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It is known that bridging is a dominant mechanism in the fracture of concrete. The material property
related to bridging is the tension-softening relationship which is the relationship between the transmitted
tensile stress across the crack surface and the crack opening displacement. In this paper, a method to
indirectly obtain the tension-softening curve from the bending test of a notched beam is proposed. The
method is applied to reported results, and agreement is observed between the tension-softening curves by
the proposed method and the modified J-integral-based technique. The method is also applied to bending
tests of SFRC beams, and results are compared with those of direct tension tests.

Key Words: back analysis, tension-softening relationship, bending test, bridging, fracture process

zone

1. INTRODUCTION

It is commonly accepted that the Linear Elastic
Fracture Mechanics (LEFM) approach is not directly
applicable to quasi-brittle materials such as concrete,
rock, and ceramics because of a large fracture process
zone ahead of the crack tip. The fracture process zone
consists of a microcracking zone and a bridging zone
(see Fig.1). The microcracking zone is a zone where the
initiation of microcracks and their growth are dominant.
Microcracks in these materials may be initiated by
various mechanisms depending on the materials. In
concrete and rock, microcracking is initiated by the
concentrated stress near a macrocrack. Microcracking is
understood as an ensemble of microcvents such as the
extension of existing defects and pores, and the
debonding at the interfaces between aggregates and the
cement matrix rather than the actual cracking. The
bridging zone is a part of a macrocrack along which the
stress is transmitted by partial matrix, aggregates or
fibers. Under mode I loading, the bridging behavior is
represented by the tension-softening relationship which
is the relationship between the transmitted tensile stress
and the crack opening displacement. In different
materials, the roles of bridging and microcracking may
be different, i.e., either bridging or microcracking may

265

be the dominant mechanism or both may share
comparable roles.

Until now, many models have been proposed to model
the -fracture process zone. In the field of fracture
mechanics, the model to model the nonlinear zone ahead
of the crack tip in metallic materials was proposed by
Dugdale”. In his model, the nonlinear zone is modeled
as an extension of the actual crack and perfectly plastic
behavior is assumed along this crack extension. In a
slightly different way, Barenblatt® considered molecular
forces of cohesion acting on the edge region of the
crack. Barenblatt limited the analysis to cases where the
size of the edge region with cohesion is small compared
to the size of the whole crack. Hillerborg et al”
proposed the Fictitious Crack Model (FCM) for
predicting crack growth behavior of concrete. In the
model, the fictitious crack ahead of the actual crack is
assumed, and the transmitted stress along this fictitious
crack is considered (see Fig.2). When the fictitious
crack opens, the stress is assumed to decrease with
increasing crack opening displacement. The transmitted
stress is determined from a tension-softening curve
corresponding to the post-peak stress-displacement
relationship of the uniaxial tension test. The validity of
this model should be examined by comparing with the
experimental observation since, in the model, not only
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Fig.1 Schematic illustration of fracture process zone.

the macrocrack with stress transmission but also the
two-dimensionally extended microcracking zone is
modeled by the extended part of the crack.

Unlike the fictitious crack model which considers the
whole nonlinear zone as only an extension of the actual
crack with transmitted stress, the model proposed by
Nirmalendran and Horii® considers the effects from
microcracking and bridging separately. The two
mechanisms are separately modeled, the Dugdale-
Barenblatt type model being used to model bridging
alone. The interaction effect between both mechanisms
is considered through the interaction between the
macrocrack and microcracks. In the model, bridging
obeys a tension-softening curve while microcracking
obeys a microcracking law. The model is applied to
concrete, and the result shows that the effect of
microcracking on the toughness of concrete is small, and
the toughness induced by bridging is dominant.
Therefore, bridging can be considered as the governing
mechanism of crack growth in concrete.

