J. Materials, Conc. Struct., Pavements., JSCE, No. 538,V -31, 227-239, 1996 May

COMPUTATIONAL MODEL FOR REINFORCING BAR
EMBEDDED IN CONCRETE UNDER COMBINED AXIAL
PULLOUT AND TRANSVERSE DISPLACEMENT

Koichi MAEKAWA ! and Juneid QURESHI 2

! Member of JSCE, Dr. of Eng., Professor., Dept. of Civil Eng., the University of Tokyo (Hongo 7-3-1, Bunkyo-ku, Tokyo
113, Japan)
2Dr. of Eng., Assistant Prof., Dept. of Civil Eng., NED University of Engineering & Technology, Karachi, Pakistan

An enhanced computational model for the prediction of reinforcing bar behavior under the generic condition
of axial pullout and transverse displacement is presented. Based on the compatibility relationship between the
transverse displacement and the curvature induced in the embedded bar, the localized phenomenon of the bar
close to the interface is formulated, and its formulation makes it possible to express the reduced pullout
stiffness of embedded bars encountered under combined axial pullout and transverse dowel action.
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1. INTRODUCTION

~ There exist several constitutive laws which can be
combined to formulate plate and joint models for
smeared and discrete crack elements for FEM
application. In general, these constitutive laws have
been verified under simplified loading conditions, and
their applicability under generic conditions needs to be
checked. The relation between bond stress-slip-strain
has been formulated ? by treating the reinforcement in
concrete as a one dimensional cord. This consideration
is valid for a single mode deformational path in which
the reinforcement is subjected to axial deformation
only.

However, when deformational paths are of a
mixed mode nature, i.e. axial pullout coupled with
transverse displacement, the applicability of the
existing model is invalidated in terms of the reduction
in the axial stiffness and the mean yield strength of the
reinforcement, due to a zone of localized yielding in
the reinforcement close to the crack plane, as detailed
in reference'®. The shear capacity of a crack plane,
which might govern the ultimate load under specific
structural conditions, is therefore not decided by the
axial stiffness and strength represented by bare steel
bars under uniaxial deformation, but that by the
coupled interaction of longitudinal and transverse
displacement which is brought about by the
equilibrium and compatibility requirements of a crack

plane, and cannot be ignored when RC joint plane has
small roughness and/or heavy reinforcement ratio>.

In this paper, an enhanced computational model
for the prediction of a reinforcing bar behavior under
generic conditions of axial pullout and transverse
displacement is presented, based on the relationship
between the transverse displacement and the
maximum curvature induced in the embedded bar,
along with the consideration of the localized
phenomenon of the bar close to a crack and interface.

2. PULLOUT OF REINFORCING BARS
COUPLED WITH TRANSVERSE SHEAR

A number of previous studies have been done to
develop constitutive models for both steel and concrete
components separately, but most of them have been
verified under simplified and idealized loading
conditions. The modeling of reinforcement has been
treated by separately considering the two actions of
axial pullout and transverse shear and then

_superposing these behaviors.
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Modeling of reinforcement under uniaxial pullout
has been proposed by several researchers, who have
established microscopic and macroscopic bond
models®”®. Shima et al.” formulated a constitutive
model for bond stress, strain and axial slip considering
both microscopic and macroscopic aspects of bond.
This model is taken as a frame-work for modification
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to propose the enhanced model for embedded bar
under generic displacement paths.

Results of tests on embedded bar behavior under
loads transverse to the bar axis have been utilized by
several researchers to predict the maximum dowel
capacity and transverse load displacement
relationships of reinforcement ¥, Nonlinear “beam
on elastic foundation” models with variable subgrade
stiffness have been proposed but these are limited to
reinforcement subjected to transverse loads only, and
considerations for bar plasticity or additional damage
build-up in concrete, due to radial bond micro cracks
originating from the coupled axial loads, as is the
condition which reinforcement is subjected to in most
RC interfaces, has not been considered.

In the past, prediction for the shear capacity of RC
interfaces® was made by the superposition of bar axial
bond stress-strain-slip model” with plain concrete
stress transfer model” . However, the predictions were
not satisfactory '® , usually resulting in over-estimation
of capacity and associated shear displacement when
the crack planes are heavily reinforced, even while
neglecting dowel contribution by the reinforcing bar.
Since the bond-slip-strain model proposed in (2) was
formulated under pure tensile conditions, it was
presumed that one of the major reasons for the
incorrect estimation of shear capacity is the incorrect
model for estimating confinement provided by the
axial stiffness and strength of the reinforcement under
coupled action of crack opening and transverse shear.

