simplified as given by
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The first and second terms are related with the acceleration of mean velocity, the third and fourth
terms express the bottom inclination and the depth gradient respectively, so that the sum of both
expresses the slope of water surface, and the last term means the friction. Two coefficients » and

« which are determined by the cross sectional form and the velocity distribution equal to 1 approxi-

mately. R= % is named the hydraulic mean depth and almost equals to % if the channel is rectangular.

i

A is the cross sectional area, and P is the wetted perimeter. Ziéwhich is a friction coefficient is re-

written by Ciz « Then Chezy’s formula which has been well known as an empirical formula for steady
flows in open channels is introduced into our fundamental equation for unsteady flows. We call C
Chezy’s coefficient, which represents how easily water flows down.
O 0D ©

(2) shows the equation of continuity, that is, the increment of A is defined by the difference be-
tween inflow and outflow at a certain section. Of course (2) is derived from div #=0.

As these equations are nonlinear with respect to %, we are compelled to simplify them largely
for analytical developments. A few examples will be written down below.

The cross section A 1s assumed to be a primitive function of the depth 7%, that is «k?. If the

bottom inclination is balanced by the friction, corresponding to the steady motion, (1) becomes Chezy’s

formula.
11
u=Ch?i?
Combining this with equation (2), we obtain
o
dh T2 on
— 4+ u — =0
ot P 0x
This equation, called Seddon’s formula, shows that some phase of % is transmitted by the velocity
1
pty 3
? Ue In a rectangular channel, as p=1, % is transmitted by the velocity 5 # « It can be also

discussed by the characteristic curves. In the rising part of the flood, the characteristic curves con-
verge together. In other words, the highest part of the flood runs down more quickly than the frontal
part and the former catches up with the latter, then the flood wave becomes a breaker at last. We
have never observed such a curious phenomenon. Neglection of g—% in this simplification causes this

ou ou oh

— , # — and —— are put back again, through
ot ox ox P 8 g
numerical integration we elongate segments of the characteristic curves step by step, solving associa-

discrepancy. So the characteristic method is improved.

ted equations numerically. This procedure is very troublesome.

Other researches in analytical method are tried. Dr. S. Hayami® added the horizontal mixing to
the equation of continuity in order to represent diffusion property, and assumed rectangular, uniformly
sloped and infinitely long channel. The equation is

oh__0Q ok
5t~ oz Tox
3 /. On\} L . . . . .
where Q=ch? z——; , which is derived from the equation of motion without acceleration terms.

Next he expanded % to ¢,, @, and collected terms of ¢,, by which he made the following equation

o¢, 3 9o, %9,

at 2 Yogx T Hga
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where fo= Zq +7
and Uy=cvV'hy

As this is linear, it can be solved analytically with suitable initial and boundary conditions. He
obtained the solution of this equation by means of superposition of the simple sine wave or unit
pulse function. But the mixing coefficient 7 is unmeasured.

Dr. T. Hayashi® linearized the equations (1) and (2), seperating unsteady parts from steady
parts of %, u and @ of the flood, and supposed that the formers were smaller than the latters, so
that he obtained the solutions analytically. He assumed that an amplitude of a flood is infinitesimally

small.

In both methods there are some restrictions such as channels being rectangular, uniform and

infinitely long and their friction coefficients being constant.

As above mentioned analytical ways stood on some hypotheses which are not very adequate to
study natures of floods, we hope to develop another new method through which we can investigate
them based on more reasonable considerations. If equations can be solved numerically instead of
analytically, without simplifications, we can easily obtain the informations about natures of floods with
intuitive pictures.

Difficulty in solving these nonlinear equations with the friction term has hindered the development
of hydrodynamics. If the numerical approach is able to remove such difficulty as above, it must contribute
to not only hydrodynamics but human security very much. Then the author has intended to compute these
equations numerically. But in this numerical computation there is an obstacle, that is a computational
error which is mainly connected with acceleration terms. The author will show how to deal with them

in next chapter.