From above literature review, we know that bridging
is a dominant mechanism in the fracture of concrete. As
mentioned before, under mode 1, the material property
related to bridging is represented by the tension-
softening curve. The tension-softening curve can be
obtained from the post-peak stress-displacement
relationship of the direct tension test. However, the
direct tension test is difficult to perform because the
behavior after the peak is unstable unless a very stiff
machine with a feedback system is used. Nevertheless,
in recent years, complete post-peak stress-displacement
relationships from direct tension tests using stiff, closed
loop feedback-controlled loading machines have been
successfully reported by Petersson”, Gopalaratnam and
Shah® and Reinhardt et al.”. Unfortunately, this kind of
machine is not available in most laboratories and, for
this reason, the tension-softening curve is usually
assumed as linear or bilinear for simplicity™ .
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Fig.2 Fictitious crack model with a tension-softening
relationship.

To avoid the difficulties in the direct tension test, new
testing methods or indirect testing methods have been
proposed. Rokugo et al'® investigated a new tube
tension test to determine the tension-softening
relationship. This test needs only a conventional
compression testing machine. The geometry of the
specimen is designed in such a way that by applying
compression on specified boundaries, the tensile stress
field is developed in a certain zone. Rokugo et al.
observed, by the acoustic emission source location
technique, that the distribution of damages during the
test was not uniform even along the final crack line.
This may be because the stress field in the specimen is
not uniform even if the material is homogeneous.
Therefore, the obtained tension-softening curve is
questionable. Li and Ward'® proposed a technique
based on the J-integral to experimentally obtain the
tension-softening curve. In the experiment, two pre-
notched specimens with slightly different notch lengths
are used. The J-integral is then calculated from the area
between the load-load point displacement curves from
the two specimens. The test methods employed in the
paper were the compact tension test and the four-point
bending test. Because two load-load point displacement
curves from two specimens are used in the method, any
error in the measured curves results in a magnified error
in the difference between the two curves. Rokugo et
al."”? proposed a modified J-integral-based technique to
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Fig.3 Back analysis method.

obtain the tension-softening curve from one notched
specimen.

In the present study, a back analysis method to obtain
the tension-softening curve is proposed; the basic idea
was presented in Horii and Nanakorn'®. In this method,
the tension-softening curve is computed from a given
load-deflection curve of a bending test. Because only a
load-deflection curve from a single bending test is used
in the calculation, the magnified error from employing
two experimental curves in one calculation does not
exist. FEM with a cracked element'® which is an
element with embedded displacement discontinuity is
employed in the analysis. The analysis is performed
incrementally without iteration, and the piecewise-linear
tension-softening curve is obtained. The tension-
softening curve obtained by the proposed method
reproduces the original load-deflection curve if it is used
in the forward analysis.

A similar back analysis method to obtain the tension-
softening curve from a bending test was proposed
independently by Kitsutaka et al.'®. Though the basic
1deasofﬂ1etwomethodsarcalmostthesame,ﬂ1edetaﬂs
are different, and will be discussed afterwards. The
authors of this paper were not aware of the existence of
the work by Kitsutaka et al.”” during the development of
this back analysis method?.

In this study, the proposed method is applied to the
steel-fiber-reinforced concrete. Although approximated
or simplified tension-softening relationship may be
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adequate in many cases, the complete tension-softening
relationship is necessary when in-depth studies on the
fracture behavior of concrete are concerned. Tasks such
as establishment of a new design provision for steel-
fiber-reinforced concrete tunnel linings and development
of new cementitious materials require this kind of
studies. In fact, the proposed back analysis method, as
one of necessary tools, is used in a study to establish a
design provision for steel-fiber-reinforced concrete
tunnel linings by Nanakorn and Horii'®,