To investigate the embedded bar behavior under a
coupled displacement path, pure shear loading was
adopted in beam type specimens as shown in Fig.1'®.
The shear displacement and associated dilatancy of the
shear plane simulates the necessary generic loading
path for the embedded bar. By changing either the
confining force to the interface, varying the
reinforcement ratio, or the shear plane geometry,
different displacement paths, applied to the targeted
reinforcing bar, were studied. Test results, which are
the basis of this study, showed significant decrease in
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Fig.2 Embedded bar subjected to coupled displacement path.

bar axial stiffness and strength, under the coupled
displacement paths, compared with the pure uniaxial
traction ? . Details of the test setup and results can be
found in accompanying study in (16).

3. ANALYTICAL MODELING

(1) Mechanical behavior of embedded bar across
interface

In a reinforced concrete interface subjected to a
shear stress defined as 7., a shear displacement, 9, is
produced and due to over-riding of the crack surfaces a
normal compressive stress, ', is induced along with
an associated normal displacement denoted by ®
(crack dilatancy). This normal displacement causes a
pullout of the confining embedded steel reinforcement
at the interface, S, thereby inducing an axial strain &,.
Also the shear displacement produces a zone of
curvature ¢ along the reinforcement close to the
interface, with a location where the induced curvature
gets maximum as Qma Due to symmetry, the value of
curvature is zero at the interface and thus the mean
confining steel stress, &, at this location is determined
only & induced by the bar pullout.

However, within the curvature influential zone, G
is influenced by both the pullout and the shear slip at
the interface owing to three dimensional extent. These
parameters which define the deformational and
mechanical characteristics of a RC interface are shown
in Fig.2 which stretches the crack width and shear slip
for clearly defining the notations. To determine the
load deformation relationship and the capacity of the
interface, the formulation of embedded bar axial stress
under normal and transverse displacement is essential.

(2) Review of bond stress-strain-axial slip model
Shima et al. proposed a bond stress-strain-axial
slip model for reinforcement under uniaxial pullout
conditions. The differences in bond-slip relations
obtained from pullout tests of long and short
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embeddments and from axial tension test specimens
were expressed by using an unique bond stress-slip-
strain relationship, in which the bond stress is
formulated as a function of strain multiplied by a
function of slip, which is defined as the bond stress
when the strain of the bar is zero. The constitutive law
for bond stress is given by, -

T(85) = T, (5)8(E)

Ty = [ k{In(1+55)}¢ 1

g2&)=(1+10°¢)"

where Ty is the bond stress, Ty, is the bond stress when
bar strain is zero, g is a function depending on bar
axial mean strain, f'c is the compressive strength of
concrete, s is non dimensional slip = 1000S/D, S is
slip, D is bar diameter, and k and ¢ are constants
having values of 0.73 and 3, respectively.

For pullout of an embedded bar, the case of
interest in the enhanced modeling of the bar and
boundary conditions are shown in Fig.3.

The equilibrium between bond stress and the mean
axial stress is defined by,

@

b
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The compatibility between axial slip and axial
strain is given by,

S(x)=I§sdx+So &)
0

where, S, is the slip of the bar at the free end.

This bond stress-slip-strain model, which takes
into account effects of bar diameter and concrete
strength and is applicable to both the elastic and
plastic ranges independent of steel properties, is taken
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as the framework on which modifications for the
proposed model are introduced.

In reference (16), it has been reported that the two
new features of bar behavior, which were witnessed
experimentally, included (1) the non-uniformity in the
distribution of mean strains close to the crack plane,
with some extreme fibers in the reinforcement
reaching plastic strains at some particular sections
while the mean strain at the interface and other points
away from the interface were found to be elastic even
up to ultimate loads, and (2) the curvature induced in
the bar due to the transverse shear displacement is also
non uniform with zero curvature at, and some distance
away from, the interface. The mean stresses in the
reinforcement close to the crack plane, however,
showed rather uniform nature.