Chapter 2 On Acceleration Terms

When we are going to solve equations (1) and (2), we find two ways, with and without accelera-
tion terms in equation (1). The way including equation (1) with acceleration terms and equation (2)
requires the initial conditions: %(x) and #(x) at ¢=#, and the boundary conditions: A(#) and «(Z) at
x=x, The way without acceleration terms, on the other hand, requires the 1initial condition: k(%) at
t=t,, and the boundary conditions: %(#) at x=x, and A(f) at x=x,. Data of mean velocities are
required for the initial and boundary conditions, if acceleration terms are not omitted. Nowadays the
water-level is measured accurately, easily and frequently, while the mean velocity is not measured
accurately nor easily. So we have not plenty of good data of mean velocities for the initial and bou-
ndary conditions.

Besides we must have precise data to prevent accumulation of computational error. However as
mentioned above, the accurate mean velocity can hardly be measured. Moreover during the flood time,
the river flow is so turbulent that the ‘‘accurate’’ velocity is meaningless Consequently we want the

method for which mean velocities need not be used as the conditions.

If the acceleration terms are omitted, we can compute the water-levels and the mean velocies
defining only the water-levels as the imitial and boundary conditions.

Further it is the most important fact that acceleration terms are much smaller than other terms.
%g—%/i andlila—’f/i

According to the observations?of the experimental flood at Sintakase River g 5z
are both smaller than 5%, except only one observation, though this experimental flood was rising more

rapidly than actual floods.

Dr. M. Yoneda®) showed a few examples in actual floods as follows.
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At Tanabe, Kizu River At Hirakata, Yodo River

July 1949 June 1935
10u /.
Sl +2.6%~—1.2% 4+6.9%~—2.0%
g o0t
%g—;/z +1.6%~—1.0% +1.3%~—0.2%

In the latter chapter the author will express that the water-level computed by his method without
acceleration terms and observed records of the water-level coincide with each other very well. This fact
means acceleration terms are negligible. Later on he will show the way to solve the equations with
acceleration terms and their effects in the model channel.

To be brief, acceleration terms are neglected in most part of the present consideration. Because

they are small.

Chapter 3 To Solve Fundamental Equations

supposing that the channel is uniformly rectangular in order to explain simply how to solve equa-
tion first, we obtain the following equation by combining equation (1) without acceleration terms

with equation (2),

Ok 3 1f. 0\ Ok C s/  Oh\—-%30h _
at—i—zchz(z_.ax) axA?‘hE(l_ax) {mz_o....... ..... 3)

This is obviously nonlinear, but roughly speaking, consists of diffusion part and transportation part,
that i1s to say, the flood form which is represented by % travels down through the channel, decaying
and spreading as diffusion.

Of course, it is a big advantage that we can discuss natures of floods not only in the rectangular

channel but also in the channel of arbitrary form with the present method. For the sake of simplicity,

. . : . . . oh 0k

the author 1s going to explain the fundamental relation in equation (3). It consists of #, 8—; D3 x
o

o ) - .. 0k 9k 5% h
—- .7 and C. As ¢ and C are constants in this case, if #, — , —— and —— are known at =0, we
0x? ot = ox ad x*?

. . . . 0h
can derive the increment of % with respect to time, that is 3t Consequently #’s at t=4¢ become

oh . .
known {from a—t-At at all mesh points on x-axis. In other words, using the water-levels at #=0,

equation (3) predicts the water-levels at /=4¢. In the computational process, the author does not
use equation (3) directly because it 1s not convenient. We had better use its original form (without
combining (1) with (2)), so that we can obtain the discharge related with the water-level at every
mesh point. Defining ¢ as the discharge per unit width g=u%, we obtain equation (4) from (1) without

acceleration. Equation (2) is reduced to equation (5) by simple substitution.

s /. O\
q_Chz(z_ 6x> .............................................. @
oh dq
97 = g B NN G

First we compute the discharge ¢ at every point by the right side of (4) from the water-level, and
next the increment of % by the right side of equation (5) from the discharge. Then we know the
new water-level at =4 ¢. Repeating this process we can easily obtain the water-level Z and the dis-

charge ¢ alternately through equations (4) and (5).

