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The behavior of conerete and reinforced concrete structures is significantly affected by their sizes.
The size effect on flexure and shear strengths of concrete beams has been already confirmed
experimentally. This paper presents some results of the size effect on flexure and shear failures for
different concrete and reinforced concrete beam sizes subjected to concentrated and uniformly
distributed loads. The analysis was carried out by a computer simulation using the program ANACS
(Advanced Nonlinear Analysis of Concrete Structures). Using the arc-length method the post peak
behavior can be predicted well even for snap back instability.
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1. INTRODUCTION

The size effect is for design engineer probably
the most compelling reason for using fracture
mechanics. The size effect is defined through a
comparison of geometrically similar structures of
different sizes. A dependence of nominal stress at
ultimate load on the structure size is called the size
effect. Thus, for example the flexure failure of plain
concrete beams cannot be described by the tensile
strength only. More objective failure criterion for
concrete appears to be the fracture energy needed
for the crack propagation. These facts were recently
intensively investigated and published in many
proceedingsl)'z). The introduction of fracture
energy makes it possible to explain the size effect,
which is observed experimentally. Due to the fact
that the smeared crack model has a fundamental
drawback, that is, the propagation of concrete crack
is depend on the element size. Also, as pointed out
by3)’4), it is doubtful that the smeared model can be
suitable to simulate a localization of fracture and
unloading behaviors of concrete due to stress
locking phenomenon and other reasons. Thus, in
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this paper discrete crack model is adopted. The
tensile fracture is clearly a process of structure
failure, where a discrete crack is formed in
continuum and its solution is dependent on loading
and boundary conditions. In fact, lumping all
nonlinear deformation into interface elements
involves a mechanism of softening lines or
softening hinges to be assumed, similar to the
assumption of yield lines or plastic hinges in the
theory of plasticity. This process can be described
by the fictitious crack model with two orthogonal
rod elements, which implies the localization of
crack). The advantage of this formulation is that it
can solve a problem of discontinua with the help of
the standard finite element method.

The authors have developed the fictitious crack
model which was initially introduced by Hillerborg
et al.%. This model uses an energy based approach
to predict the formation of cracks in concrete. In
this approach the fracture energy of concrete, Gy is
associated with a stress-crack width curve. This
approach shows that the fictitious crack model
combined with arc-length method is capable of
describing the size effect even in post peak brittle



failure in flexure and shear problems in concrete
and reinforced concrete beams, respectively.
Because of using arc-length method which depends
on load control approach, the problems where the
structure is subjected to more than one external
loads at different node points such as case of
uniformly distributed loads can be analyzed by the
current program (ANACS).

In the standard specification for design and
construction of concrete structures.of JSCE the
design equation considering the size effect was
already specified. The present paper documents
these experiences on calculations made in
connection with JSCE provisions of the size effect
analysis in concrete structures. The comparison
with experiments is not presented. However, such a
comparison can be certainly done for the small size
beams, but for the huge size beams it is virtually
impossible to perform the experiments.

2. FINITE ELEMENT MODELING FOR
CONCRETE AND STEEL ELEMENTS:

The complete and detailed discussion of the
ANACS program is exceeding the range of this
paper, and therefore only main principles are
mentioned here and a detailed description is
devoted only to the fracture modeling, which is
prevailing in the analyzed cases. The ANACS
program has a complete finite element armory
which has 4,5,6,7, and 8 noded quadrilateral
elements. Also, 3, and 6 noded triangular elements
have been incorporated into the program in order to
provide for mesh grading and flexibility in mesh
construction.

Concrete elements are elastic in tension.
Therefore, the flexure and shear cracks can be
easily localized based on the fictitious crack
approach by using the two orthogonal rod elements.
Concrete elements in compression is modeled by
bilinear stress strain curve as shown in Fig.1.

The adopted criterion for detecting crushing of
concrete elements is governed by the biaxial
compression yield surface proposed by Kupfer
et al.7); (Fig.2).

A two noded truss element for reinforcement
simulation is proposed with a bilinear stress strain
relation (Fig.3). Each node of this element has two
degrees of freedom. This element is connected
directly to the concrete element.