(3) Propesals for model considering localized

effects

In view of the 'localized effects' of the bar behavior
close to the interface, two basic proposals, considering
the different stress and deformational fields to which
the bar is subjected to near the interface, are postulated
as below.
a) Zone of Bond Deterioration: In the original pullout
tests carried out to formulate the bond stress-strain-
axial slip model, an unbonded zone was placed near
the loaded surface to ensure uniform bond over the
whole reinforcement”.  However, the bond
performance near the real interface may easily be
deteriorated due to the splitting and crushing of
concrete around the bar. In order to consider this
effect, a Bond Deterioration Zone'is defined as Ly, the
range of which is a function of bar diameter, i.e. L, =
Ly, (D). For the computational model Ly is taken as '5D",
but not less than the 'Curvature Influencing Zone', as
discussed later. The degradation for the bond stress
along this zone is proposed by a simple bi-linear
function as expressed below.

Tb,max

L {x—(L, - L)}

(L-L,Sx<L-1L/2)
T,(0)=0 (I,-L/2<Sx<L)

Tb(‘x) = Tb,max -

“4

where Ty, is the maximum bond stress attained at the
origin of L. L is the bar embedded length. The bond
stress profile along the embedded length, including the
newly introduced profile for the concept of a bond
deterioration zone, is shown in Fig.4.

The concept of a bond deterioration zone has been
adopted by considering a linear degradation of bond
stress from the origin of bond deterioration zone to the
crack surface'”. The profile adopted here, where bond
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Fig.4 Bond stress profile along embedded bar with deterioration
of bond close to the interface.

stress drops to zero after some finite length of the
deterioration zone, is to represent the locus from which
the radial bond micro-cracks would reach the surface
of the interface plane and T, would decrease rapidly. It
should be noted however that as long as a bond
deterioration zone of appropriate size is considered,
the profile of degradation is not a very highly sensitive
parameter.

In the present model, the integration of the strain
profile is carried out over the entire embedded length,
L., to find the loaded end slip. Within the Bond
Deterioration Zone, L, the inean axial strain, &, (x), is
a function of the mean axial stress, & (x), which in
turn is computed from the pre-defined bond stress
profile, T,(x), within the zone, i.e.,

Lo=Ly )3
S= | EWdi+ JEG,Nd+S, )

0 L1,

Thus, the quantitative effect of the deterioration of
bond on the additional pullout of the bar can be
obtained, irrespective of long or short embedded
lengths.

b) Zone of Curvature Influence: To consider the effect
of the localized curvature in the bar, close to the shear
plane, the concept of a ‘Curvature Influencing Zone',
L, is introduced. In the tests L. was observed to be
between '4D’ and ‘5D’ initially, with a small increase of
'1D' to 2D, with increasing load, as shown in Fig.5.
For the model, the initial zone size, L. (=L), at small
displacements when both materials can be considered
to behave elastically, is idealized by considering the
bar behavior analogous to a beam on an elastic
foundation (BEF), which gives, ‘

q=-(D)3, ®

where 8, is the local downward deflection of the
supporting concrete foundation under the bar, q is the
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downward (and -q is the upward) force per unit length
of the bar, and k is the foundation modulus taken as
constant over the bar diameter, D. Using the classical
beam equation, and substituting Eq.(6), we have,

d*d,
dx*

(kD)
E; I

Q)

where p’ is any external linear downward load acting
on the bar, and E, and I, are the elastic modulus and
moment of inertia of the bar section, respectively.

Since the embedded bar is not subjected to any
external linear load, therefore the 'reduced’, (p’=0),
general solution of the above equation yields,

& = exp(Px)(C: cosPx + C, sinPx)
+ exp(—Px) (C; cosPx + C, sinpx) ®
kD
where B = 4 m

If the origin of x is taken at the shear plane interface,
and defined as x’, the constants of integration can be
worked out from the boundary conditions at the two
ends for an embedded bar of semi-infinite length
subjected to only an external shear force V at the
interface with zero bending moment M(=0), i.e.,

At X' 5o, 8,=0(C;=C,=0)
At x'=0, E 1§ =M=0
and E1,& =V

®

The solution of differential equation yields,
E 1,8, 7 =V {exp(—Px' NcosPx’—sinBx")}(10)
Then, the location of the maximum bending moment,

and consequently of maximum curvature, x;’, from the
interface, is given by,

[4Es I, .,
D atE I, 8" =0 an

For the model, L, is taken as three times the size of the
location of the maximum bending moment, as would
be derived from BEF analogy, to give,

in [E T,
4 kD

n

xC,:z

Le (12)
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The definitions of x’. and L, are illustrated in Fig.5,
along with the conceptual variation of the curvature
profile, as seen in test results.