In actual rivers the bottom inclination, the form of the cross section and the friction coefficient
vary irregularly with x or with the water-level. In order to apply this method to floods occuring in

actual rivers, first the author introduces the absolute height of the water-level above a certain ref-
on o0H

erence level H, replaces i — ﬂ to — 5} , and considers the cross sectional area A to be a function of H

at every mesh point as in his previous reports®-®.
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A=A (H) oeeemrereeiniie e (6)

ca A7 H ;
Q_CA‘/F(_S—;> .................................................. I
0A  9Q :

Equations (6), (7) and (8) are more general forms of (4) and (5), and derived from fundamental
equations (1) without acceleration and (2). In this case, while independent variables are ¢ and =z,
dependent variables are H, A and @, which are going to be determined successively by this numerical
computation for (6), (7) and (8). A functional relation between A and H is known previous'y by

surveying. H’s are known at all positions on x-axis at =0 as the initial condition.

. . OH
Derivertive 7z can be computed by the difference expression as follows.
(%

a0 H Hn¢1 - Hn—l

(31’),,_” 24x =i~
o H _4H,—-83H,—H,

<—a p >x_0 B at upstream boundary.
0H —4 Hy ,+ _

<»—> = rt 8 Hyt Hy at downstream boundary.
ox x=1 24x

Putting (6) and these difference expressions into equation (7), we derive @’s at all points easily.

P

o . . . . . .
Next the derivative ™ is represented by the difference expression in the similar manner,

(9_Q> _ D =@y pe el —1
0% )sen B

. . . 0A
These transformations are as precise as parabolic approximations with three points. As 97 equals to

2
— a—% , the time increment of the cross sectional area becomes known through equation (8).

Thus the new water-levels H,~H;_, become known by means of the relation (6). They and H,
and H; which are given as boundary conditions at upstream and downstream respectively make the
form of water surface at t=4¢. We consider H at ¢{=4¢ as the initially given value of the water-level,

and repeat this work successively. We can consequently obtain H and @ at every time and everywhere.

Chapter 4 Computational Error

In order to prevent the accumulation of the computational error we should examine the relation
between mesh sizes 4¢ and 4 x. There is no theory for 4#-4x relation especially about a nonlinear
partial differential equation.

The difference equations corresponding to equations (7) and (8) are

H —. _Hm,nJ-l
Qun>=C*(Hyp ) —M—%ZTZ_] P PN )
Amsrn—=Am,n — Omuns =Cmmen 10)

4t 24x%
A3
where f= ; and the first of double suffix means the time mesh number and the second the space

mesh number.
The error comes from two origins, that is to say, the difference between solutions of the differe-
ntial equation and of the difference equation and the residue of Taylor’s expansion.

Notations to be used are as follows.

solution of difference eq. differential eq. error

water-level H 7 e=H—7
cross section A a e=A—a
discharge Q @ E=Q—9¢

In this chapter the author decides the relation between 4¢ and 4 x in order to diminish the computa-
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tional error.
While equation (10) is the equation of continuity in the difference form, the same eqution in the
differential form is
da 09
ot 0x
By Taylor’s expansion of these derivertives, it becomes
4t

T.=—F
Emrrn —Cmn =T = bmins—bmn=s—Ts 2 an
4t 24x 4 %*
T2: —3—‘ brxx
where T, and T, are residues of Taylor’s expansions. Subtracting equation (11) from equation (10),
we obtain
mirn = Emnt T - Em'”+1_Em-”‘1+T2.. G e (12)
4t 24x%

While equation (9) is the equation of motion in the difference form, the same equation in the

differential form modified by Tayl()r § expansion 1s
2 2 T, n—1 T, n+1 7 3
¢m,n ‘Cf(77m,n) 2

4 %3
T,= T Nxxx

............... R e &)

where T, 1s also a residue of Taylor’s expansion of the surface slope. Subtracting (13) from (9), and

approximating @°>—¢? to 2 EQ, we make a complicated expression.