Due to the fact that the studied cases in this
paper concern with flexure failure and diagonal
tension failure of concrete and reinforced concrete
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beams, respectively, thus compressive stresses in
concrete and the tensile stresses in steel are always
within the elastic range.

The program ANACS is developed to reduce the
bulky input material by incorporating two
dimensional generation for the finite element mesh



for all types of quadrilateral and triangular
elements, steel ba;s, and noda.rlf coordinat:;zs;lAlso, Horizontal
the program involves an interface graphical post

processor to generate the mesh geometry, and Y, ROd element
deformed shapes through Autocad package. These
facilities are useful for detecting the mesh .
geometry, and the failure modes. Vertical Rod

element

3. FICTITIOUS CRACK SIMULATION X
FOR CONCRETE
Fig.4 The rod elements for crack simulation

The fracture zone was modeled by two
orthogonal rods between the pairs of decoupled
nodes of concrete elements along a priori chosen
crack path. Fig.4 shows the two orthogonal rods
which are used to simulate the crack and represent
the localized crack zone. In the present model, one £
of the rod elements was taken parallel to the X-axis, t
and the other one was taken parallel to Y-axis
disregarding the crack path orientation. In other < L S
words, the linkage elements will have a certain : % & Strain
orientation does not matter how the crack path : :
inclination is, as shown in Fig.4. Moreover. this : éy$
formulation of these linkage elements will not <% 5
disturb the fracture energy balance, which is :
independent on the fictitious crack orientation. For - /... ¢
more - justification refer to Appendix A. The : |'c
horizontal rod element exhibits non linear stress- \
strain behavior of concrete by using the 1/4th Fig.5 Stress-strain model for horizontal rod element
softening curve. For this rod element, the tensile
fracture energy remains constant and is equal to
100N/m as a representative value of the fracture
energy which is used in many researches®). The
length of rod element is assumed as unity (L=1).

Using the 1/4th model curve (Fig.5) for Stress A
horizontal rod element, the strain can be calculated
which is equivalent to the crack width and then the Ultimate (1.1-2.5)MPa
corresponding stress can be 'obtained. Also, the shear
compression bilinear curve is incorporated to the stress
previous model to simulate the rod element under
compression as shown in Fig.5.

The stiffness matrix of this horizontal rod
element is given using the force displacement ‘ o

relation in the global system of axes as follows: e
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Fig.6 Stress-strain model for vertical rod element
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u where A, is the area of concrete served by this rod
element, L is the length of rod element and E_ is
the Young’s modulus of concrete.
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Since the vertical rod element which represents
the shear sliding is perpendicular to the previous
one, the stiffness matrix for this rod element can be
considered as follows:

E! 0 0 0 07«
F{_AGc(0 1 0 -1 @
Fi L {00 o0 ofuw
Fj 0 -1 0 1o

where A, and L are the same as before, and G is
the shear modulus of concrete.

For the 1/4th tension model,
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where f; and f; are the tensile, and compressive
strength of concrete, respectively, Gp is the
fracture energy of concrete, and Ej is the elasticity
modulus of the rod element in tension model which
takes different values according to different strain
stages as defined by Eq.(5), Similarly, the B, is
the elasticity modulus of the rod element in

compression model and its value are defined by
Eq.(7).

Also, to have a realistic model, unloading and
reloading phenomenon was incorporated into the
tension model for the horizontal rod element.

The stress-strain relation for vertical rod element
is taken as linear elastic till the tensile stress in the
horizontal rod element exceeds the tensile strength
of concrete. Thus, when the crack starts at a certain
horizontal rod element, the resistance of the
corresponding vertical rod element vanishes.

Due to the fact that the fracture energy model to
define the shear stresses by the vertical rod element
is not known, thus a very simple model as shown in
Fig.6 was chosen. Moreover, according to the
adopted formulation for those orthogonal rod
elements the ultimate shear stress for the vertical
rod element can be taken as any value ranges
between (1.1~2.5)MPa. This wide range of chosen
ultimate shear stress for vertical rod model (Fig.6)
reflects that the crack formation and propagation,
and the ultimate shear strength of the studied
reinforced concrete beams mainly depend on the
tensile fracture energy stored in the horizontal rod
element which is defined by 1/4th softening model
(Fig.5).