Here it is important to mention the equivalence
and difference between the 'curvature distribution
based model' and the ‘beam on elastic/inelastic
foundation model' 1t is possible to originate from the
inelastic reaction model from the concrete foundation,
based on which the curvature profile may be derived.
In this case, however the model becomes complex and
it becomes necessary to consider the difference in
bearing reaction along the bar axis at different
locations, away from the interface. This factor cannot
be directly measured through the experimental
approach, with the presence of the contacting concrete
surface on the opposite side. Furthermore, since the
bearing reaction in the supporting concrete develops
from the transverse displacement of the embedded bar,
the relaxation of the contact pressure due to localized
yielding of the bar is difficult to be modeled through
this approach.

Therefore, it was decided to start the computations
from the profile pattern of the curvature and the size of
the influencing zone, which are directly observed from
the experiments. This approach is similar to the
method used by Izumo et al'” for modeling the
tension stiffening behavior in reinforced concrete,
based on a trigonometric function for the pattern of the
tensile stress profile of main reinforcing bars
embedded in concrete. The main advantage of the
adopted approach is that reliable experimental data,
which is not of a microscopic basis but of a
macroscopic one, but which is closely associated with
the microscopic fundamentals of transversely
supported reinforcing bar, can be the basis for the
model.
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The BEF analogy has been basically utilized for
computing the location of the initial maximum
bending moment, based on the parameters which
influence the curvature zone, since test results of
curvature profiles for a wide range of variation of these
parameters are not available.

However, for reasons detailed above, the BEF
analogy cannot be considered reliable in the later
stages of bar pullout and shear displacement, ‘since
both the embedded bar and the supporting concrete
would behave nonlinearly. As seen in the test
results'®, there is a small shift of the curvature
influencing zone, with increased shear displacements.
The mechanical meaning of this shift is a reflection of
the inelasticity of the reaction spring properties,
because the inelasticity relaxes the moment
localization. The variation of the influencing zone is
basically associated with the local crushing or high
inelasticity of the reacting concrete near the interface.
This gradual softening in the supporting concrete due
to increasing bar shear displacements, &, and radial
micro bond cracks from bar pullout, S, is modeled by
considering an increase in L, as a function of L, and a
non-dimensional damage build-up parameter, DI, as
expressed below,

DI =(1+1508/D) &,/ D

Li=L. (for DI £0.02)

(13)
Le= Le, {1+ 3(DI -0.02)"%)

( for DI >0.02)

The shape of the curvature distribution, ¢(x),
within L is modeled by a skewed parabolic form,
which conforms well with the curvature profile seen in
test results'®, as shown for a typical specimen in Fig.6,
and is expressed as below,
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for L —L <x<L-L1/2

00 =320 -1, - L /2P 9

(4

= Lix=(L -3L /4]
for L —L/2<x<1L,

The comparison of variation of L with test results, of a
few typical specimens, is shown in Fig.7.

The size of the curvature influencing zone and the
shape of the curvature profile, are modeled primarily to
reproduce the curvature profiles observed in test
results. The expression for the underlying concrete
subgrade stiffness, &, is within the range of values of k
adopted in literature by different researchers, as
summarized by Poli et al.”. Eq.(12), derived from the
BEF analogy is a convenient expression to model the
zone size based on all the relevant affecting
parameters, i.e. bar size, and concrete and steel
stiffnesses. Prediction of bar axial and transverse
stresses for tests conducted for this study and available
data from literature, as will be shown on a later
section, validates the modeling of the subgrade
stiffness along with the zone size and shape, for
sufficiently wide variation of the affecting parameters.
The direct verification of zone size and shape with test
data of experiments conducted for this study was also
done, as shown in Fig.6 and Fig.7.