2. BACK ANALYSIS METHOD

To obtain the tension-softening relationship by using
a load-deflection curve from a bending test, we consider
a three-point bending problem with a notched beam as
shown in Fig.3. In fact, it is possible to use other types
of testing as long as there is only a single propagating
crack and the starting point of the crack propagation is
known. The other important requirement is that the
crack opening displacement at the starting point of the
crack propagation must always be maximum, compared
with the other part of the propagating crack. In the

ec-point bending test with an initial notch, it is
reasonable to assume that a crack, propagates from the
tip of the notch, is straight and is at the middle of the
beam. After the crack propagates from the tip of the
notch, stress is transmitted across the crack surface, The
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Fig.4 Example of an incremental step.

crack just ahead of the tip of the notch will have the
maximum crack opening displacement, compared with
other part of the propagating crack. If the relationship
between the transmitted tensile stress and the crack
opening displacement at the crack just ahead of the
notch tip is determined, the obtained relationship, which
is the tension-softening relationship of the material, can
be used for the crack surface farther away from the
notch tip because the crack opening displacement is
smaller than the one just ahead of the notch tip.

Based on this fact, the relationship between the
transmitted tensile stress and the crack opening
displacement at the crack just ahead of the notch tip will
be determined from a given load-deflection curve from a
bending test. The analysis will be done incrementally,
and the tension-softening curve will be obtained as a
piecewise-linear function.

One of the material properties to be used in the
analysis is the tensile strength of the material, denoted in
this study by f.. This f; will be used as a starting point of
the tension-softening curve as shown in Fig.3. This
means that the tensile strength f; is used as a cracking
criterion; if the tensile stress reaches f;, the material is
cracked, and the crack propagates.

First, we consider a state of loading called a current
state as shown in Fig.3(a). Imagine that we have
already obtained the tension-softening curve until this
state by the back analysis. At this current state, the
applied load is P and the deflection of the beam is 3.
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Fig.5 Decomposition of the original problem.

Here, T and w denote the tensile stress and the crack
opening displacement at the crack just ahead of the
noich tip, respectively. As noted before, w is the
maximum crack opening displacement along the crack.
Therefore, it corresponds to the end of the obtained
tension-softening curve (see Fig.3(a)). From this current
state, an incremental force AP is applied as shown in
Fig.3(b) and Figd. The associated incremental
deflection is denoted by Ad. The incremental crack
opening displacement and incremental transmitted
tensile stress at the crack just ahead of the notch tip are
denoted by Aw and AT, respectively. From the given
load-deflection curve, AP/AS is known for any AP (see
Fig.3(b) and Fig.4). The tangential slope of the tension-
softening curve AT/Aw for this incremental step is
determined so that the value of AP/A by the analysis
equals to the value from the experimental load-
deflection curve.

In the computation, the problem is decomposed into
two sub-problems as shown in Fig.5. The first sub-
problem is a problem with only the incremental load AP
applied at the middle of the beam, and no incremental
force is applied on the crack surface just ahead of the
notch tip. The second sub-problem is a problem with
only the incremental tension AT applied on the crack
surface just ahead of the notch tip. In both sub-
problems, the obtained tension-softening relationship is
incrementally satisfied on the surface farther away from
the notch tip. For example, in Fig.4, the crack has
already propagated for few steps, and there are, at the
current stage, three segments of the crack surface in



which the crack opening displacements are represented
by the values at the center of the segments, ie., A, B
and C. From the figure, in the segment 2, where the
.crack opening displacement is equal to B, the
incremental tension-softening relationship represented
by the slope of the line 2-3 of the piecewise-linearly
obtained tension-softening curve will be satisfied. At the
same time, in the segment 3, where the crack opening
displacement is equal to C, the incremental tension-
softening relationship represented by the slope of the line
1-2 will be satisfied. The incremental tension AT in the
second sub-problem will be applied on the segment 1
which is the notch tip segment. Note that the crack
opening displacement of this segment, denoted by A,
corresponds to the end of the obtained tension-softening
curve.
From the decomposition, the resultant incremental
crack opening displacement and incremental deflection
can be written as