At advanced stages of fracture zone
development, the compressive stress in the upper
part of the beam becomes large, in both rod
elements. Then, when the absolute value of the
shear stress in the vertical rod element exceeds the
predefined ultimate shear stress (Fig.6), the stresses
in both orthogonal rod elements are vanished, i.e.

the both rod elements lose all their stiffness.
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4. NUMERICAL SOLUTION TECHNIQUE
FOR NONLINEAR ANALYSIS

The current analysis is tried to trace the entire
load-deformation response of the concrete
structures. However, tracing of limit point and post
limit path is notoriously difficult especially for
structures which have a response involving a snap
back behavior. However, it is important to know
whether the structure collapse is a ductile or a
brittle form, and to define a material modeling
including the softening behavior. Then, the
establishment of arc-length procedure9) is necessary
for dealing with overcoming limit points in a
nonlinear solution path.
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Fig.7 The spherical arc-length procedure

Moreover, a technique has been adoptedlo) to
maintain the symmetric banded nature of the
equilibrium equations.

The basic idea in all arc-length methods is to
modify the load level at each iteration, rather than
holding the applied load level constant during a
load step, so that the solution follows some
specified path until convergence is attained.

The procedure of the arc-length method will be
reviewed briefly as follows.

As shown in Fig.7 the out of balance force
vector at the beginning of any iteration is

B =810 ®
where F: is the unbalanced force of this iteration,
and F, is the unbalanced force of last iteration.

Then the iterative displacement 8P is
P = K['F; = -8AK;'Q, +K['F, = 5ASF, +8P (9)

where P is the standard iterative change for some
known unbalanced forces, and K, is the tangent

stiffness matrix at beginning of the load increment,
while 8P, is the displacement vector, and ch is the

total external load vector.
The new incremental displacement vector is
AP; = AP, + B8P = AP, +3P + 5A8P, (10

In Eq.(10) 8 is the only unknown. The main
essence of the arc-length methods is that the load
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parameter A becomes a variable. Hence, together
with n displacement variables, we have a total of
n+l variables. For these variables, we have n
equilibrium equations and the one constraint
equation by fixing the incremental length AL in n
dimensional space, i.e.

AL? = APT AP, 48))
Substitute Eq.(10) into Eq.(11) gives the following
scalar quadratic equation

2,007 +a,0A+a; =0 (12)
Where
a, = dPTdP, (13)
a, =28P,(AP, +8P) (14)
a3 =(AP, +8P )T (AP, +5P )~ AL* (15)

To solve for Eq.(12), the value under the square
root of Eq.(16) should be greater than zero.

‘/af —4a,a,

-a,*
2a,

A = (16)

'I;he chojce of root in Eq.(16) can be referred
11
to™ /.

As a result of some troubles, which can be
generated from many sources such as the reversible
displacements (see chapter 5), the value of a,,
which depends on 8P, will be highly increased.
Then, the value under the root will be negative,
consequently the program will fail to carry out any
further calculations.

5. TENSILE FAILURE OF PLAIN
CONCRETE BEAMS IN BENDING

The concrete beam geometry is illustrated in
Fig.8. Six different sizes are considered h=0.1,
0.5,1.0,2.0,3.0, and 5.0m. The concrete properties
are identical for all six beams: f.=30.0MPa,
f;=3.0MPa, G=100N/m, and E.=30.0GPa.

Only symmetrical half of the beam was analyzed
in order to avoid the reversible displacement after
the crack begins to open which leads to numerical
instability and lack of convergence through



arc-length calculation procedure. If the two halves
of the beam are considered in the analysis, the
reversible displacements will be generated when the
other half of the beam moves after cracking in the
opposite direction to its movement before cracking.

Also, the rod elements are incorporated through
the flexural crack. Actually, there is no shear stress
along this flexure crack, but the incorporation of the
rod element which parallels to crack path is needed
to maintain the structure stability against any
vertical forces produced by numerical calculations
such as unbalanced forces. Also, as shown in Fig.8
both 4, and 5 nodded elements are used to facilitate
mesh grading near the beam center line. Further, it
is noticed that the numerical instabilities through
the calculations are reduced as much as the rod
elements is used along the crack path, because the
stiffness matrix has a gradual change, therefore, no
sudden change in the over all structure stability
conﬁgufan'on occurs, which leads to numerical
instability, and lack of convergence. Thus, the mesh
was graded fine near the center line predefined
crack, with 20 elements over the beam depth, and
then 41 rod elements are used along the crack path
with the help of 5 nodded transition element. Two
sets of calculations are performed. One is
concentrated load at distance 2h from the support as
shown in Fig.8, and the other is uniformly
distributed loads along the top surface of the beam.