_ [% Cm,n—y —Cm,n1— L S (Hup,n)
Ep,n= 2 Qm,nf(Hm’n) < 24 x ) + 2F (Hp.n) Qi1 Cm,n
L M)
’F sz,nf (Hm,n) ( 24% Cm,n T o <14‘>

Combining these error relations (12) and (14), we get
Emt1,n Em, n Cf 4t

L T L aLQax ™
Cf 4t
SLJZQ 42z Cmni2t+Cmn—zt To,monir— To,mon)
J'Q 4¢ ‘ 1 /4¢
+ 7L Ix (~emmtstemns) = T (éd—x T7+T;) e e, (15)

This expression (15) shows that the error of difference and differential equations at (m-+1, #) on (¢,
x) co-ordinates comes from ones at (m, n—2), (m, n—1), (m, n), (m, n--1) and (m, n—2) and resi-
dues of Taylor’s expansions. Coefficients of ¢,,,, and so on in (15) have to be smaller than 1 in order
to prevent the accumulation of errors. At (15) both sides are divided by L which is the width of

the channel to compare with them in the same dimension. Thus the author makes restrictions for 4#

and 4 x.
Ct 4t 8LQ
8LQAx2<1 4t << Cir Ax2 e Cee e (16)
fQ 4¢ 4L
4-—Lf A———x<1 At<——~f/@ Adx - .- e (A

(16) and (17) are related wit

mental equation respectively.

=2

the diffusion property and the transportation property of the funda-

As the relation of residues of Taylor’s expansions corresponds to the diffusion equation, the author
picks it out the fundamental equation with some simplifications.

Suppose the channel is rectangular,
2 it
At:——zs—sz.,..,..,.“.... et e e e e (18)
Ch?
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Suppose the channel is triangular,

47 it

4t= 3 5

These relations determine mesh sizes of 4¢ and 4 x from the point of view of computational errors.

Chapter 5 Floods in Actual Rivers

In the case of application of this method for actual rivers, the followings are desirable.

(a) Variations in width, depth, bottom inclination and other quantities of the river should be
gradual, becuse the original equations are differential ones.

(b) The river should not be meandering very much, because equations are described as one
dimensional phenomena.

(¢) There should be neither diversion nor confluence, because of equation of continuity. But if
equation of continuity is generalized with the confluence term, this requirement will be removed.

(d) The cross sectional area should well be surveyed, because functional relation between H and
A (6) must be known at every mesh point.

(e) The friction coefficient (for example Chezy’s coefficient) should be determined.

(f) A number of water-gauges should be installed along the river, because many records of
water-levels are used for initial and boundary conditions.

Two rivers, Kinu River and Sintakase River, are chosen as examples. They are sufficient for
above-mentioned requirements (a)~(f).

Kinu River rises from mountains in northern part of Totigi Prefecture, runs through Kanto Plain
and pours into Tone River. The downstream part of 42 km in length is chosen as the computational

zone. The flood occured at Sept. Ist 1949 caused by the typhoon <Kitty .

4x= ‘ 2km ‘ 6km
T q—‘/!»r:ct;ngula-r’w | triangular i ) rectangular ' triangular
77(16) kiA < i 77179;0 sec 1920 sec { 17 280 sec 17 280 sec o
Can ar< | 1100 640 | 3200 1920
(18) & (19) 4¢t= l 133 370 T 1200 ‘ 3340 -

This table shows the relation between 4t and 4% accerding to (16)~(19), in which numerical values
are taken as follows,

h=4m Q=3000m?/sec L=300m

i=1/2500 € =50 m? sec—
Then 4f and 4x are determined to be 400 sec and 2km respectively. In this case #=0 is taken at 1
a.m. Sept. 1st 1949, when the water surface Fig. 1 Calculated and observed hydrographs
began to swell up at the upstream boundary. at Ishige, Kinu River.