Aw = Aw AP+ Aw, AT
A3 =Ad, AP+ A8, AT

(1a)
(1b)

where subscripts P and T denote the solutions when unit
forces AP=1 and AT=1 are applied, respectively.
From Eq.(1b), we express AT as

Ad
AT =Ad| ————=|. 2
8 Ad @

Substituting Eq.(2) into Eq.(1a), we get

AP
s 2 252 ¢ A 45| BB | 3
W= AWRA0Ng T AT AS, |

Finally, from Egs.(2) and (3), we derive

AP
1-A8, —
P A8
Y
AT
I—ASPA—8
AW, —+Aw, | ——29
Veps TN A,

From Eq.(4), it is seen that for a given slope AP/AS
from the load-deflection curve, one can obtain the
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corresponding slope of the tension-softening curve
AT/Aw for this incremental step. In the analysis, FEM
with a cracked element introduced in the next section is
employed, and the tension-softening curve is obtained as
a piecewise-lincar function (see Fig.4). The magnitude
of AP is determined as an absolute-minimum value for
the next element to be cracked or the slope of the
tension-softening relationship at any cracked element
changes. For example, in Fig.4, when the incremental
load AP is applied, the transmitted stress at the segment
1 follows the line 1-2 of the obtained tension-softening
relationship. If the crack opening displacement at this
segment goes beyond the point 2 of the obtained tension-
softening curve, the slope of the line 2-3 must be used
instead. For the segment 2, the same strategy must be
held. The analysis is done incrementally. Therefore, it is
necessary to limit the magnitude of AP to ensure that the
incremental tension-softening relationship represented
by the slope of the tension-softening curve does not
change within the step.

As already explained, by employing Eq.(4), one can
directly obtain the slope of the tension-softening curve
AT/Aw for a given slope of the input load-deflection
curve AP/AS. Therefore, there is no iteration required
for each incremental step. In contrast to the proposed
method, the method proposed by Kitsutaka et al.'®
requires iterations in each step.

Afier obtaining the increments AT and Aw, the
tension-softening curve is thereupon extended as shown
in Fig3(b) and Fig4. The same process is then
repeated, and finally the complete tension-softening
curve can be obtained.

3. CRACKED ELEMENT

In the present study, the four-noded quadrilateral
element modified to capture the behavior of materials
after cracking is used. The element employs an
interpolation function derived from the consideration
of relative displacement induced by the rigid
translation and rotation between two parts separated
by the discontinuity. The interpolation function,
employed in a principle of virtual work equation,
leads to equilibrium of forces and moments of each
separate part. In this element, the additional degrees
of freedom due to the discontinuity can be statically
condensed within the element. Therefore, the effect of
the discontinuity is completely represented by only
the change in the stiffness matrix of the four-noded
quadrilateral element in contrast to remeshing
scheme in which the mesh topology is changed.
Furthermore, with this cracked element, the



Fig.6 Body with embedded displacement discontinuity.

constitutive relationship of the discontinuity, which is
the relationship between the displacement jump and
the transmitted stress, can be taken care of easily and
directly within the element. The element is therefore
useful even in the case of a straight crack. In this
paper, only a brief derivation will be shown. The
detail of the element can be found in the work by

Nanakorn and Horii*.

(1) Incremental virtual work for displacement
discontinuity

Following Dvorkin et al.”” and Wan et al'®, we
consider the classical principle of virtual work to derive
the incremental equilibrium equations for a body which
contains displacement discontinuity. The principle of
virtual work for the body shown in Fig.6 is given in the
following matrix form, i.e.,

|8 e'6av=]5 u'tdv+] s u'Tds+] s g"t* ds
v v S, s
(5)

The body is separated into two parts called domain A
and B. Here € and ¢ are the strain and stress vectors,
respectively, u is the displacement vector, and f and T
are the body force and boundary surface traction
vectors. In addition, t* and € are surface traction
vectors acting on the internal discontinuity surface S. of
the domain A and B, respectively, and g is a
displacement jump vector with respect to the domain B.
The last term in the equation refers to virtual work done
by bridging stress along discontinuity surface. Note that
t*=-%, and this internal traction is determined through a
discontinuity condition which is a constitutive
relationship of the discontinuity.