(4) Compatibility between bar transverse
displacement and curvature distribution
Using the classical beam theory assumptions,
compatibility conditions require that the sum of the
double integral of the curvature distribution, ¢(x), and
the integral of the transverse shear deformation, Y(x),
along the bar axis, must equal the displacement of the
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bar normal to that axis, 8y(x). Satisfying boundary and
continuity conditions, we have,

5 =)l owax+s,

(15)
8, =1, v(x)adx

where, L. indicates the size of curvature influencing
zone, the integrals over which gives the transverse
displacement of the bar at the interface, which by
compatibility becomes half of the shear displacement
of the interface, 8 as shown in Fig.2.

This geometric compatibility, which holds true
irrespective of bar elastic and plastic behaviors, is one
of the key relations in the computational model. Once
the bar transverse displacement, &, is known, the
curvature profile, ¢(x), can be computed and the axial
and transverse stresses in the embedded bar can be
calculated, due to the coupled action of axial pullout
and transverse displacement.

The force system acting on the embedded bar, due
to the displacement path at the interface, which will be
discussed in detail in the next section, produces
insignificant shear deformation of the bar at the
interface. Due to the imposed boundary conditions at
the ends of the curvature influencing zone, i.e. the
origin and the interface, the bending moments must be
zero. The profile of the shear force acting on the bar
therefore follows a positive and negative contour.
Under elastic conditions, the transverse bar
displacement due to the shear deformation only, Oy,
can be expressed as,

[0
GA,

o
3, kwmw= (16)

‘T GA, @M
where, o is a shape factor which is a function of the
shear stress distribution in the cross section, G is the
shear modulus of elasticity and A; is the cross
sectional area.

Due to the boundary conditions, as mentioned
above, the difference in bending moment across L
must be zero. Therefore, shear deformation under
elastic conditions can be considered as non-existent.
After the localized yielding of the outer fibers of the
bar, due to the curvature, the plasticity proceeds on
both sides of the maximum curvature location, i.e.
encompassing both positive and negative shear force
regions, and the additional shear deformations at the
interface location due to the loss of shear rigidity close
to the interface are also mostly balanced between these
two regions. In view of this behavior, in general, the
effect of shear displacement is not considered in the
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computational model. Verification with test results
also indicates that by considering only the transverse
displacement due to bending rotations, the normal
displacement of the bar at the interface can be
predicted satisfactorily, as shown in later sections.

(5) Stresses, strains and system of forces acting

on embedded bar modeled as 2-D cord

From the assumed distribution profiles of bond
stresses and curvature, computations can be carried out
for the sectionally averaged mean bar stresses and
strains along the bar axis, ¢&(x) and E(x),
respectively, the local stresses and strains along the bar
cross section, 6(x,y) and €4(x,y), respectively (where y
is the local coordinate, the origin of which is the
centroid of the section concerned), and the system of
forces, including axial force P(x), bending moments
M(x), shear forces V(x) and contact pressure below the
bar fi(x), along the bar axis. The discretized bar local
stresses, Os(X,y), are computed from the uniaxial stress-
strain relationship of bare steel bar”. Using the
relationships between the mean axial bar stresses and
strains with the local stresses and strains, i.e,

D
rcx(x’ y)d143(y)
G =2
D a7
f g,(x,y)dA,(y)
Es(x) - =D/2 A

B3

where, D is the bar diameter. The governing equations
are detailed below.

0. (x) = %]Tb (x) dx

where Ty (X) = Ty (X, Tomax) 18

(L-L, <x<L.)
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which is the general equation obtained by integrating
Eq.(2). The mean axial bar strain is then computed
from g (x) and ¢(x),

€,(x) = £,((x),6,(x))

L-L<x<IL (19

where G, (x) = f 0.(€5)dA(y) ! As

-D12

and €, = gfx) + O (x) y

(20$)

The system of forces acting on the bar, are then
computed as below,

P(x) =G, (x)A, 2n
D
M(x) = rcs(x,y)wdAs(y) (22)
-D/2
Vi) = 2 23
(x) = T (23)
dV(x) 1
fo(x)=—— o D (24

The effect of the shear stress, T,, due to the bending
curvature, on the yield stress of the bar is taken into
consideration by applying the Von-Mises yield
criterion, as below.

£ = f,1-3x,0)1 f,) (25)

by which the reduced mean yield stress, fy, for
checking the fiber stress state of the bar is obtained.