Comparison between observed hydrographs Szm
and calculated hydrographs are 1llustrated in
Figs. 1 and 2. The former is at Ishige where
the watergauge 1s set on the mesh point. The
latter is at Mizukaido where the water-gauge 1s

out of the mesh point. These curves coincide

well with each other.

It was said previously that acceleration
terms were small. The author wants to check th-

eir effect in computation process. Fig. 3 shows

A
that the difference between two solutions with 2 3 4 s 6 7 8 41 1o 11 2}
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and without acceleration terms. In this case the
discharge @, with acceleration terms is derived
from the water-level and accelerations expressed

mn terms of #,

_ 4 _@Miw_ub%>
QG—CA/P( ;

0x

A oH . .
where ub:C/ P (—5;) , that is the velocity

without acceleration terms. Fig. 3 suggests that
the acceleration does not deform the solution
remarkably, and we can discuss characters of
the flood-flow excluding acceleration with good
approximation.

Kinu River is a natural river and its width
and other quantities vary over a wide range.
Moreover, as water-gauges are not precisely set
on mesh points of the difference operation, we
cannot compare observed water-levels with calc-
ulated ones in detail. And it is important for
practical use to smooth up irregularities of chan-
nel form, friction coefficient and so on. Therefore
the author used the data which Dr. M. Yoneda
had obtained at Sintakanse River. It is not a
natural river but made for drainage. The flood
was caused by operating the gate {or experime-
ntal purpose. Water-gauges were established at
every 100 m and observed at every 2 minutes by

naked eyes.

H
L-1gm

Fig. 2 Calculated and observed hydrographs
at Mizukaido, Kinu River.

Fig. 3 Correction for acceleration terms. full
lie : @, dotted lIine : @,

Q 5am

—withoul acceleration terms | U

----with ascelevation terms

The initial depth (steady flow) is about 30 cm, the maximum depth is about 1 m and of course, the

flood is a phenomenon of finite amplitude.
follows,
1=8.5x10"*
4 =100 m

Its duration is about 2 hours.

Parameters are defined as

1
C=28 m?sec™!

Using these values, we make the restricltion for 4¢ based on relations (16)~ (18).

4t <120 sec,
Consequently 4¢ 1s determined to be 40 sec.
Chezy’s coefficient is supposed to be consnant
and the channel is supposed to be uniformly
rectangular and infinitely long for the sake of
simplicity of this computation.

The calculated hydrographs agree well with
the observed ones as we see in Fig. 4, though
we assume a crude model of the river. In this
diagram an elevation means a residue of subtrac-
ting the initial depth from the instant depth.
Even if the river is made for drainage, the

bottom inclination is irregular. The initial depth

4t <133 sec,

4t=20 sec

Fig. 4 Calculated and ocserved hydrographs
at some stations, Sintakase River.

— Calculated
om elevation ---- Observed.
60
40}

20
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is not so accurate that we see a little discrepa- Fig. § Time-distance curves for crests,
ncy in water-levels. Sintakase River.

The time-distance curves for the flood crest ™ Time
are drawn in Fig. §. They say that above-menti- 4op
oned simplifications are very reasonable this co-
mputation, at least to predict the travel of the
flood. 30

Even though the mathematical treatment of
nonlinear partial differential equations is very
difficult, their solution obtained by numerical 20
method agrees to the actual phenomenon. The
author intends to deduce characters of flood-flows 500 Mt Station Number
by this useful method and to show the interest- 0 12 8 20 25
ing results of the deduction 1n the next report.

Summary

Equations (1) and (2), which are called equations of motion and continuity expressed in terms
of the mean flow of warer, can be solved numerically. For this computation we do not need assumptions
such that the channel is rectangular, the friction coefficient is constant, the flood has an infinitesimal
amplitude and so on.

Two actual floods, in Kinu River and Sintakase River, are computed. Agreements between observed
and calculated curves may justify the validity of this method and prove its applicability to practical

use.
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