Revriting the virtwal work equation for the
incremental formulation, we obtain

c
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Fig.7 Concept of the displacement interpolation.

| 5cAe™yAGAV + ] 8(Ag™HAL dS = | S(auT)Af dv
v

S, v

+] 8(auMATds
Sy
©)

The discontinuity condition is usually given in a local
coordinate system set with respect to the discontinuity
plane (see Fig.6). Therefore, it is preferable to write the
displacement jump and the internal traction in the local
coordinate system. The incremental virtual work
equation is then rewritten as

J 8ae™)AGav + | 5(AgTHALR dS = | S(AuT)Af AV
v s, v

+] 8(auTATdS

Sy

Q)

where subscript 1 denotes the variables in the local
coordinate system shown in Fig.6.

(2) Interpolation of the displacement field
The incremental displacement interpolation without
the discontinuity is given as usual, i.e.,

Au(x)= N(x)AU ®)

where N denotes an interpolation matrix which contains
shape functions. Here AU denotes the incremental nodal
displacement vector.

We now consider the displacement discontinuity
which passes through the center of the element as shown
in Fig.7. The domain A is assumed to undergo relative
incremental rigid displacement with respect to the
domain B including the incremental rigid translation
AU’ and the incremental rigid rotation AA. The
incremental rigid translation and rotation are referenced
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Fig.8 Four-point bending problem.

to the center of the element. We can then express the
displacement field as the ordinary continuous
displacement field with additional discontinuous
displacement field, i.e.,

Au(x)=Au_ (x)+RAU; +1(x)AA xe VA
=Au_, (x) xe V?
®

where AUT denotes the incremental rigid translation in
the local coordinates. Symbol R is the transformation
matrix from the local coordinate system to the global
coordinate system (see Fig.6). For two-dimensional

cases, we have
cos® —sin6
R=| .
sin® cos0

where O is the angle between the two coordinate
systems as shown in Fig.6. Note that R' =R,
Here, 1(x) is defined for two-dimensional cases as

—sinf
Ix)=Ur,B)=r cosP

in which r is the distance from the center of the element
to the point of interest and 3 is the angle, with respect to
the global coordinate system, defined in Fig.7.

The continuous part of the displacement ficld can be
simply interpolated using an ordinary interpolation
matrix, i.e.,

(10

03]

Au_ (x)=NEXAU-DPRAUS -®'LAA) (12)

where P, for two-dimensional problems, is defined as
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Fig.9 Tension-softening curve.

=0 © .. Q) (13)
where n is the number of nodes in the element. Each of
the submatrices ®; of dimension 2x2 depends on the
position of node i relative to the discontinuity line and is
defined as

I when nodeie V*
) = . b - (14)
0 when nodeie V
In addition, &' is defined as
o
* ¢2
D = 15)
e,
Here, L represents I(x) at each node, i.c.,
L' ={-sinp, rcosP, .. —rsinB, r,cosp,)
(16)

Employing Eq.(12) in Eq.(9), we finally have

Au(x)=N(x)AU+ N°(x)AUf +N(x)AA (17)
where

A

N°(x)=R~N(x)®R xevV
, (8
=-N(x)PR xeV
N'x)=1x)-Nx}P'L xeV*
. (19
=-N(x)®L xeV



0051 1522533544535
Crack mouth opening displacement (mm)

Fig.10 Load-crack mouth opening displacement curve.