By solving a) bond constitutive model in Eq.(1-4)
simultaneously with b) compatibility conditions with
respect to transverse shear displacement and force in
Eq.(13-15) and ¢) equilibriumn on sectional forces in
Eq.(17-25), we have the coupled effect of pullout and
dowel actions. The spatial distribution profile of the
computed parameters obtained by simultaneously
solving Eq.(1-5) and Eq.(13-24) along the bar axis are
shown in Fig.8. Also shown are the profile of fiber
stresses across the bar section along the 'Curvature
Influencing Zone'.

(6) Ultimate axial force criterion for embedded bar

The ultimate axial force provided by the
reinforcement under a coupled displacement path,
giving rise to interacting bending, shear and axial
forces on the embedded bar, can be derived on the
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Fig.9 Interaction criteria with test results '

basis of the maximum possible interactive stresses in
the bar under such conditions. Using the plane section
theory of beams, and idealizing the material stress-
strain behavior as rigid plastic with capacity equal to
the bar axial yield capacity, the solution of two
equilibrium conditions for a given cross section, i.e.,

f G,(x,y)dA,(y) = P(x)

-D/2

D.
fq(x,y) cy-dA(y) = M(x)

-D/2

(26)

gives the interaction equation in terms of ratios of
actual forces to the strength of the section under pure
axial and bending forces
2
N P(x)
P

[
Extending this relation to consider the effect of
sectional shear forces, according to the Von-Mises
criteria for combined axial and shear forces, we can

M(x)
M

o

1 27)

obtain,
) = M) (PR 2+rV(x):|2
(x M, P, vV, (28)
Ax)=1

where, M(x), P(x) and V(x) are the actual bending
moment, axial force and shear on a section,
respectively; M, (=f, D*/6), P, (=A; f,) and V,, (=A; f, /
V3) are the corresponding ultimate capacities under
non interactive force conditions. Under any
combination of the interacting stresses, when the limit
criteria expressed by A(x) equals unity, it implies the
ultimate bar axial stress, unless there is a reduction in
the other interactive forces.

234

The experimental verification for deriving such a
interaction failure criteria as A (x), based on the plane
section theory, is shown in Fig.9. Test results for the
ultimate capacity of the section concerned, subjected
to combined axial thrust and bending moment'”,
without the problem of instability, were analyzed by
two different approaches. The first was the interaction
criteria, as described above, and the second was by
considering failure to occur when the extreme bar fiber
reaches fracture, as defined by the axial stress-strain
relation of the bar, under increasing bending moments
and a constant axial force. (Since the actual stress-
strain relation of the steel section is not mentioned in
(13), a typical such relation for a steel with similar
yield stress was utilized'> ). It can be seen from Fig.9,
that satisfactory predictions of ultimate capacity can be
obtained using the interaction criteria, whereas the
second approach overestimates the rest data. Similar
verification of the interaction equation for test results
of hollow rectangular box sections subjected to bi-
axial moment and axial tension, without problems of
instability, can be found in (14).

4.VERIFICATION OF PROPOSED MODEL

(1) Curvature-shear slip relation

Since the basic compatibility proposal in the
model relates the curvature distribution with the shear
slip of the reinforcement, the comparison of
experimentally measured and computed shear slips of
bar, from Eq.(13-15) neglecting shear deformation
(8,s=0), using the experimentally obtained maximum
bar curvature, is shown in Fig.10 for some typical
specimens. Satisfactory correlation can be observed,
with considerable variation in maximum bar curvature
for different specimens. This verification further
confirms, as mentioned earlier, that plastic shear
deformations are not significant in coupled
displacement path tests till the maximum bar axial
capacity is attained.

(2) Bar axial stress-pullout relation at interface

Verification of the bar stiffness and strength is
done by testing reinforced crack and joint planes, as
explained in the test setup as shown in Fig.1, which
introduces the coupled displacement path for the
embedded bar. Testing was carried out for different
shear plane geometrical types (processed, P, and
unprocessed, U, construction joints, CJ, and rough
cracks, RC) and material properties (normal concrete,
NC and High Performance Concrete, HPC), along
with different reinforcement ratios'®. These define
unique coupled displacement paths according to the
equilibrium and compatibility conditions at the
interface.
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Fig.10 Comparison of experimental '® and predicted results of compatibility relation between curvature and transverse dlsplacement
of bar, for typical specimens.