The failure was initiated by formation of a
fracture process zone with a discrete crack in the
region of tensile stresses. The solution was done by
the arc-length control, and the post peak behavior
can be achieved as shown in Fig.9 which shows the
load-displacement diagram of beam size 50cm with
a post peak snap back response in both cases of
loading. While Fig.9 presents the shear force versus
displacement diagram for the total shear force at the
support, and the displacement at loading point in
case of concentrated load, the same relation is
described for the case of uniformly distributed load.
Moreover, In case of uniformly distributed load,
much smaller intervals near the peak load were
tried, but the structure cannot sustain any small
interval beyond the existed peak, and the load-
displacement response starts to turn down.

Fig.10 shows the tendency of ultimate strength
to decrease with the increase of beam size in both
cases of loading. This behavior is known as the size
effect. Also, as shown in Fig.10 the size effect is
moderated for large heights, and the peak stress of
the beams tends to become equal to tensile strength
of concrete. By comparing the results of both sets it
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Fig.10 Size effect in flexural strength

was found that in case of the concentrated load at
distance 2h from the support, the ultimate strength
due to applying uniformly distributed loads is
smaller than that in the case of applying
concentrated load by about 5%.
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Fig.11 The mesh for reinforced concrete beams

6. SHEAR FAILURE OF REINFORCED
CONCRETE BEAMS WITHOUT
STIRRUPS

The adopted mesh and the geometry of the
studied reinforced concrete beams are shown in
Fig.11. Both 6 noded triangular elements, and 8
noded quadrilateral elements are utilized. Six beam
sizes are considered from 0.1 to 5.0 m.

Also, two sets of calculations are performed.
One is concentrated load and the other is uniformly
distributed load. They are only reinforced with the
longitudinal bars at depth d equal to 0.8 the beam
height, i.e. there is no vertical stirrups. The beams
are geometrically similar. For all beams the
reinforcement ratio is 2%, and the ratio of shear
span to beam depth was set to 3.0 in case of
concentrated load. The concrete properties identical
for all six beams are: f'c=30.0MPa, f;=3.0MPa,
Gp=100N/m, and E.=30.0GPa. The reinforcement
has the yield strength f,,=400.0MPa, and Young’s
modulus Eg=210.0GPa. For performing more
realistic analysis, the beams are analyzed with
multicrack that is diagonal shear crack together
with flexure crack along the beam centerline
(Fig.12).

Based on extensive parametric study the
inclination of the diagonal shear crack was
determined. The diagonal shear crack was oriented
at angles 32°,35°,40°, and 45°, then a new finite
element mesh was rearranged with respect to the
chosen path. However, it was found that the
inclination of 40° gives the minimum shear strength
(Fig.13), so this angle was selected for further
calculations. The location of the fictitious crack
which gives the minimum shear strength was found
at distance (d) from the supports). Therefore, in this
paper the shear crack was chosen at distance (d)
from the support. Also, it is better to mention that
in case of uniformly distributed load the detected
shear strengths in Figs.13,14, and 15 are calculated
based on the shear force at the support position.

Rod elements for

flexure crack

shear crack

Fig.12 Schematic diagram to illustrate the proposed
crack planes
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The analysis was done by the arc-length control
and was stable in all cases in the whole softening
range as shown in Fig.14 which shows the shear
force versus displacement diagram of beam size
3.0m with a post peak snap back response. By the
way in Fig.14 the detected point for examining the
vertical displacement is the loading point in case of
concentrated load, for the sake of comparison the
same point is considered in case of uniformly
distributed load. Also, in Fig.14 much smaller
intervals were tried, but they also showed the same
peak values.