By employing Eq.(17) in Eq.(7) with Ag,(x)
expressed as
xeS_, (20

<

Ag,(x)=AU; +R'I(x)AA

the tangential stiffness matrix of the cracked element is
obtained following the conventional formulation in
FEM',

(3) Analysis of the four-point bending of a beam
To show the validity of the element when it is used
to solve the straight-crack problem, a four-point
bending problem shown in Fig.8 is analyzed. The
cross-section of the beam is 100x100 mm, and the
span length is 300 mm. Two point loads are
symmetrically applied at 50 mm away from the
center of the span. Material constants and a tension-
softening curve used in the analysis are given in
Fig.8 and Fig.9. In the analysis, a crack is assumed
to be initiated and propagate only at the middle of the
beam. The result is then compared with the resuit
obtained by Uchida et al.” who employed the finite
element method that assumes cracking between
elements. In this scheme, when the crack extends
through a certain node, the node must be split into
two in order to allow the crack propagation. Fig.10
shows the result of the comparison. It can be seen
that the results from both analyses agree very well.

4. RESULT
First, the proposed back analysis method is verified

numerically. By employing FEM with the cracked
element, the forward analysis is done for the three-point
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Fig.11 Three-point bending test of a notched beam.
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Fig.12 Experimental load-deflection curve of the three-point
bending test.

bending beam problem with artificial linear and bilinear
tension-softening  relationships. The analysis is
performed by using the assumption that there is only
one crack propagating from the notch tip, and the crack
is straight. The load-deflection curves obtained from the
forward analysis are then used as the input for the back
analysis. The objective is to check whether the tension-
softening curves obtained from the back analysis differ
from the input curves in the forward analysis or not.
The results are satisfactory. The obtained tension-
softening curves are exact copies of the initial input
curves. The compared curves are not shown here
because the difference between the input curves and the
obtained curves are unnoticeable.

Next, a three-point bending test of a notched beam
performed by Rokugo et al.” is employed. The cross-
section of the beam is 100x100 mm. The span length is
800 mm. A notch with the length of 50 mm is cut at the
middle of the beam. The material used in the experiment
is the steel-fiber-reinforced concrete with 1% by volume
of fibers. The fiber type is the straight steel fiber. The



Fig.13 Smoothing scheme.

boundary and loading conditions of the problem and the
material constants are shown in Fig.11. From the
experimental load-deflection curve shown in Fig.12, the
back analysis is performed. Also in this analysis, a
crack is assumed to propagate from the notch tip, and
its path is assumed to be straight. It is found that the
tension-softening curve originally obtained from the
method is uneven. This unevenness may subsequently
lead to the magnification of the unevenness of the
following solution. Hence, the obtained curve is
smoothed out during the computation for every few
steps. The curve is smoothed in such a way that the area
under the smoothed curve is equal to the area under the
original curve (see Fig.13). It seems that a similar
problem resulting from the unevenness of the obtained
tension-softening curve also appears in the method by
Kitsutaka et al.” but the treatment for the problem is
not discussed in that paper.

Fig.14 shows the tension-softening curve obtained
from the back analysis. The tension-softening curve
obtained by Rokugo et al.*® is also plotted in the same
figure. They employed the modified J-integral-based
technique'? to obtain the tension-softening curve. From
the comparison, it is seen that the results from the two
methods are in agreement. It is also observed that there
is a sharp drop in tension at the beginning of the curve,
and the back analysis method can capture this behavior
well.

The previous example shows that the back analysis
used with the load-deflection curve from the three-point
bending test with a long notch yields a result that is
similar to the result from the modified J-integral-based
technique. Next, the method will be tested using the
load-deflection curves from the experimental results of
the four-point bending test with a short notch. In the
test, the cross-section of the beam is 150x150 mm. The

273

Tension (MPa)
4
3.5
3 n
25 F
2
15
1 -
0.5 ‘ . .
0 . . _ .
0 0.5 1 1.5 2 25

Crack opening displacement (mm)

/ Present study

Rokugo et al.®® 1

Fig.14 Tension-softening curve from the back analysis of the

three-point bending test.
P2 P2
f'.=33 MPa
f,=4MPa
n"10 mm
e 150mm o 1S0mm
150x150x450 mm