The test and computed steel axial mean stress
versus the pullout and associated transverse
displacement at the interface are shown in Fig.11. The
mean axial stress versus strain results for a similar test
specimen”, at the maximum curvature location, is
shown in Fig.12. Pure axial pullout results are also
shown for comparison, in all the figures. The ‘dotted
line with arrow head succeeding the coupled path
prediction line, in the figures, indicates the point at
which the limiting interactive force criterion, A(x),
attains unity. Further increase in displacement path
would produce plastic deformations without increase
in the axial stress, since the bending moment does not
decrease with the increase in bar transverse
displacement. The critical location along the bar axis
where the limit interactive force criterion is attained is
always at the maximum curvature location inside
concrete, where the maximum bending moment and
axial force exist and shear is none.

This results in the formation of a plastic hinge,
since additional bending moments cannot be
supported and a possible rotational mechanism
develops in the bar between the maximum curvature
location and the interface, resulting in loss of the axial
restraining force to the interface.

The satisfactory correlation for the initial part of
the steel stress-pullout relation, before localized
yielding, verifies the first proposal of the model
regarding the quantitative effect of the profile of the
Bond Deterioration Zone', which explains the
increased pullout, as compared to uniaxial pullout of
the original model with bond deterioration suppressed.

After the localized yielding of the extreme bar
fibers, the mean strain profile would become
nonuniform, because of the induced curvature, since
the mean stress profile is uniform near the crack. Since
the integral of the mean strain along the bar represents
the pullout of the bar, this non uniformity in the mean
strain profile would be the source of the additional
pullout, for a given mean stress level, observed in
coupled displacement path tests as compared to
uniaxial pullout tests. The prediction of the non-linear
part in the steel stress-pullout relation verifies the
second proposal in the model regarding the
quantitative effect of the '‘Curvature Influencing Zone'.
In consideration of the limiting value of the interactive
stresses possible at the maximum curvature location,
due to combined axial and bending stresses, the
ultimate axial force of the bar can also be predicted
satisfactorily, (Fig.11 and Fig.12).
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Fig.11 Comparison of experimental '® and predicted mean axial bar stress, at failure of specimens, and associated displacement path
at the interface.
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In general, the steeper the displacement path, in terms
of &/S, brought about by increased reinforcement
ratio, flatter interface geometry or lower concrete
strength, the lower the mean axial stress, that is
attained, as evident through Fig.11 (Specimens 3,6,8,
respectively).

In order to clearly understand the significance of
the interaction failure criterion introduced in Eq.(28)
of the proposed model, a case is analyzed for a typical
test specimen without considering any failure criteria
for the bar, other than fracture of the extreme fibers at
the end of strain hardening. The results of such an
analysis is shown in Fig.13. Two cases, with and
without the consideration of an increase in curvature
zone, L., are computed, to check the sensitivity of this
proposal in the model. It can be seen that without the
definition of a failure criteria, the bar pullout continues
to increase with small increase in axial stress, thereby
reducing the pullout stiffness.

Test results however do not indicate such high bar
pullout values. Therefore the good correlation obtained
with test data, for both bar axial capacity and
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associated pullout at interface, under coupled
displacement paths, with the use of the interaction
failure criterion, allows it to be considered as an
acceptable failure condition in the proposed model.
The sensitivity of the increase in L. in the simulation
shown in Fig.13, indicates that the relaxation of the
supporting concrete spring properties reduces the rate
of increase of the curvature at a particular location and
the bar axial stresses attained for a given pullout level
are increased. However, till the point of the observed
experimental bar capacity, the effect of the increase in
L; on the bar axial stress versus pullout relation is not
so much.

(3) Force-displacement relationship of embedded
bar under pure transverse loads

. The behavior of an embedded bar under pure
transverse loads, termed as dowel action, have also
been experimentally investigated by several
researchers™®. The proposed generic model for the
embedded bar can be applied in the case of pure
transverse displacements also to predict dowel
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capacity and load displacement relationships. In the
absence of any axial pullout, the nonlinearity in the bar
under pure shear is much higher than in the case of a
bar subjected to a coupled displacement path.