The fracture softening properties of Fig.14
shows that for large sizes such as h=3.0m, failure
becomes brittle and the snap back behavior occurs.
The snap back phenomenon occurs because there is
a sudden bifurcation process which leads to a
sudden drop in both load and deflection. In other
words, fracture of concrete leads to brittle failures
and as a result causes the size effect of decreasing
strength in structures of increased sizes.

Also, the results of this study with design
equation of JSCE are illustrated in Fig.15.
According to this figure, the tendency of shear
strength to decrease with the increase in the beam
size has been obtained. Moreover, Fig.15 shows
that our calculations in case of concentrated load
has almost a full agreement with JSCE design
equations for beams within 1.0m height. However,
as shown in Fig.15 the size effect disappears at
large depths. In such beams, the softening tensile
stress has a major significance because the
deformation in the failing crack is governed by
crack opening as shown later in Fig.18.

Shear stresses across the fracture zone carried by
aggregate interlockig between fracture surfaces
were not considered, nor was the shear force carried
by dowel action of the reinforced steel considered.
These assumptions mean that the calculated shear
strength becomes conservative. Conceming the
aggregate interlocking, it is mentioned that for
slender reinforced concrete beams without shear
reinforcement under shear load, the aggregate
interlock has a minor significance in the shear
resistance due to post cracking shear mechanism!?,

By comparing the peak stresses of both cases of
loading it is found that the calculated shearing force
and bending moment at the location where the
diagonal tension crack generates at the lower edge
of the beam, i.e. at distance (d) from the support ),
are almost the same for both loading cases, and it
does not mater how the load configuration is. This
means that the crack will begins to open when the
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stresses at crack location reach to a certain limit
disregarding the loading condition. Referring to the
JSCE equation which is used to predict the
ultimate shear strength of simply supported beam
with concentrated load13), the authors hit on the
idea to extent this equation to apply it in case of
uniformly distributed load.

The JSCE equation for concentrated load is as
follows

ve =0.20(p, fE)PdV4[0.75+ 1.4/ (a/d)] (17)
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where v, is the ultimate shear strength (MPa), f¢ is
the compression strength (MPa),p,, = 100A¢ /(b,4d),
b, is the breadth of web, A; is the cross sectional
area of tensile reinforcing bars, a is the shear span,
and d is the effective depth (m).

Then, if we choose a/d=3.013) and substitute in
Eq.(17), we can write the ultimate shear strength
equation as follows

v =0.3(p, f)Pd 14 (18)

Finally, in case of uniformly distributed load
and the span to depth ratio (I/d) about 8.0, the
ultimate shear strength can be roughly estimated
from Eq.(18), which takes into account the size
effect in the term of d™/4,

Furthermore, Fig.16 and Fig.17 show the
deformed shapes at the peak load and at the next
increment after the peak of the beam 3.0m height in
case of concentrated load. It can be noticed that the
displacements at beam axis of symmetry and
around loading point in Fig.17 is smaller than that
of Fig.16, which illustrates the effect of snap back
phenomenon. For Figs.16,17 the deformed shapes
are drawn with magnification factor equals to 100.

From Fig.18 it was found that in the diagonal
shear crack failure, the crack opening was much
larger than the crack sliding, which reflects that the
shear failure is a matter of mode I fracture of
concrete and the size effect is caused primarily by
concrete fracture. Fig.18 shows the crack opening
and the crack sliding response at distance (d) from
the support up to the failure load of beam height
3.0m.

7. CONCLUSIONS

It is possible to study the influence of different
variables on flexure, and shear strength
theoretically by means of nonlinear fracture
mechanics for different loading cases. In particular,
fracture mechanics offers a possibility to explain
the size effect in both flexure and shear strengths. It
was observed that for smaller beams till 100cm
height the shear capacity of beams having only
flexure reinforcement is profoundly affected by size
effect in both concentrated and uniformly
distributed loading. On the other hand, beams with
height more than 100cm the numerical predictions
showed that the size effect becomes negligible.
Moreover, the snap back phenomenon occurs when
the beam size increases and the brittle behavior of
concrete beams becomes significant. The failure
due to diagonal cracking is a matter of mode I
fracture energy. In the case of diagonal tension
failure, the bending moment values which is
calculated at the peak load in both loading cases at
the crack location are almost the same, disregarding
how the load configuration is. This means that the
crack will begin to open when the stresses at crack
location reach to a certain limit irrespective of the
history of the loading condition. Also, it is found
that the inclination of 40° gives the minimum shear

_ strength in both loading cases. The ultimate flexure
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strength due to applying uniformly distributed load
is smaller than the case of applying concentrated
load by about 5%. Finally, the results of JSCE
equation for shear strength is more or less
conservative for extremely large beams.