Fig.15 Four-point bending test of a notched beam.

span length is 450 mm. A notch with the length of 10
mm is cut at the middle of the beam. The type of the
material used is the same as the previous example —
the steel-fiber-reinforced concrete with 1% by volume of
straight steel fibers. Fig.1S shows the boundary and
loading conditions of the problem as well as the material
constants. It should be noted that the tensile strength f,
used in the computation is approximated from the
results of direct tension tests. In the real practice, the
tensile strength f, can be determined from the splitting
test. The load-deflection curves obtained from the
experiments are not smooth; therefore, they are
smoothed before used in the analysis. Fig.16 shows the
two smoothed experimental load-deflection curves used
as the input for the back analysis as well as some other
experimental curves. It can be seen from the figure that
the experimental load-deflection curves scatter a lot. The
Young’s Modulus used in the analysis is determined
from the . initial slope of the smoothed load-deflection
curve.
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Fig.16 Experimental load-deflection curves of the four-point
bending test. ’

From the observed crack patterns from the
experiments, it is found that there is always a single
localized crack propagates from the notch tip. Though
the localized cracks are not actually straight, their paths
do not deviate much from the middle cross-sections of
the beams. Therefore, ‘it is reasonable to employ the
assumption of having a straight crack at the middle of
the beam. The tension-softening curves obtained from
the analysis are shown in Fig.17. In the same figure, the
tension-softening curves for this material obtained from
the direct tension tests are also plotted. The direct
tension tests are performed by using the displacement
control without a feedback system. It can be seen that
the tension-softening curves from the proposed back
analysis agree well with the experimental results from
the direct tension tests. It is interesting to note that the
tension-softening curves from the direct tension tests
scatter much. The scattering of the tension-softening
relationships is expected to be the main reason of the
scattering of the experimental load-deflection curves.

5. CONCLUSION

Tension-softening relationship is an important
material characteristic controlling the fracture behavior
of concrete. The complete tension-softening relationship
is necessary when in-depth studies on the fracture
behavior of concrete are concerned. The in-depth studies
on the fracture behavior of concrete are essential for
tasks such as establishment of a design provision for
steel-fiber-reinforced concrete tunnel linings'® and
development of new cementitious materials. The
tension-softening curve can be obtained from the post-
peak stress-displacement relationship of the direct
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Fig.17 Tension-softening curves from the back analysis of the
four-point bending test.

tension test. However, it is difficult to perform a stable
direct tension test without using a stiff, closed loop
feedback-controlled loading machine. In the present
study, a new back analysis method to obtained the
tension-softening curve is proposed. The analysis is
performed by using a load-deflection curve of the
bending test of a notched beam. The method is based on
the fact that the magnitude of the crack opening
displacement at the crack just ahead of the notch tip is
maximum, compared with the other part along the
crack. Therefore, if the relationship between the
transmitted tensile stress and the crack opening
displacement at this position is determined, the obtained
relationship can be used for the crack surface farther
away from the notch tip because the crack opening
displacement is smaller than the one just ahead of the
notch tip. The computation employs FEM with the
cracked element'. In this study, the method is used
with load-deflection curves from the three-point bending
and four-point bending tests of steel-fiber-reinforced
concrete beams. The tension-softening curves obtained
from the method show good agreement with the curves
from the modified J-integral-based technique as well as
the experiments. Because the bending test is simple and
does not require so sophisticated loading machine, the
proposed method is advantageous. Nevertheless, it is
expected that special consideration on the input load-
deflection curve data may be necessary if the method is
used with normal concrete. It is because, due to stronger
instability after the peak in the bending test of the
normal concrete beam, it may be difficult to obtain
reliable post-peak portions of the load-deflection curves
unless very deep notches are used. It is also important to
note that, as long as FEM analysis is concerned, the
tension-softening curve obtained from the back analysis



gives the original experimental load-deflection curve if it
is used in the forward analysis.
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