The failure mode is highly ductile with a large
spread of plastic strains along the bar axis and large
plasticized depths across the bar section. The presence
of a zone of localized curvature is also witnessed
under this condition®, similar to that witnessed for
tests conducted in this study for coupled displacement
paths. Comparison of test ¥ and predicted results for
bars of different diameters are shown in Fig.14, and
show good agreement.

Predictions are also attempted for test data from
reference (9), with different bar size diameters and
different bar and concrete material properties from (4).
Predictions obtained are again in good agreement with
the test data, as shown in Fig.14, which verifies the
versatility of the proposed bar model, not only for
prediction of mean bar axial stress versus pullout
behavior coupled with transverse displacement, but
also for the prediction of bar shear stress versus
transverse displacement in the absence of any axial
pullout. Thus the formulated two dimensionally
idealized generic bar model can be used for predicting
successfully the axial and transverse bar behavior
under any arbitrary coupled or uncoupled
displacement path.

Since the validity of the bar model has been
verified through a wide range of test results, it can be
used to numerically simulate the effect of varying axial
force on the reduction of dowel capacity, the
possibility of which was raised by Suzuki et al.'? .

Although their test results show considerable
scatter and higher dowel capacities than observed in
other test results ¥, probably due to insufficient cut-
off of aggregate interlock, the qualitative trends of
reduced dowel capacity with increasing axial force
was observed. Computational results of dowel load-
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transverse displacement behavior in the presence of
varying axial force are shown in Fig.15. ,

From the computed results, it is observed that
under small axial force, the main source for the
stiffness degradation of the dowel behavior is the
inelasticity of the supporting concrete due to
increasing transverse displacement, which induces
higher bearing pressure. This becomes more and more
severe in the presence of higher axial forces, and the
stiffness degradation is accelerated. Under very high
axial force, close to the axial capacity of the bar, the
limit condition of maximum interactive stresses govern
the ultimate dowel capacity.

5. CONCLUSIONS

Based on new experimental findings of
microscopic bar behavior, as extracted from the
mechanics of a. RC interface, a generic model for
embedded bar has been formulated in this study. The
model formulation follows rational micro and macro
concepts and verification with test data were
conducted for each governing step. Following are the
general conclusions reached within this scope.

1) By utilizing two basic proposals, based on
experimental results, of a Bond Deterioration Zone'
and a 'Curvature Influencing Zone', coupled with a
compatibility relation to predict curvature from
transverse displacement, the internal stresses and
strains (both along the bar axis and across its section)
along with the entire system of forces acting on a bar
embedded in concrete, subjected to coupled pullout
and transverse shear slip, can be computed.

2) The compatibility relation between bar
curvature and the normal displacement of the bar can
be established using the Euler-Kirchoff hypothesis of
plane sections, and is verified with experimental
resuls, by predicting transverse shear displacement of
the bar from its curvature distribution.

3) The reduced axial stiffness of the bar can be
computed from the initiation of localized plasticity in
the reinforcing bar inside concrete, even as the section
at the interface is in purely elastic state. The
progressive reduction of axial stiffness, due to
gradually increasing plasticity both along the bar axis
and across the bar section, with increasing shear
displacement, can be predicted for test data.

4) The maximum axial confining stress attained in
the reinforcing bar at the interface can be predicted by
considering the ultimate interactive stress possible at
the maximum curvature location, due to combined
axial and bending stresses.

5) The proposed model can also predict the
capacity and load-displacement behavior of an



embedded bar under pure transverse displacement
paths. This makes the model a generic one applicable
under any displacement paths, such as pure axial
pullout, pure transverse displacement or arbitrary
combination of the two.

6) The proposed model has been independently
verified when displacement paths are used as input
parameters. For versatile applicability, the prediction of
stress transfer behavior of a RC interface, by combining
with an aggregate interlock model, needs to be
established. Since the evaluation of shear force acting
on the bar at the interface, i.e. dowel shear, can be
computed from the model, it can be added to the
aggregate interlock model to obtain the total shear
transferred at the interface by both mechanisms in an
unified manner.

For future development, the proposed model is
required to cover more generic conditions in reinforced
concrete members, in which reinforcing bars are
closely arranged, adjacent cracks are introduced with
smaller spacing and so on.
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