APPENDIX A ROD ELEMENTS
ORIENTATION

The reasons for using such fixed orientation of
the rod elements are as follows:

A) In case of simulating both flexure and shear
cracks, the crack was implemented from early
beginning along over the whole beam depth.
Moreover, naturally a compression zone at the top
of the beam will be created. Then if the rod
elements are incorporated as one parallel to crack
and the other one perpendicular to crack, it was
found that the compression strains in the
compression zone will create displacements along
both rod elements producing high forces in the rod
element which is parallel to the crack. On the other
hand the fracture energy model to define shear stress



by mode II of failure was not available to control or
.define such high forces generated in this parallel to
crack rod element (Fig.A-1). Furthermore, if any
kind of models for this rod elements was proposed,
it was found that the resulting peak load was highly
dependent on the chosen model!®, Finally, it was
found that , the using of the proposed expression of
the rod elements can overcome such problems,
because in the compression zone, these compression
strains will not generate any significant forces in the
vertical rod element.

For more explanation, the free body diagram in
Fig.A-1 shows that in case of using perpendicular,
and parallel rod elements concept, even after
.yielding all rod elements in the tension zone, there
is a reasonable force generated in the parallel to
crack rod element Fp, which it can stabilize the free
body as much as the load is applied on the beam.

B) In another case where parallel, .and
perpendicular rod elements concept is applied to the
direct tension test Fig.A-2. It can be found that if a
simple tension force was applied, at one end, then

the beam will have sliding along the crack path, in .

stead of direct crack opening.

Fig.A-3 shows two orthogonal rod elements
inclined with angle 6, and the stiffness of the rod
elements was taken as Young’s modulus E and the
shear modulus G for the perpendicular and the
parallel to crack rod elements, respectively. Only
one horizontal tension force was considered.

From Fig.A-3 the following equilibrium
equations can be obtained.

(:cz+1=‘52 GSC-ECS -c.c2 - cCsiECs ul[P
Acl| Gsc-Ecs cé4e¢ —cesvecs cE-e€ |[U 9 (A-1)
Ll cl-£d Gsceecs cl+ed Gsc-ksc || © | |2
—GesvECs GE-k¢ Gsc-Ecs cf4ed 2

where E and G are the Young’s xhodulus, and the
shear modulus of concrete, Respectively, S = sin0,
and C = cosf.

By subdividing these equilibrium equations, then

L_[Gs?+ECt ECS-GSCITP] U] (s o
AGE| ECS-GSC GC*+ES? ||0] (VW
L 2 2
——\GS*+EC?)P=U -
ACGE( + C) 1 (A-3)
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Fig.A-1> Schematic diagram to illustrate the effect of Fp

See Fig.A-3

»P

i L

Fig.A-2 Schematic diagram shows simple tension test
with rod elements

Fig.A-3 Structural simulation for the linkage elements

_ AGEY,
T

1

(A-4)
(st +EC?)

-~ P

If 0 is equal to 90° i.e. G's rod element will be
vertical (parallel to Y-axis), E’s rod element will be
horizontal (parallel to X-axis), the Eq.(A-4) will be;

AcEU,
L

sP= (A-5)

From Eq.(A-4) it was found that the force P
which required to make a unit displacement will
highly depends on the inclination angle 6, and
E/G ratio. Thus if 8=90° is substituted in Eq.(A-4),
then the force P will be tackled only by the tensile
flexure rod element as shown by Eq.(A-5).



Also, the following equation can be written for V,

L
oV m— - P -

By substituting 6=90° in Eq.(A-6), it was found
that V; =0, which can be considered the most
realistic behavior of these rod elements, because the
structure is subjected to only horizontal force P. If
this horizontal force produces vertical displacement
then the behavior of these rod elements will reflect
unrealistic behavior of the analyzed beams.
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